28.08.2013 Views

The FORE-SCE model: Land Use Modeling ... - Farm Foundation

The FORE-SCE model: Land Use Modeling ... - Farm Foundation

The FORE-SCE model: Land Use Modeling ... - Farm Foundation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>FORE</strong>-<strong>SCE</strong> <strong>model</strong>: <strong>Land</strong> <strong>Use</strong> <strong>Modeling</strong><br />

Parameterized with USGS Historical Data<br />

USGS EROS Data Center<br />

Terry Sohl<br />

Science Applications International Corporation (SAIC)<br />

Contractor to:<br />

USGS Center for Earth Observation and Science (EROS)<br />

Sioux Falls, SD 57198<br />

October 17th, 2007


USGS EROS Data Center


USGS EROS Data Center<br />

<strong>Land</strong> Cover Trends:<br />

Telling the story of<br />

Change


Applications of <strong>Land</strong> Cover and <strong>Land</strong><br />

Cover Change Data<br />

NOAA temperature trends analysis<br />

Hale, R. C., K. P. Gallo, T. W. Owen, and T R.<br />

Loveland (2006), <strong>Land</strong> use/land cover change<br />

effects on temperature trends at U.S. Climate<br />

Normals stations. Geophysical Research Letters<br />

33: L11703<br />

USGS EROS Data Center


Monthly Minimum Temperature Anomaly - Memphis, TN<br />

USGS EROS Data Center<br />

Monthly Minimum Temperature Anomaly ( o C)<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

-1.0<br />

-2.0<br />

-3.0<br />

-4.0<br />

Dominant Change<br />

Period<br />

-5.0<br />

Jan-71 Jan-75 Jan-79 Jan-83 Jan-87 Jan-91 Jan-95 Jan-99<br />

Pre-change Pre change trend: -0.03 0.03 ± 0.06 °C/yr C/yr<br />

Post-change Post change trend: 0.15 ± 0.12 °C/yr C/yr


Applications of <strong>Land</strong> Cover and <strong>Land</strong><br />

Cover Change Data<br />

USGS/NASA United States regional carbon dynamics<br />

Liu, J, S. Liu, and T.R. Loveland, 2006. Temporal evolution of carbon<br />

budgets of the Appalachian Forests in the U.S. from 1972 to 2000. Forest<br />

Ecology and Management (in press).<br />

Liu, J., S. Liu, T.R. Loveland, and T.L. Tieszen, 2006. Estimating carbon<br />

sequestration in agricultural ecosystems in the Western Corn Belt Plains of<br />

the United States. Global Change Biology (currently going through USGS<br />

review).<br />

Tan, Z., S. Liu, C. A. Johnston, T. R. Loveland, L. L. Tieszen, J. Liu, and<br />

R. Kurtz, 2005. Soil organic carbon dynamics as related to land use<br />

history in the northwestern Great Plains. Global Biogeochemical Cycles<br />

19: GB3011.<br />

Liu, S., T.R. Loveland, and R.M. Kurtz, 2004. Contemporary carbon<br />

dynamics on terrestrial ecosystems in the southeastern plains of the United<br />

States. Environmental Management 33: S442-S456.<br />

USGS EROS Data Center


Total C Change (Mg C/ha/yr)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

Southeastern<br />

Plains<br />

1973 1978 1983 1988 1993 1998<br />

Year<br />

Ecoregion Carbon Dynamics<br />

USGS EROS Data Center<br />

Total C Change (Mg C/ha/yr)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

Piedmont Northern<br />

2.5<br />

2 Piedmont<br />

1971 1976 1981 1986 1991 1996<br />

Year<br />

Total C Change (Mg C/ha/yr)<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

1973 1978 1983 1988 1993 1998<br />

Year


Applications of <strong>Land</strong> Cover and <strong>Land</strong><br />

Cover Change Data – Conservation Issues<br />

USGS ARMI regional amphibian habitat analysis<br />

Price, S., M. Dorcas, A. Gallant, R. Klaver, and J. Wilson,<br />

2006. Three decades of urbanization: estimating the impact<br />

of land-cover change on stream salamander populations.<br />

Biological Conservation.<br />

USGS/FWS National Wildlife Refuge ecological integrity<br />

assessment<br />

Scott, J.M., Loveland, T.R., Gergley, K., Strittholt, J., and<br />

Staus, N., 2004. National Wildlife Refuge System:<br />

ecological context and integrity. Natural Resources<br />

Journal 44(4): 1041-1066.<br />

USGS EROS Data Center


“<strong>The</strong> Influence of Historical and Projected<br />

<strong>Land</strong> <strong>Use</strong> and <strong>Land</strong> Cover Changes on <strong>Land</strong><br />

Surface Hydrology and Regional Weather and<br />

Climate Variability”<br />

NASA ESE funded proposal<br />

T. Loveland, R. Pielke Sr., T. Sohl, L. Steyaert<br />

Conduct a series of regional experiments that collectively<br />

address the extent to which changes in specific regional<br />

land use and land cover characteristics, including the types,<br />

biophysical properties, and spatial configurations, affect<br />

surface hydrology and regional weather and climate<br />

variability.<br />

Sister USGS Prospectus funding<br />

USGS EROS Data Center


Blue -- Primary<br />

Assessment Region<br />

Magenta -- Atmospheric<br />

Boundary<br />

Conditions<br />

USGS EROS Data Center


Technical Components<br />

<strong>Land</strong> cover database development (pre-settlement,<br />

1920, 1992, and 2020)<br />

Biophysical parameter dataset development<br />

Sensitivity tests for summer months using<br />

RAMS/LEAF2/GEMTM<br />

Validation of <strong>model</strong> sensitivity<br />

Assessment of future regional climate vulnerability<br />

USGS EROS Data Center


LULC databases -- LEAF2 (modified)<br />

classification scheme (Western Plains Application)<br />

• Oceans, Lakes<br />

• Ice Caps, Glaciers<br />

• Evergreen Needleleaf Forest<br />

• Deciduous Needleleaf Forest<br />

• Deciduous Broadleaf Forest<br />

• Evergreen Broadleaf Forest<br />

• Short Grass<br />

• Tall Grass<br />

• Desert<br />

USGS EROS Data Center<br />

• Evergreen Shrub<br />

• Deciduous Shrub<br />

• Mixed Woodland<br />

• Crops/Mixed <strong>Farm</strong>ing<br />

• Row Crop (Dryland)<br />

• Irrigated Crop<br />

• Bog or Marsh<br />

• Bare Ground<br />

• Urban and Built-up


Historical <strong>Land</strong> Cover Reconstruction<br />

A modified Kuchler’s<br />

Potential Natural Vegetation<br />

(PNV) is used to represent<br />

pre-settlement (~1650)<br />

~1920 chosen as it<br />

represents the period where<br />

agricultural activity reached<br />

a peak in much of the U.S.,<br />

with eastern forests greatly<br />

reduced<br />

A cartographic <strong>model</strong>ing<br />

process used to reconstruct<br />

1920s land cover, using:<br />

PNV<br />

County Ag stats<br />

Census Data<br />

Other historical data sources<br />

USGS EROS Data Center


Historical,<br />

Contemporary, and<br />

Future <strong>Land</strong> cover<br />

in the High Plains:<br />

Assessing the<br />

Consequences of<br />

<strong>Land</strong> Cover Change<br />

on Regional<br />

Weather and<br />

Climate Variability<br />

USGS EROS Data Center<br />

Pre-Settlement 1920<br />

1992 2020


Biophysical Parameter Construction<br />

Biophysical parameter datasets<br />

for coupled land-atmosphere<br />

<strong>model</strong>ing are based on mapped<br />

land cover classes.<br />

Aggregated time series of<br />

MODIS products (albedo, leaf<br />

area, veg. indices) used to<br />

improve the basis for<br />

prescribing these parameters<br />

for each land cover type.<br />

<strong>The</strong>se data are combined with<br />

field and other data to construct<br />

final biophysical parameter<br />

data layers<br />

<strong>The</strong>se serve as input to<br />

RAMS/GEMTM <strong>model</strong>ing<br />

system<br />

USGS EROS Data Center


Projecting <strong>Land</strong> Cover Change:<br />

<strong>The</strong> <strong>FORE</strong>-<strong>SCE</strong> <strong>model</strong><br />

<strong>FORE</strong>-<strong>SCE</strong> – <strong>FORE</strong>casting <strong>SCE</strong>narios of land use change<br />

Our goal is to:<br />

Provide scenario-based projections of change (3 scenarios per<br />

region)<br />

Project the proportions of each land cover in a region<br />

Site the cover on the lands with the highest potential for<br />

supporting that land use and cover<br />

Generate the clusters of cover and patterns of fragmentation so<br />

that the projected landscape represents a specific composition and<br />

configuration for each region.<br />

USGS EROS Data Center


<strong>FORE</strong>-<strong>SCE</strong>: Model structure<br />

Issues of Scale -- Demand vs. Spatial Allocation module<br />

Demand Module<br />

Driven by macro-level socioeconomic drivers<br />

Drivers often not spatially explicit, not able to be mapped<br />

quantitatively<br />

Non-spatial...calculates area change for all land use types at the<br />

aggregate level<br />

Spatial Allocation Module<br />

Driven by lower-level socioeconomic and biophysical drivers<br />

Requires the establishment of quantitative relationships between<br />

LULC distribution and drivers<br />

Drivers MUST be mappable at the scale of analysis<br />

Output from Demand Module translated into spatially explicit<br />

allocation of land use change, based on a combination of<br />

empirical information, spatial analysis, and dynamic <strong>model</strong>ing.<br />

USGS EROS Data Center


<strong>Land</strong> Cover Trends Data --<br />

Our Ace-in-the-hole<br />

<strong>Use</strong> of <strong>Land</strong> Cover Trends project data<br />

We have empirical data on<br />

contemporary land cover change in the<br />

three study areas (change rates, patch<br />

characteristics, habitat fragmentation,<br />

drivers of change)<br />

Incorporation of Trends information --<br />

Gives us an advantage that many<br />

<strong>model</strong>ers of LULC change don’t have.<br />

Existence of Trends data, 1992 NLCD,<br />

and 2000 NLCD offers the possibility<br />

for calibrating <strong>model</strong> results<br />

USGS EROS Data Center


1992<br />

NLCD<br />

Climate<br />

(DAYMET)<br />

NED and<br />

Derivatives<br />

STATSGO<br />

Proximity to<br />

Transportation<br />

Population<br />

Data<br />

Socioeconomic<br />

Data<br />

Ag Census<br />

Data<br />

FIA<br />

Points<br />

Recode<br />

USGS EROS Data Center<br />

Modified<br />

NLCD<br />

Logistic<br />

Regression<br />

Interpolation<br />

(IDW)<br />

Stand Age<br />

(History)<br />

Elasticity<br />

Values<br />

Probability<br />

Surfaces<br />

(<strong>Land</strong> Cover(X)=1,19)<br />

<strong>Land</strong> Cover<br />

Trends Data<br />

Yearly Change<br />

Rates<br />

Prob(X)*Elas(X)*<br />

History<br />

Year(i)=1,58<br />

Layerstack-<br />

1992-2050<br />

<strong>Land</strong> Cover<br />

Patch<br />

Library<br />

Patch Size<br />

Characteristics<br />

TProb. X(i+1)<br />

History (i+1)<br />

Seed/Patch<br />

Placement<br />

<strong>Land</strong><br />

Cover X(i+1)<br />

Final <strong>Land</strong><br />

Cover (i+1)


<strong>FORE</strong>-<strong>SCE</strong> Model: Trends data and <strong>model</strong><br />

parameterization<br />

Ecoregion-by-ecoregion <strong>model</strong> parameterization using Trends data<br />

Ecoregion specific parameters including change rates, change patch<br />

characteristics, “Elasticity” values, “Clumpiness” values<br />

USGS EROS Data Center


Ancillary Data – <strong>Use</strong>d in Logistic Regression<br />

Modified 1992 NLCD and all<br />

ancillary data compiled into<br />

one data stack<br />

50,000 points, minimum<br />

1,000 per land cover class<br />

Point land cover and<br />

corresponding ancillary data<br />

values imported into SAS<br />

USGS EROS Data Center


Regression-based Probability Surfaces<br />

USGS EROS Data Center<br />

• Logistic regression<br />

used to analyze<br />

relationships between<br />

each land cover type<br />

and ancillary data sets<br />

• Probability surfaces<br />

constructed for each<br />

land cover type


Tracking Change through Time –<br />

HISTORY Variable<br />

Forestry activity in the Southeast results in an extremely dynamic landscape<br />

Over 20% of the Southeastern Plains ecoregion changed land cover type at least once<br />

between 1973 and 2000<br />

~75% of change in the Southeastern Plains is directly related to forest cutting<br />

Forest cutting cycles on loblolly pine plantations in the Southeast average 20-25 years<br />

Introduction of HISTORY variable that tracks “age” of every pixel in the SE study area<br />

Allows for much more realistic <strong>model</strong>ing of forest cutting cycle<br />

USGS EROS Data Center


Establishing Stand Age – Forest Inventory<br />

and Analysis (FIA) Data<br />

USGS EROS Data Center


Controlling Transition Probabilities<br />

“Elasticity” is an ecoregion-specific modifier to base probability values. It’s<br />

simply a number from 0 to 10 that gives the likelihood of a specific transition type<br />

occurring in that ecoregion.<br />

Elasticity for every possible land cover transition determined from <strong>Land</strong> Cover<br />

Trends data<br />

Powerful tool for control of scenario development. Depending upon the scenario,<br />

we can tightly or loosely restrict the types of land cover transitions that are allowed<br />

to occur.<br />

USGS EROS Data Center


Calculating Total Probability (TPROB)<br />

Total Probability (TPROB) constructed prior to generation of change polygons<br />

TPROB = Baseline Probability * ELASTICITY * Function(HISTORY) * PAD<br />

ELASTICITY used both to modify probabilities based on likelihood of change,<br />

and to “zero out” probabilities for transitions we don’t want to occur<br />

Value 0-10, rescale to 0.0 to 1.0 for TPROB multiplier<br />

HISTORY used to zero out probability of new transitional (clear-cut) patches until<br />

forest stand age reaches minimum of 20 years<br />

PAD – Protected Areas Database<br />

Baseline Probability Total Probability<br />

USGS EROS Data Center<br />

Existing Cover<br />

Elasticity<br />

History<br />

PAD


Generating Change Polygons<br />

TRANSITION TYPE Mean Patch Size Standard Deviation<br />

Grass/shrub to Urban 7.10 5.84<br />

Grass/shrub to Mining 1.37 2.40<br />

Grass/shrub to Agriculture 57.14 114.22<br />

Grass/shrub to Wetland 2.88 1.08<br />

Agriculture to Urban 3.75 3.54<br />

Agriculture to Mining 6.84 8.41<br />

Agriculture to Grass/shrub 58.43 103.17<br />

Agriculture to Wetland 3.00 0.74<br />

Wetland to Agriculture 4.36 6.44<br />

Wetland to Wetland 3.76 8.85<br />

USGS EROS Data Center<br />

• Probability surfaces used in conjunction with<br />

Trends information to create change polygons<br />

• <strong>Use</strong> of “Seeds” planted on probability surfaces<br />

• Change patches assigned a realistic size range<br />

for that transition type<br />

• <strong>Use</strong>s lookup table of mean and standard<br />

deviation of patch size for each LC type, for<br />

each ecoregion (from Trends project)<br />

• Normal distribution of patch size <strong>model</strong>ed<br />

based on those parameters (simplification)<br />

• Random number (normal distribution)<br />

used to select patch size for each seed<br />

• DEMAND drives # of “seed” pixels<br />

• With normal distribution:<br />

# Seeds = TotalArea(lc x ) / Mean


Old Method<br />

New (improved?) Method<br />

USGS EROS Data Center<br />

Generating Change Polygons<br />

and <strong>FORE</strong>-<strong>SCE</strong> run time<br />

Once seed size is determined, a change patch<br />

centered on that seed is placed<br />

Old method – Region grow function into<br />

adjacent pixels of similar (or higher)<br />

probability<br />

Patches more “organic”, dependent upon<br />

probability surface characteristics<br />

Problem – Model Run times were 2-3 real days<br />

per yearly <strong>model</strong> iteration<br />

New method – Pre-established patch “library”<br />

of a limited number of patch configurations<br />

Assigned patch size for a seed determines pool<br />

of potential patch configurations<br />

Underlying probability surface still controls<br />

individual pixel placement<br />

“Canned” patches with less variability, but:<br />

1992 to 2050 <strong>model</strong> run (58 iterations) now<br />

takes just over 24 hours


Controlling “Clumpiness” of LULC change<br />

USGS EROS Data Center<br />

Probability surface guides<br />

placement of seed pixels for<br />

change<br />

Some land cover transitions<br />

are spread evenly across the<br />

landscape, some are more<br />

clumped<br />

Histogram breakpoints used<br />

to control “clumpiness”<br />

Ecoregion-by-ecoregion<br />

parameterization<br />

Highly dependent upon<br />

characteristics of individual<br />

probability surface<br />

Quantitatively determined<br />

from Trends data….???


“Footprint” of Change – 1992 to 2050<br />

USGS EROS Data Center


RAMS/LEAF2/GEMTM <strong>Modeling</strong><br />

RAMS/LEAF2 coupled <strong>model</strong>ing system<br />

is used to quantify the potential effects of<br />

LULC change on surface hydrology,<br />

weather, and climate variability<br />

Summer season (60-90 day duration)<br />

conducted, using each land cover data set,<br />

but with identical meteorological forcing<br />

data<br />

“Wet” year (1993, top right) and “Dry”<br />

year (2002, bottom right) averaged<br />

maximum monthly air temperature shown<br />

Top row – 1992 NLCD baseline run<br />

2nd – 4 th row – Differences from baseline<br />

S1 – Trends extrapolation<br />

S2 – Agricultural decline scenario<br />

S3 – Agricultural expansion scenario<br />

USGS EROS Data Center


USGS EROS Data Center


1992 to 2050<br />

Projected<br />

Change:<br />

Florida<br />

USGS EROS Data Center


1992 to 2050 Projected<br />

LULC Change:<br />

Mobile, Alabama<br />

USGS EROS Data Center


1992 to 2050 Projected<br />

LULC Change:<br />

Montgomery, AL area<br />

USGS EROS Data Center


1992 to 2050 Projected<br />

LULC Change:<br />

New Orleans area<br />

USGS EROS Data Center


1992 Conifer – Percent changed by 2050<br />

USGS EROS Data Center


Red-cockaded Woodpecker – Conifer Stand Age<br />

Only bird in North America that regularly<br />

nests in cavities in living pine trees<br />

Longleaf Pine is preferred nesting tree<br />

Seek out Longleaf pine suffering from a<br />

fungal infection, “Red-heart disease”<br />

Causes inner wood to rot, become<br />

conducive for cavity building<br />

Longleaf pine and other pines don’t become<br />

susceptible to red-heart disease until an<br />

average age of 80-120 years old<br />

Also prefers contiguous patches of suitable<br />

habitat > 120 acres<br />

Even-aged, short rotation forestry<br />

management in the Southeast eliminates<br />

suitable nesting and foraging habitat<br />

USGS EROS Data Center


Red-cockaded Woodpecker – Conifer Stand Age<br />

RCW Family Clusters, 1990-1994<br />

15 Groups of 100+ Family<br />

Clusters, all but 1 on public land<br />

USGS EROS Data Center<br />

Projected 2050 Conifer Stand Age and Historical RCW Range<br />

Blue: Stand Age 75<br />

Crosshatch: Historical Range


Great Plains -- 1992 to 2020<br />

Change (Agriculture<br />

Expansion Scenario)<br />

USGS EROS Data Center


Scenario Comparison -- SW Kansas<br />

USGS EROS Data Center


South Dakota -- 1992 to projected 2020 Change<br />

Northern Great Plains – Study Area<br />

USGS EROS Data Center


FY2008 development: Northern Great Plains –<br />

Biofuel-driven Agricultural Change<br />

USGS EROS Data Center<br />

Primary goal – To evaluate the<br />

effects of an expanded agricultural<br />

base for biofuels and concurrent<br />

changes in climate on ecosystem<br />

sustainability across the Northern<br />

Great Plains<br />

Development of credible landchange<br />

scenarios to project<br />

alternative landscape futures<br />

through 2050<br />

Analyze results to estimate effects<br />

on ecosystem processes and<br />

services.


Northern Great Plains Biomass for Biofuel:<br />

Key Research Questions<br />

What landscape patterns are likely to result from an expanded<br />

biomass-for-biofuel economy and what are our estimates of the<br />

uncertainties?<br />

What are the environmental consequences?<br />

What are the full economic costs and benefit of biomass<br />

production for energy, including agricultural sector profitability?<br />

How will projected climate change impact agricultural production<br />

and profitability?<br />

How will projected climate change impact the provision of<br />

ecosystem services?<br />

What are the feedbacks among land-use change, economic and<br />

policy drivers, climate, biophysical processes, and a variety of<br />

ecosystem services?<br />

USGS EROS Data Center


FY2008 development: Scenarios<br />

Corn for ethanol – Large-scale production already underway in<br />

the Northern Great Plains, with continued expansion<br />

Soybeans for biodiesel<br />

Grasses for cellulosic ethanol<br />

Switchgrass<br />

Miscanthus<br />

Mixed Prairie Species<br />

Climate – IPCC-defined scenarios<br />

No change, Low-IPCC, High-IPCC<br />

USGS EROS Data Center


FY2008 development: DEMAND<br />

DEMAND in current <strong>FORE</strong>-<strong>SCE</strong><br />

applications has largely been<br />

based on extrapolations of<br />

historical (L.C. Trends) data<br />

Priority: Building a DEMAND<br />

module that instead is driven by<br />

policy, economic costs and<br />

returns, and biophysical<br />

conditions<br />

Prerequisite – Quantifying<br />

relationships between these<br />

drivers and actual land cover<br />

change<br />

USGS EROS Data Center<br />

Public policies<br />

Biofuel<br />

demands<br />

Commodity<br />

prices<br />

Climate<br />

Change<br />

Drivers<br />

and<br />

Feedbacks<br />

Drainage<br />

subsidies<br />

Site<br />

Conditions<br />

Irrigation<br />

incentives<br />

<strong>Land</strong> Cover Hectares<br />

Corn 18,500,000<br />

Soybeans 12,200,000<br />

Switchgrass 6,194,000<br />

Hay/Pasture 23,529,000<br />

Etc. Etc.


FY2008 development: Parcel (field) based<br />

<strong>model</strong>ing<br />

CLU<br />

NASS CDL<br />

USGS EROS Data Center<br />

MODIS NDVI<br />

USDA – Common <strong>Land</strong> Unit<br />

(CLU)<br />

Smallest unit of land that has a<br />

permanent, contiguous<br />

boundary, a common land cover<br />

and land management, a<br />

common owner and a common<br />

producer in ag land associated<br />

with USDA farm programs.<br />

MODIS 16-day Vegetation<br />

Index composites – <strong>Use</strong>d to map<br />

crop type, augment 2001 NLCD<br />

classification<br />

NASS Cropland Data Layer<br />

(CDL) used to validate MODIS<br />

crop-type information


FY2008 Development – Model integration<br />

USGS EROS Data Center


FY2010 and Beyond<br />

USGS plans for national land-cover monitoring<br />

NLCD updates every 5 years<br />

NLCD change products<br />

Integrate Trends expertise<br />

And…land cover projection component?<br />

USGS EROS Data Center

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!