29.08.2013 Views

Laser Development at Lincoln Laboratory - MIT Lincoln Laboratory

Laser Development at Lincoln Laboratory - MIT Lincoln Laboratory

Laser Development at Lincoln Laboratory - MIT Lincoln Laboratory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

• MELNGAILIS<br />

<strong>Laser</strong> <strong>Development</strong> <strong>at</strong> <strong>Lincoln</strong> Labor<strong>at</strong>ory<br />

FIGURE 13. Two microchip lasers in a heterodyne experiment. (Note: The holes on the<br />

work table are 1 inch on center.)<br />

ionic solid st<strong>at</strong>e lasers in 1964 by using a bank ofGaAs<br />

diodes to pwnp a U 3 +:CaF 2 laser rod [52]. However,<br />

extensive employment of this technique did not take<br />

place until two decades l<strong>at</strong>er, when diode lasers had<br />

achieved the adequ<strong>at</strong>e wavelength control, high efficiency,<br />

room-temper<strong>at</strong>ure oper<strong>at</strong>ion, and long lifetimes th<strong>at</strong><br />

made such pwnping advantageous over lamp pumping.<br />

The present effort in this area includes tiny diodepwnped<br />

microchip lasers [53] (Figure 13) for applic<strong>at</strong>ions<br />

as stable narrow-line sources in communic<strong>at</strong>ions and<br />

fiber gyros and as efficient high-power transmitters for<br />

laser radars [54]. As an example ofthe l<strong>at</strong>ter applic<strong>at</strong>ion,<br />

the Solid St<strong>at</strong>e Division has developed a 10-W-averagepower<br />

diode-pwnped Nd:YAG laser th<strong>at</strong> is currently<br />

being used <strong>at</strong> the Firepond site in laser radar experiments<br />

for range measurements and for tracking space objects.<br />

Gas <strong>Laser</strong>s<br />

Applic<strong>at</strong>ions in laser radar and high-precision spectroscopy<br />

have driven most of the gas-laser development <strong>at</strong><br />

<strong>Lincoln</strong> Labor<strong>at</strong>ory. Starting in the mid-1960s, the Optics<br />

Division designed and built sealed-offCO 2 lasers for<br />

ultrastable oper<strong>at</strong>ion in the TEM oo mode for use as local<br />

oscill<strong>at</strong>ors and master oscill<strong>at</strong>ors in coherent 10.6-,um<br />

radars [55, 56]. Single-frequency output powers up to<br />

45 W and a yet-to-be-surpassed short-term frequency<br />

stability oft-.flf$. 1.5 x 10- 13 over 0.1 sec were obtained.<br />

Figure 14 is a photograph of one of the first sealed-off<br />

CO 2 lasers, which was built with four invar rods to<br />

reduce the cavity-length vari<strong>at</strong>ion with temper<strong>at</strong>ure. To<br />

achieve absolute frequency stabiliz<strong>at</strong>ion, a technique<br />

th<strong>at</strong> makes use of s<strong>at</strong>ur<strong>at</strong>ion resonance on the 4.3-,um<br />

wavelength fluorescence ofCO 2 was invented [57]. The<br />

technique enables absolute frequency reproducibilities<br />

to within 3 kHz in nine CO 2 isotopic species. Thus<br />

secondary frequency standards in the 8.9-to-12.3-,um<br />

wavelength range could be cre<strong>at</strong>ed with the Cs <strong>at</strong>omic<br />

clock used as a primary standard.<br />

For applic<strong>at</strong>ions in compact imaging radars, a modified<br />

ultrastable CO 2 laser th<strong>at</strong> can be oper<strong>at</strong>ed either in<br />

a CWor electronically Q-switched mode was built [58].<br />

Mini<strong>at</strong>ure transverse-electric <strong>at</strong>mospheric-pressure lasers<br />

with 10-W average powers (20 m] <strong>at</strong> 500 Hz) were designed<br />

and built for lidar measurement of <strong>at</strong>mospheric<br />

constituents [59]. In 1970 <strong>Lincoln</strong> Labor<strong>at</strong>ory was also<br />

the first to achieve the sealed-offoper<strong>at</strong>ion ofCO lasers,<br />

VOLUME 3. NUMBER 3. 1990 THE LINCOLN LABORATORY JOURNAL 355


which were used in various spectroscopic applic<strong>at</strong>ions<br />

and in the optical pumping of spin-flip Raman lasers<br />

(discussed in the following section).<br />

In the early 1970s a team in the Solid St<strong>at</strong>e Division<br />

made important contributions in the area of submillimeter-wavelength<br />

lasers. A CO 2 laser was used as a source<br />

for pumping gas molecules <strong>at</strong> frequencies far removed<br />

from the vibr<strong>at</strong>ional transitions [60], in contrast to the<br />

resonant pumping used by other researchers. Nontesonant<br />

pumping gre<strong>at</strong>ly increased the number of gases<br />

th<strong>at</strong> could be used for submillimeter lasers (which thus<br />

gre<strong>at</strong>ly extended the number of possible wavelengths)<br />

and allowed significant wavelength tuning by the applic<strong>at</strong>ion<br />

of an electric field. <strong>Laser</strong> emission <strong>at</strong> numerous<br />

lines in the range from 58 to 755 fJm was obtained with<br />

methane (NH 3 ) and other gases. These lasers were instrumental<br />

in gre<strong>at</strong>ly expanding the applic<strong>at</strong>ions ofsubmillimeter<br />

spectroscopy, including the study ofimpurity<br />

levels in semiconductors such as GaAs [61].<br />

Nonlinear Optics and Frequency Conversion<br />

The advent of lasers provided a unique tool for fundamental<br />

studies in nonlinear optics and light sc<strong>at</strong>tering.<br />

• MELNGAILIS<br />

<strong>Laser</strong> <strong>Development</strong> <strong>at</strong> <strong>Lincoln</strong> Labor<strong>at</strong>ory<br />

These phenomena could in turn be used to convett and!<br />

or tune a laser's wavelength, thus gre<strong>at</strong>ly broadening the<br />

scope of applic<strong>at</strong>ions. Examples of such early work <strong>at</strong><br />

<strong>Lincoln</strong> Labor<strong>at</strong>ory were studies of phase-m<strong>at</strong>ched<br />

stimul<strong>at</strong>ed Raman sc<strong>at</strong>tering and measurements of l<strong>at</strong>tice<br />

and band-electron spontaneous light sc<strong>at</strong>tering in<br />

semiconductors [62,63]. The studies included the effect<br />

of an external electric field on the electron distribution<br />

[64]. The above work, which was carried out in the l<strong>at</strong>e<br />

l%Os, led to experiments th<strong>at</strong> used applied magnetic<br />

fields to investig<strong>at</strong>e spin-flip and Landau-level light sc<strong>at</strong>tering<br />

in semiconductors. In 1970, researchers <strong>at</strong> Bell<br />

Labor<strong>at</strong>ories were the first to demonstr<strong>at</strong>e a spin-flip<br />

Raman laser in InSb by using a 1O.6-fJm CO 2 laser. (A<br />

spin-flip Raman laser is based on sc<strong>at</strong>tering of light in<br />

which the spin of electrons in magnetic-field-induced<br />

energy levels in a semiconductor is reversed.) Shortly<br />

after, <strong>Lincoln</strong> Labor<strong>at</strong>ory staff demonstr<strong>at</strong>ed the first<br />

CW Raman laser by using a 5-fJm CO laser th<strong>at</strong> took<br />

advantage of resonant excit<strong>at</strong>ion near the bandgap of<br />

InSb [65]. Output powers of 2 W with a 90% conversion<br />

efficiency were obtained with broad wavelength<br />

tunability in the 5-fJm wavelength range, and frequency-<br />

FIGURE 14. Photograph of one of the first ultrastable sealed-off CO 2 lasers built <strong>at</strong> <strong>Lincoln</strong><br />

Labor<strong>at</strong>ory.<br />

356 THE LINCOLN LABORATORY JOURNAl VOLUME 3. NUMBER 3. 1990


stabiliz<strong>at</strong>ion and mode-control techniques were applied<br />

to develop a tool for laser spectroscopy. In addition, the<br />

self-focusing effects oflaser beams in gases as well as in<br />

solids were studied both experimentally and theoretically.<br />

This research included collabor<strong>at</strong>ive efforts between<br />

<strong>Lincoln</strong> Labor<strong>at</strong>ory, the University of California <strong>at</strong><br />

Berkeley, and IBM [66, 67].<br />

Other topics of investig<strong>at</strong>ion in the 1970s were harmonic<br />

gener<strong>at</strong>ion and frequency mixing in nonlinear<br />

optical m<strong>at</strong>erials. High-quality ctyStals of the calcopyrites<br />

CdGeH 2 and HgGaSe were grown and used to<br />

frequency-double the 10.6-,um CO 2 emission. A conversion<br />

efficiency of nearly 30% was obtained for lidar<br />

experiments in the remote sensing of<strong>at</strong>mospheric constituents<br />

[68]. An extremely useful applic<strong>at</strong>ion of frequency<br />

conversion has resulted from the observ<strong>at</strong>ion<br />

th<strong>at</strong> the frequency sum oftwO Nd:YAG emission linesone<br />

<strong>at</strong> 1.06 ,urn and the other <strong>at</strong> 1.32 ,um--exaccly m<strong>at</strong>ch<br />

the sodium line <strong>at</strong> 0.59 ,urn. The cover photograph for<br />

this issue shows the yellow (0.59 ,urn) light beam formed<br />

by the sum-frequency mixing ofthe twO wavelengths of<br />

a Nd:YAG laser in a nonlinear crystal. The precise<br />

wavelength m<strong>at</strong>ch to the sodium resonance permits the<br />

probing of the earth's mesospheric <strong>at</strong>omic sodium layer<br />

in this experiment.<br />

In This Issue<br />

The articles in this issue provide a detailed description of<br />

some of <strong>Lincoln</strong> Labor<strong>at</strong>ory's accomplishments in the<br />

laser field during the past several years, including recent<br />

work in progress.<br />

In the diode laser area, ].P. Donnelly discusses the<br />

development ofincoherent high-power arrays for use as<br />

pump sources. The technologies for collim<strong>at</strong>ing the<br />

• MELNGAILIS<br />

<strong>Laser</strong> <strong>Development</strong> <strong>at</strong> <strong>Lincoln</strong> Labor<strong>at</strong>ory<br />

output of array elements by means of microlenses and<br />

some initial <strong>at</strong>tempts <strong>at</strong> establishing coherence among<br />

the elements are described by Z.L. Liau, V. Diadiuk,<br />

and ].N. Walpole. H.K. Choi, c.A. Wang, and S.].<br />

Eglash discuss two very recent advances in diode laser<br />

technology: the achievement ofrecord low thresholds in<br />

strained-layer InGaAs lasers, and the development of<br />

efficient room-temper<strong>at</strong>ure 2.3-,um GaInAsSb lasers.<br />

Two articles are devoted to the use ofdiode lasers as<br />

pump sources for ionic solid st<strong>at</strong>e lasers. TY. Fan's article<br />

primarily covers high-power devices, and J.J. Zayhowski's<br />

article describes the microchip laser, a low-power<br />

device th<strong>at</strong> achieves stable single-frequency oper<strong>at</strong>ion in<br />

a simple and inexpensive structure.<br />

In the area of broadly tunable solid st<strong>at</strong>e lasers, an<br />

article by K.F. Wall and A. Sanchez deals with the<br />

invention and development of the Ti:Al 2 0 3 laser. Finally,<br />

techniques for stabilizing and controlling laser<br />

Output spectra for applic<strong>at</strong>ions in laser radars are covered<br />

by P.A. Schulz and C. Freed. Schulz's article describes<br />

the frequency control and wavelength tuning of solid<br />

st<strong>at</strong>e lasers and Freed's article deals with the develop­<br />

ment of ultrastable CO 2 lasers.<br />

Acknowledgments<br />

The contributions made by <strong>Lincoln</strong> Labor<strong>at</strong>ory during<br />

the past 28 years to the science and technology oflasers<br />

constitute the work ofa large number ofstaff members<br />

whose names are found in the references. The writing of<br />

this historical review was facilit<strong>at</strong>ed by the existence of<br />

two earlier review articles by P.L. Kelley [1] and R.H.<br />

Rediker et al. [2] and by valuable editorial comments<br />

and suggestions from Alan McWhorter and Aram<br />

Mooradian.<br />

VOLUME 3. NUMBER 3. 1990 THE LINCOLN LABORATORY JOURNAL 357


REFERENCES<br />

1. P.L. Kelley, "<strong>Laser</strong>-Relared Research ar <strong>Lincoln</strong> Laborarory: A<br />

H isrorical Review," parr 1, <strong>Laser</strong> Focus, p. 28 (Aug. 1982); parr<br />

2, user Focus, p. 32 (Sepr. 1982).<br />

2. R.H. Rediker,!. Melngailis, and A. Mooradian, "<strong>Laser</strong>s, Their<br />

Developmenr, and Applicarions ar M.I.T <strong>Lincoln</strong> Laborarory,"<br />

[EEE}. Quantum Electron. QE-20, 602 (1984).<br />

3. TH. Maiman, "Srimulared Oprical Radiarion in Ruby Masers,"<br />

N<strong>at</strong>urd87, 493 (1950).<br />

4. R.J. Keys and TM. Quisr, "Recombinarion Radiarion Emirred<br />

by Gallium Arsenide," Proc. JRE50, 1822 (1962).<br />

5. R.N. Hall, G.E. Fenner, J.D. Kingsley, TJ. Solrys, and R.O.<br />

Carlson, "Coherenr Lighr Emission from GaAs Juncrions,"<br />

Phys. Rev. Lett. 9, 366 (1962).<br />

6. N. Holonyak, Jr. and S.F. Bevacgua, "Coherenr (Visible)<br />

Lighr Emission from Ga(As1_.l) Juncrions," Appl. Phys. Lett.<br />

1, 82(1962).<br />

7. M.1. Narhan, W.P. Dumke, G. Burns, F.H. Dill,Jr., and G.<br />

Lasher, "Srimulared Emission of Radiarion from GaAs p-n<br />

Juncrions," Appl. Phys. Lett. 1,62 (1962).<br />

8. TM. Quisr, R.H. Rediker, R.J. Keyes, W.E. Krag, B. Lax,<br />

AL. McWhorrer, and H.J. Zeiger, "Semiconducror Maser of<br />

GaAs," Appl. Phys. Lett. 1,91 (1962).<br />

9. A.L. McWhorrer, H.J. Zeiger, and B. Lax, ''Theory ofSemiconducror<br />

Maser ofGaAs," }. Appl. Phys. 34, 235 (1963).<br />

10. 1. Melngailis, "Maser Acrion in tnAs Diodes," Appl. Phys. Lett.<br />

2, 176 (1963).<br />

II. 1. Melngailis, A.]. Srrauss, and R.H. Rediker, "Semiconducror<br />

Diode Masers of(In,Gal_)As," Proc. [EEE51, 1154 (1963).<br />

12. R.J. Phelan, AR. Calawa, R.H. Rediker, R.J. Keyes, and B.<br />

Lax, "Infrared <strong>Laser</strong> Diode in High Magneric Fields," Appl.<br />

Phys. Lett. 3, 143 (1963).<br />

13. J.F. Buder, AR. Calawa, R.J. Phelan, TC Harman, AJ.<br />

Srrauss, and R.H. Rediker, "PbTe Diode <strong>Laser</strong>," Appl. Phys.<br />

Lett. 5, 75 (1964).<br />

14. J.F. Burler, A.R. Calawa, R.J. Phelan, AJ. Srrauss, and R.H.<br />

Rediker, "PbSe Diode <strong>Laser</strong>," Solid St<strong>at</strong>e Commun. 2, 303<br />

(1964).<br />

15. 1. Melngailis, "Longirudinal Injecrion-Plasma <strong>Laser</strong> ofInSb,"<br />

Appl. Phys. Lett. 6, 59 (1965).<br />

16. J.M. Besson, W. Paul, and A.R. Calawa, "Tuning of PbSe<br />

<strong>Laser</strong>s by Hydrosraric Pressure from 8 ro 22 p," Phys. Rev.<br />

173,699 {I 968).<br />

17. CE. Hurwirz, "Efficienr Visible <strong>Laser</strong>s ofCdS);el_xby Elecrron-Beam<br />

Excirarion," Appl. Phys. Lett. 8, 243 (1966).<br />

18. CE. Hurwirz, "High Power and Efficiency in CdS Elecrron<br />

Beam Pumped <strong>Laser</strong>s," Appl. Phys. Lett. 9,420 (1966).<br />

19. CE. Hurwirz, "Efficienr Ulrravioler <strong>Laser</strong> Emission in Elecrron-Beam-Excired<br />

ZnS," Appl. Phys. Lett. 9, 116 (1966).<br />

20. 1. Melngailis and A.J. Srrauss, "SponraneollS and Coherenr<br />

Phoroluminescence in Cd);gl_xTe," Appl. Phys. Lett. 8, 179<br />

(1966).<br />

2l. R.S. Purnam, M.M. Salour, and TC Harman, "Broadly<br />

T unable Mode-Locked HgCdTe <strong>Laser</strong>s," Appl. Phys. Lett. 43,<br />

408 (1983).<br />

22. J.O. Dimmock, I. Melngailis, and AJ. Srrauss, "Band Srrucrure<br />

and <strong>Laser</strong> Acrion in Pb.,Snl_xTe," Phys. Rev. Lett. 16,<br />

1193 (1966).<br />

23. A.R. Calawa,J.O. Dimmock, TC Harman, and 1. Melngailis,<br />

"Magneric Field Dependence of <strong>Laser</strong> Emission in Pb l _ x<br />

358 THE LINCOLN LABORATORY JOURNAl VOLUME 3. NUMBER 3. 1990<br />

• MELNGAlLIS<br />

<strong>Laser</strong> <strong>Development</strong> tit <strong>Lincoln</strong> Labor<strong>at</strong>ory<br />

Sn)5e Diodes," Phys. Rev. Lett. 23, 7 (1969).<br />

24. S.H. Groves, K.W. Nill, and A.J. Srrauss, "Double Hererosrrucrure<br />

Pbl_;nxTe-PbTe <strong>Laser</strong>s wirh CW Operarion ar<br />

77K," Appl. Phys. Lett. 25,331 (1974).<br />

25. J.N. Walpole, A.R. Calawa, S.R. Chinn, S.H. Groves, and<br />

TC Harman, "Disrribured Feedback Pbl_xSn.Te Double­<br />

Hererosrrucrure <strong>Laser</strong>s," Appl. Phys. Lett. 29, 3071 (1976).<br />

26. E.D. Hinkley and C Freed, "Direcr Observarion of rhe<br />

Lorenrzian Line Shape as Limired by Quanrum Phase Noise<br />

in a <strong>Laser</strong> above Threshold," Phys. Rev. Lett. 23,277 {I 969).<br />

27. AL. Schawlow and CH. Townes, "Infrared and Oprical<br />

Masers," Phys. Rev. 112, 1940 (1958).<br />

28. 1. Melngailis and TC Harman, "Single Crysral Lead-Tin<br />

Chalcogenides," in Semiconductors and Semimetals, Vol. 5,<br />

eds. R.K. Willardson and AC Beer (Academic Press, New<br />

York, 1970), pp. 111-174.<br />

29. CJ. Nuese, G.H. Olsen, M. Ertenberg,J.). Gannon, and TJ.<br />

Zamerowski, "CW Room-Temperarure InxGal_xAs/InyGal_!<br />

1.06-pm <strong>Laser</strong>s," Appl. Phys. Lett. 29,807 (1976).<br />

30. R.E. Nahory, MA Pollack, E.D. Beebe,J.C DeWinrer, and<br />

R.W. Dixon, "Conrinuous Operarion of l.O-pm-Wavelengrh<br />

GaAsl-l,b./A1yGal_J\sI_;bxDouble-Hererosrrucrure<br />

Injection <strong>Laser</strong>s ar Room Temperarure," Appl. Phys. Lett. 28,<br />

19 (1976).<br />

31. G.E. Srill man, CM. Wolfe, AG. Foyr, and W.T Lindley,<br />

"Schortky Barrier In.Gal_.j\s Alloy Avalanche Phorodiodes<br />

for 1.06 pm," Appl. Phys. Lett. 24, 8 (1974).<br />

32. G.A Anrypas and R.L. Moon, "Growth and Characrerizarion<br />

of InP-InGaAsP Larrice-Marched Hererojuncrions," }. Electrochem.<br />

Soc. 120, 1574 (1973).<br />

33. AP. Bogarov, L.M. Dolginov, L.V. Druzhinina, P.G. Eliseev,<br />

B.N. Sverdlov, and E.G. Shevchenko, "Hererojuncrion lasers<br />

Made ofGa)nl_.j\s!1:1and A1xGa l_xSbJ\sI;.rSolid Solmions,"<br />

Sov.}. Quantum Electron. 5,1281 ((975).<br />

34. J.J. Hsieh, J.A. Rossi, and J.P. Donnelly, "Room-Temperarure<br />

CW Operarion of GalnAsP/lnP Double-Hererosrruc­<br />

[lire Diode <strong>Laser</strong>s Emitting ar 1.1 pm," Appl. Phys. Lett. 28,<br />

709 {I 976).<br />

35. CC Chen,].J. Hsieh, and TA Lind, "3000-Hour Conrinuous<br />

CW Operarion ofDouble Hererosrrucrure GalnAsPllnP<br />

<strong>Laser</strong>s," in Proc. Topical Mtg. on Optical Fiber Transmission [I,<br />

pp. 22-24 (Feb. 1977).<br />

36. J.]. Hsieh, "Liquid Phase Epiraxy," in Handbook on Semiconductors,<br />

ed. S.P. Keller (North Holland, Amsrerdam, 1980),<br />

pp. 415--497.<br />

37. Z.L. Liau and J.N. Walpole, "Mass-Transporred GalnAsPI<br />

InP <strong>Laser</strong>s," <strong>Lincoln</strong> ubor<strong>at</strong>ory}. 2, 77 (I989).<br />

38. E.M. Phillip-Rurz and H.O. Edmonds, "Diffracrion-Limired<br />

GaAs <strong>Laser</strong> wirh Exrernal Resonaror," Appl. Optics 8, 1859<br />

(1969).<br />

39. JA Rossi, S.R. Chinn, and H. Heckscher, "High-Power<br />

Narrow-Linewidth Oper<strong>at</strong>ion ofGaAs Diode <strong>Laser</strong>s," Appl.<br />

Phys. Lett. 23, 25 (I 973).<br />

40. M.W. Fleming and A Mooradian, "Spectral Characteristics<br />

ofExternal-Caviry Conrrolled Semiconducror <strong>Laser</strong>s," [EEE}.<br />

Quantum Electron. QE-17, 44 (1981).<br />

41. J. Harrison and A Mooradian, "Spectral Linewidth ofSemiconducror<br />

<strong>Laser</strong>s," in Methods of<strong>Laser</strong> Spectroscopy, eds. Y. Prior,<br />

A Ben-Reuven, and M. Rosenbluh (Plenum Press, New<br />

York, 1986), pp. 133-142.<br />

42. J.P. Donnelly, rhis issue.<br />

43. Z.L. Liau, rhis issue.<br />

44. J.R. Leger, M. Holz, G.]. Swanson, and W.B. Veldkamp,<br />

"Coherenr <strong>Laser</strong> Beam Addirion: An Applicarion of Binary­<br />

Optics Technology, " <strong>Lincoln</strong> Labor<strong>at</strong>ory}. 1,225 (I 988).


45. H.K. Choi, this issue.<br />

46. P.F. Moulton and A Mooradian, "Broadly Tunable CW<br />

Oper<strong>at</strong>ion ofNi:MgF 2 and Co:MgF 2 Lasets," AppL. Phys. Lett.<br />

35,838 (1979).<br />

47. 0.]. Ehrlich, P.F. Moulton, and R.M. Osgood,]r., "Ultraviolet<br />

Solid-St<strong>at</strong>e Ce:YLF <strong>Laser</strong> <strong>at</strong> 325 nm," Opt. Lett. 4, 184<br />

(1979).<br />

48. 0.]. Ehrlich, P.F. Moulton, and R.M. Osgood,]r., "Optically<br />

Pumped Ce:LaF 3 <strong>Laser</strong> <strong>at</strong> 286 nm," Opt. Lett. 5, 339 (1980).<br />

49. P.F. Moulton, 'Titanium-Doped Sapphire: A New Tunable<br />

Solid-St<strong>at</strong>e <strong>Laser</strong>," in Physics News in 1982 (American Institute<br />

ofPhysics, New York, 1982) pp. 89-90.<br />

50. K. Wall, this issue.<br />

5!. ]. Goodberlet, ]. Wang, ].G. Fujimoto, and P.A. Schulz,<br />

"Femtosecond Passively Mode-Locked Ti:A1 2 0 3 <strong>Laser</strong><br />

with a Nonlinear External Cavity," Opt. Lett. 14, 1125<br />

(1989).<br />

52. R.]. Keyes and TM. Quist, "Injection Luminescent Pumping<br />

ofCaF 2 :U 3 + with GaAs Diode <strong>Laser</strong>s," Appl. Phys. Lett. 4,<br />

50 (Feb. 1964).<br />

53. ].]. Zayhowski, this issue.<br />

54. TY. Fan, this issue.<br />

55. C Freed, "Design and Short-Term Stability of Single-Frequency<br />

CO 2 <strong>Laser</strong>s," IEEE]. Quantum ELectron. QE-4, 404<br />

(1968).<br />

56. C Freed, this issue.<br />

57. C Freed and A. lavan, "Standing-Wave S<strong>at</strong>ur<strong>at</strong>ion Resonances<br />

in the CO 2 I0.6-,u Transitions Observed in a Low­<br />

Pressure Room-Temper<strong>at</strong>ure Absorber Gas," Appl. Phys. Lett.<br />

17,53 (1970).<br />

58. S. Marcus and].W. Caunt, "Compact CO 2 <strong>Laser</strong> for Infrared<br />

Heterodyne Radar," Rev. Sci. Instntm. 49, 1410 (1978).<br />

• MELNGAlLIS<br />

<strong>Laser</strong> DeveLopment <strong>at</strong> lincoLn Labor<strong>at</strong>ory<br />

59. N. Menyuk and P.F. Moulton, "<strong>Development</strong> of a High­<br />

Repetition-R<strong>at</strong>e Mini-TEA CO 2 <strong>Laser</strong>," Rev. Sci. Instrum.<br />

51,216 (1980).<br />

60. H.R. Fetterman, H.R. Schlossberg, and]. Waldman, "Submillimeter<br />

<strong>Laser</strong>s Optically Pumped off Resonance," Opt.<br />

Comm. 6, 156 (1972).<br />

6!. H.R. Fetterman,]. Waldman, CM. Wolfe, G.E. Stillman,<br />

and CD. Parker, "Identific<strong>at</strong>ion of Donor Species in High­<br />

Purity GaAs Using Optically Pumped Submillimeter <strong>Laser</strong>s,"<br />

Appl. Phys. Lett. 21,434 (1972).<br />

62. A Mooradian and G.B. Wright, "Observ<strong>at</strong>ion ofthe Interaction<br />

ofPlasmons with Longitudinal Optical Phonons in GaAs,"<br />

Phys. Rev. Lett. 16,999 (1966).<br />

63. A Mooradian and A.L. McWhorter, "Polariz<strong>at</strong>ion and Intensity<br />

of Raman Sc<strong>at</strong>tering from Plasmons and Phonons in<br />

Gallium Arsenide," Phys. Rev. Lett. 19,849 (1967).<br />

64. A Mooradian and AL. McWhorter, "Light Sc<strong>at</strong>tering from<br />

Hot Electronics in Semiconductors," in Proc. 10th Inti. Con!<br />

on Physics ofSemiconductors, 1970, Boston, eds. S.P. Keller,].C<br />

Hensel, and F. Stern, p. 380.<br />

65. A Mooradian, S.R.]. Brueck, and F.A. Blum, "Continuous<br />

Stimul<strong>at</strong>ed Spin-Flip Raman Sc<strong>at</strong>tering in InSb," Appl. Phys.<br />

Lett. 17,481 (1970).<br />

66. TK. Gustafson, P.L. Kelley, R.Y. Chiao, and R.G. Brewer,<br />

"Self-Trapping in Media with S<strong>at</strong>ur<strong>at</strong>ion of the Nonlinear<br />

Index," Appl. Phys. Lett. 12, 165 (1968).<br />

67. R.L. Carman, A. Mooradian, P.L. Kelley, and A Tuns,<br />

"Transient and teady St<strong>at</strong>e Thermal Self-Focusing," Appl.<br />

Phys. Lett. 14, 136 (1969).<br />

68. N. Menyuk, G.W.lseler, and A. Mooradian, "High-Efficiency<br />

High-Average-Power Second-Harmonic Gener<strong>at</strong>ion with<br />

CdGeAs 2 ," AppL. Phys. Lett. 29, 422 (1976).<br />

VOLUM£ 3. NUMB£R 3. 1990 TH£ LINCOLN LABORATORY JOURNAL 359


• MELNGAILIS<br />

<strong>Laser</strong> <strong>Development</strong><strong>at</strong> <strong>Lincoln</strong> Labor<strong>at</strong>ory<br />

IVARS MELNGAILIS<br />

is an Associare Head ofrhe<br />

Solid Srare Division. He was<br />

born in Riga, Larvia, and<br />

immigrared ro rhe Vnired<br />

Srares in 1949. He received a<br />

B.S., an M.S., and a Ph.D.<br />

degree in elecrrical engineering<br />

from Carnegie Insrirure of<br />

Technology in 1956, 1957, and<br />

1961, respecrively. During his<br />

graduare srudies he held<br />

Narional Science Foundarion<br />

and Bell Laborarories<br />

fellowships and srudied for one<br />

year ar rhe Vniversiry of<br />

Munich, Germany, under a<br />

Fulbrighr fellowship.<br />

He joined <strong>Lincoln</strong> Laborarory<br />

as a sraffmember in 1961, was<br />

appoinred Assisranr Leader of<br />

rhe Applied Physics Group in<br />

1965, and became Leader of<br />

rhar group in 1971. Four years<br />

larer he was appoinred<br />

Associare Head ofrhe Solid<br />

Srare Division.<br />

Ivars has been involved in a<br />

number ofsemiconducrordevice<br />

research areas, including<br />

impacr ionizarion ar low<br />

remperarures, magneric effecrs<br />

on plasmas in semiconducrors,<br />

semiconducror lasers and<br />

derecrors, and inregrared<br />

oprics. He is currenrly i'<br />

managing an efforr in<br />

rechnology developmenr for<br />

solid srare laser radars.<br />

Ivars is a member of<br />

Era Kappa Nu, Tau Bera Pi,<br />

Sigma Xi, rhe American<br />

Physical ociery, and rhe<br />

Oprical Sociery ofAmerica.<br />

He is also a Fellow of<br />

rhe IEEE.<br />

360 THE LINCOLN LABORATORY JOURNAL VOLUME 3. NUMBER 3. 1990<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!