12.10.2013 Views

An introduction to the quark model

An introduction to the quark model

An introduction to the quark model

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

<strong>An</strong> <strong>introduction</strong><br />

<strong>to</strong> <strong>the</strong> <strong>quark</strong> <strong>model</strong><br />

Niccolò Cabeo School<br />

available at http://www.ipnl.in2p3.fr/perso/richard/SemConf/Talks.html<br />

Jean-Marc Richard<br />

Institut de Physique Nucléaire de Lyon<br />

Université Claude Bernard (Lyon 1)–IN2P3-CNRS<br />

Villeurbanne, France<br />

Ferrara, Italy,May 2012<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Table of contents<br />

Content<br />

1 Prelude: Few-charge systems<br />

2 Mesons as (q¯q)<br />

3 Baryons as (qqq)<br />

4 Multi<strong>quark</strong>s<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

More detailed table of contents<br />

1 Few-charge systems<br />

Binary a<strong>to</strong>ms: central potential<br />

Spin forces in a<strong>to</strong>ms<br />

Three-body ions<br />

Four-body molecules (+, +, −, −)<br />

2 His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong><br />

Early hadrons<br />

Generalised isospin, SU(3)<br />

Heavy <strong>quark</strong>s<br />

3 The <strong>quark</strong>–anti<strong>quark</strong> <strong>model</strong> of mesons<br />

Quantum numbers<br />

Spin averaged spectrum<br />

Improvements<br />

4 Baryons<br />

5 Multi<strong>quark</strong>s and o<strong>the</strong>r exotics<br />

Glueballs, hybrids, molecules<br />

Baryonium<br />

6 Outlook<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Few-Charge systems<br />

Why few-charge systems in lectures about <strong>quark</strong>s?<br />

a if it is allowed <strong>to</strong> compare small things with great<br />

Content<br />

1 Binary a<strong>to</strong>ms<br />

2 Spin-dependent forces<br />

3 Three-body ions<br />

4 (+, +, −, −) molecules<br />

Si parva licet componere magnis a<br />

JMR Quark Model<br />

Virgil


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Binary a<strong>to</strong>ms<br />

p 2 1<br />

2 m1<br />

+ p2 1 −<br />

2 m1<br />

e2<br />

,<br />

r12<br />

The centre of mass motion can be removed,<br />

The intrinsic Hamil<strong>to</strong>nian<br />

can be rescaled <strong>to</strong><br />

H = p2 e2<br />

− ,<br />

2 µ r<br />

h = −∆ − r −1 ,<br />

with 2 µ e 4 for E and (2 µ e 2 ) −1 for r.<br />

Similarly, any oscilla<strong>to</strong>r can be reduced <strong>to</strong> −d/dx 2 + x 2 .<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Binary a<strong>to</strong>ms-2<br />

Very characteristic spectrum<br />

1<br />

E = − ,<br />

4 (n + ℓ) 2<br />

where n = 1, 2, . . . is <strong>the</strong> radial number, ℓ = 0, 1, . . . <strong>the</strong> orbital<br />

momentum, and n + ℓ <strong>the</strong> principal quantum number.<br />

Degeneracy of orbital vs. radial excitations,<br />

Infinite number of bound states, even for very small coupling,<br />

In contrast with short-range interactions in nuclear physics,<br />

Many probes: hydrogen-like a<strong>to</strong>ms, muonic a<strong>to</strong>ms, kaonic a<strong>to</strong>ms,<br />

positronium<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Spin forces in a<strong>to</strong>ms<br />

Deduced from <strong>the</strong> vec<strong>to</strong>r character of <strong>the</strong> exchanged pho<strong>to</strong>n,<br />

Au<strong>to</strong>matically included in fully relativistic treatments,<br />

Pauli, Fermi, Breit, etc., derived corrections <strong>to</strong> be added <strong>to</strong> NR<br />

Hamil<strong>to</strong>nians, and treated as perturbation,<br />

In particular, <strong>the</strong> famous hyperfine correction<br />

Vss = e2<br />

m1 m2<br />

2 π<br />

3 δ(3) (r) σ1.σ2 ,<br />

splits ortho- and para-hydrogen (important transition in<br />

astrophysics; analogue <strong>to</strong> be measured in antihydrogen),<br />

Note <strong>the</strong> short-range character,<br />

Note <strong>the</strong> very specific mass dependence<br />

For (e + , e − ), ∃ o<strong>the</strong>r contribution<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Three-body ions<br />

He (α, e − , e − ) is obvious, as any (+q, −, −) with q > 1<br />

q = 1, i.e., H − and similar, less obvious, see Hylleraas,<br />

Chandrasekhar, Be<strong>the</strong>, Heisenberg, etc.,<br />

Take mp = ∞ (for simplicity), H − stability resists any f (r1) f (r2),<br />

i.e., Hartree method fails.<br />

Stability demonstrated with better wave functions,<br />

Map of stability for (m ±<br />

1 , m∓<br />

2 , m∓<br />

3 )?<br />

Very stable for H2 + = (e − , p, p)<br />

Marginally stable for H − = (p, e − , e − ) or Ps − = (e + , e − , e − )<br />

Unstable for (p, ¯p, e − )<br />

Stability ra<strong>the</strong>r sensitive <strong>to</strong> <strong>the</strong> masses, e.g., (p∞, e − , e ′− )<br />

unstable if m ′ differs from m by more than about 10%<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Three-body ions – excitations<br />

H2 + = (e − , p, p) has several excited states,<br />

H − has no stable excited state?<br />

Both true and false<br />

True if you define stability as E < (p, e − )1S + e − ,<br />

False if spontaneous dissociation only in<strong>to</strong> (p, e − )1S + e −<br />

This is <strong>the</strong> unnatural-parity state of H −<br />

Very sensitive <strong>to</strong> mp < ∞ and m = m ′ .<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Four-body molecules<br />

Hydrogen molecule and variants best known, (p, p, e + , e − )<br />

In <strong>the</strong> Born–Oppenheimer–Heitler–London approach, effective<br />

pp potential, which gives <strong>the</strong> ground-state and <strong>the</strong> first<br />

excitations. This is a very good approximation,<br />

This corresponds <strong>to</strong> <strong>the</strong> two electrons in <strong>the</strong> lowest state for<br />

given pp separation,<br />

Excited electrons → second set of levels,<br />

Positronium molecule proposed by Wheeler in 1945,<br />

In 1946, Ore publish it does not believe this is <strong>the</strong> case,<br />

In 1947, Hylleraas and (<strong>the</strong> very same) Ore have an elegant<br />

proof of <strong>the</strong> stability<br />

In 2007, indirect experimental evidence<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Systematics of (m +<br />

1<br />

, m+<br />

2 , m−<br />

3 , m−<br />

4 )<br />

<strong>An</strong>y state with m3 = m4 is stable. Why? Two degenerate<br />

thresholds.<br />

In particular, (m + , m + , m − , m − ) is stable (positronium molecule<br />

and variants)<br />

What about two masses?<br />

(M + , M + , m − , m − ) improves stability.<br />

(M + , m + , M − , m − ) spoils stability. It becomes unstable for<br />

M/m 2.2 (or, of course, M/m 1/2.2)<br />

So, starting from <strong>the</strong> doubly-symmetric (m + , m + , m − , m − ), and<br />

breaking<br />

Charge conjugation,<br />

or Particle identity<br />

does not produce <strong>the</strong> same result. Why?<br />

Both ways of breaking symmetry lower <strong>the</strong> ground state. But in<br />

<strong>the</strong> second case, <strong>the</strong> threshold benefits more of symmetry<br />

breaking. Hence, one gets less stability. See <strong>the</strong> section on<br />

multi<strong>quark</strong>s.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Some lessons from charge systems<br />

Universality, same potential for p and e +<br />

Scaling,<br />

Level order for a<strong>to</strong>ms, very specific<br />

3- or 4-body systems stable or unstable, depending on <strong>the</strong><br />

masses,<br />

Be patient. One could wait up <strong>to</strong> 60 years <strong>to</strong> see an exotic state<br />

that is predicted.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

His<strong>to</strong>ry<br />

His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong><br />

His<strong>to</strong>ry is Philosophy teaching by examples a<br />

a According <strong>to</strong> Michel Casevitz, <strong>the</strong> sentence is not by Thucydid, but a British<br />

commenta<strong>to</strong>r<br />

Content<br />

Early hadrons<br />

SU(3)<br />

Quarks and Aces<br />

Heavy <strong>quark</strong>s<br />

JMR Quark Model<br />

Thucydid


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Very first hadrons<br />

Discovery of <strong>the</strong> neutron (Chadwick, see, also Joliot-Curie)<br />

Need for a strong interaction between nucleons<br />

Search for underlying symmetry!<br />

The <strong>the</strong>ory of nuclear forces led <strong>to</strong> important <strong>to</strong>ols!<br />

Pion predicted by Yukawa,<br />

Spin effects according <strong>to</strong> <strong>the</strong> quantum number of <strong>the</strong> pion,<br />

Range ↔ mass of <strong>the</strong> pion,<br />

Range anticipated from <strong>the</strong> size of nuclei, and from <strong>the</strong> ratio of<br />

2-body <strong>to</strong> 3-body energies (Thomas),<br />

Pion discovered in 1947 at Bris<strong>to</strong>l, with three charge states, π + ,<br />

π 0 and π − , not so easily as <strong>the</strong>ir decay are not <strong>the</strong> same,<br />

Thus in 1947, 7 hadrons seen or expected, p, n, π + , π 0 and π − ,<br />

and also ¯p and ¯n predicted.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

First hadrons: antinucleons<br />

Bevatron built at Berkeley for antinucleons<br />

¯p seen in 1955 by Ypsilantis, Segrè and Chamberlain,<br />

¯n shortly after ( ¯ d a little controversial),<br />

Also <strong>the</strong> cross-sections of ¯p,<br />

With <strong>the</strong> unexpected<br />

σann > σel<br />

Because nucleons and antinucleons are not pointlike!<br />

Because ¯ NN annihilation differs from e + e annihilation in QED!<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

First complications: resonances<br />

New baryons: ∆, N ∗ , etc., in πN scattering,<br />

New mesons: ρ, ω, σ produced, and also required, and even<br />

anticipated for describing nuclear forces,<br />

Bootstrap, or Nuclear Democracy, ∆ = πN + · · · ,<br />

and similarly N = π∆ + πN + ρ∆ + · · · , etc.<br />

Everything made of everything,<br />

Partial success, but intricate coupled equations<br />

Difficulty <strong>to</strong> accommodate mesons as baryon+antibaryon + . . . ,<br />

(Ball, Scotti and Wong), in particular exchange degeneracy<br />

(m(I = 1) m(I = 0)<br />

Next baryon predicted <strong>to</strong> be J = 5/2 and I = 5/2<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

<strong>An</strong>o<strong>the</strong>r complication: strangeness<br />

New particles produced by pairs with strict rules, e.g., Λ with K +<br />

but not with K −<br />

and decaying with similar rules or weakly,<br />

A new quantum number was empirically invented, strangeness,<br />

which is<br />

conserved by strong interactions (production, strong decay)<br />

violated by weak interactions<br />

weak decay linked <strong>to</strong> ordinary β decay (Gell-Mann, Lévy,<br />

Cabbibo)<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

From SU(2) <strong>to</strong> SU(3)<br />

SU(2) is a good symmetry for nuclear physics and pion<br />

scattering,<br />

In most cases, strange particles close <strong>to</strong> <strong>the</strong> non-strange ones,<br />

For instance, Λ(1.12) close <strong>to</strong> N, K ∗ (0.89) close <strong>to</strong> ρ and ω,<br />

Of course this is more complicated for scalar and pseudoscalar<br />

mesons,<br />

This led <strong>to</strong> extend SU(2) <strong>to</strong> SU(3)<br />

and imagine that breaking can be described as linear or at most<br />

quadratic in strangeness,<br />

Today, this symmetry, renamed SU(3)F , remains a very useful<br />

concept,<br />

But first, one needs <strong>to</strong> assign <strong>the</strong> hadrons in<strong>to</strong> representations<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

The Sakata <strong>model</strong><br />

(p, n, Λ) in <strong>the</strong> fundamental representation, 3,<br />

(¯p, ¯n, ¯ Λ) in ¯ 3,<br />

Mesons from 3 × ¯ 3<br />

Higher baryons from 3 × ¯ 3 × 3, etc.<br />

But, as seen for <strong>the</strong> realisation of bootstrap, it faces serious<br />

difficulties (exchange degeneracy, why Σ is almost as light as Λ?,<br />

etc.)<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

The Eightfold way<br />

This led Gell-Mann and Ne’emann <strong>to</strong> propose <strong>to</strong> put <strong>the</strong> 8 lowest<br />

baryons with spin 1/2 in an octet,<br />

•<br />

Σ −<br />

n<br />

•<br />

•<br />

Ξ −<br />

Y<br />

• •Λ Σ 0<br />

• p<br />

• Ξ 0<br />

• Σ +<br />

I3<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

The Eightfold way<br />

In most cases, smooth breaking, e.g.,<br />

M = M0 + a Y + b(I(I + 1) − Y 2 /4) ,<br />

lead <strong>to</strong> <strong>the</strong> Gell-Mann–Okubo formula<br />

and many similar ones<br />

2(N + Ξ) = 3 Λ + Σ ,<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

The prediction of <strong>the</strong> Ω −<br />

9 baryons with J = (3/2) + were known below 2 GeV. At The<br />

Rochester Conference of 1962 in Geneva, Gell-Mann predicted a<br />

new one with strangeness −3<br />

∆• −<br />

•<br />

Σ ∗−<br />

ƥ 0<br />

Y<br />

•<br />

Σ ∗0<br />

• ∆+<br />

Ξ• ∗− •Ξ∗0 •Ω −<br />

• Σ ∗+<br />

•∆ ++<br />

Discovered by Samios et al. at Brookhaven at <strong>the</strong> end of 1963<br />

and published in 64.<br />

JMR Quark Model<br />

I3


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Mesons in SU(3)<br />

Octet and singlet, with mixing<br />

One uses <strong>to</strong> talk about nonet<br />

Y<br />

K• 0<br />

•K+ •<br />

π −<br />

• K− • 0 π η<br />

•η ′<br />

• ¯K 0<br />

• π +<br />

I3<br />

ρ −<br />

•<br />

K• ∗0<br />

• K∗− Y<br />

• 0 ρ ω<br />

•φ<br />

JMR Quark Model<br />

•K ∗+<br />

• ¯K ∗0<br />

• ρ +<br />

I3


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

The fundamental representation: <strong>quark</strong>s<br />

Y<br />

d• •u<br />

• s<br />

I3<br />

ū•<br />

Y<br />

• ¯s<br />

• ¯ d<br />

q b I I3 Y S Q<br />

1 u 3<br />

1 d 3<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1 − 2<br />

1<br />

2<br />

3 0 3<br />

1<br />

3 0 − 1<br />

3<br />

1 s 3 0 0 − 2<br />

3 −1 2<br />

3<br />

JMR Quark Model<br />

I3


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

The aces<br />

φ<br />

Zweig was puzzled by φ(1020) decay<br />

Mostly in<strong>to</strong> K ¯ K in spite of very little phase-space<br />

π<br />

ρ<br />

φ<br />

He interpreted as due <strong>to</strong> <strong>the</strong> content of <strong>the</strong> Φ and of final-state<br />

mesons, he named “aces”,<br />

But eventually <strong>the</strong> name “<strong>quark</strong>” prevailed, and here <strong>the</strong> notation<br />

(u, d, s), ra<strong>the</strong>r than (p, n, λ).<br />

π<br />

JMR Quark Model<br />

ρ<br />

φ<br />

K<br />

K


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

The Zweig rule (OZI, A-Z)<br />

<strong>the</strong> rule explaining <strong>the</strong> narrowness of φ generalised, with<br />

variants,<br />

e.g., ¯ NN annihilation<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

First <strong>quark</strong> <strong>model</strong>s<br />

For baryons, mostly<br />

Greenberg, and Dalitz, in particular Les Houches Lectures 1965,<br />

Using <strong>the</strong> shell-<strong>model</strong> techniques of nuclear physics,<br />

Both facing <strong>the</strong> problem of statistics,<br />

<strong>An</strong>d anticipating what will become colour<br />

Indeed, <strong>the</strong>ir ∆ − (ddd) has s = 3/2, L = 0, thus everything is<br />

symmetric for three fermions!<br />

see chapter on baryons<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Heavy <strong>quark</strong>s<br />

Kaon physics always rich,<br />

θ − τ puzzle, P violation, C violation<br />

CP violation in 1964,<br />

Suppression of flavour-changing neutral currents led GIM (1970)<br />

<strong>to</strong> propose ano<strong>the</strong>r Q = 2/3 <strong>quark</strong>, named “charmed” (c)<br />

Not <strong>to</strong>o heavy <strong>to</strong> get <strong>the</strong> GIM mechanism working,<br />

Properties of charmed particles anticipated, in particular<br />

Gaillard, Lee and Rosner,<br />

Including (c¯q), (cqq), (ccq), . . . and (c¯c)<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Oc<strong>to</strong>ber 1974 revolution<br />

In November 1974, <strong>the</strong> J/ψ was discovered simultaneously at<br />

BNL and SLAC, in quite different experiments<br />

Lep<strong>to</strong>n-pair production in hadronic collisions (Ting)<br />

e + e − collisions (Richter)<br />

Not recognised immediately, since extremely narrow,<br />

Eventually identified as (c¯c)<br />

Several o<strong>the</strong>r states (ψ ′ , χ, . . . ) seen<br />

Charmed mesons seen also (G. Goldhaber)<br />

As well as charmed baryons<br />

Note: double-charm baryons not yet confirmed!<br />

Beautiful confirmation of <strong>the</strong> charm prediction<br />

<strong>An</strong>d asymp<strong>to</strong>tic freedom, which make <strong>the</strong> Zweig rule more<br />

effective for J/ψ than for φ.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Charmonium<br />

Simple <strong>model</strong>s proposed for (c¯c) that work!<br />

A revolution in strong interaction. Predictions with simple <strong>to</strong>ols!<br />

For instance V (r) = −a/r + b r + c and mass mc in <strong>the</strong><br />

Schrödinger equation reproduce <strong>the</strong> experimental spectrum<br />

<strong>An</strong>d properties such as lep<strong>to</strong>nic widths and gamma transitions<br />

Many colleagues said: “Now I believe in <strong>quark</strong>s”<br />

In short, a real boost for strong interaction physics,<br />

Based on empirical <strong>model</strong>s, which later got support from QCD<br />

See section on mesons<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Top and Bot<strong>to</strong>m<br />

When charm was discovered, <strong>the</strong> ideas were already ra<strong>the</strong>r<br />

advanced on grand unification,<br />

At least <strong>quark</strong>–lep<strong>to</strong>n symmetry<br />

Note: lep<strong>to</strong>ns always ahead,<br />

When <strong>the</strong> µ was discovered, Rabbi said: “Who ordered <strong>the</strong><br />

muon?”<br />

When <strong>the</strong> τ was discovered (M. Perl), it was said: “ Where are<br />

<strong>the</strong> associated <strong>quark</strong>s?”<br />

{τ, ντ } ↔ {b, t}<br />

“Bot<strong>to</strong>m, Top”<br />

Also “Beauty, Truth”<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Upsilon discovery<br />

In 1977, Lederman repeated Ting’s experiment with a more<br />

powerful beam and ano<strong>the</strong>r detec<strong>to</strong>r,<br />

<strong>An</strong>d discovered Υ and Υ ′<br />

Immediately interpreted as (b ¯ b)<br />

See chapter on mesons,<br />

Already Lederman noticed Υ ′ − Υ ψ ′ − J.ψ,<br />

<strong>An</strong>d asked local <strong>the</strong>orists about a potential such that all ∆E are<br />

independent of <strong>the</strong> reduced mass,<br />

<strong>An</strong>swer: V (r) ∝ ln r<br />

B mesons and B baryons also discovered,<br />

As well as Bc = (b¯c)<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Exotic hadrons<br />

Already before <strong>the</strong> <strong>quark</strong> <strong>model</strong>,<br />

For instance, speculations about a Z baryon with S = +1<br />

Within <strong>the</strong> <strong>quark</strong> <strong>model</strong>, exotic = state that cannot be<br />

accommodated as (q¯q ′ ), or (qq ′ q ′′ ).<br />

For instance meson with charm = +2, or baryons with S = +1<br />

Besides flavour?<br />

for mesons, ∃ exotic J PC<br />

not for baryons<br />

question of best beam and target:<br />

e + e − clean but with some restriction<br />

¯p annihilation<br />

formation or production,<br />

low energy or high energy<br />

past or recent excitations: baryonium, glueballs, hybrid hadrons,<br />

molecules<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Mesons: Content<br />

The <strong>quark</strong>–anti<strong>quark</strong> <strong>model</strong> of mesons<br />

Content<br />

Quantum numbers<br />

Spin-averaged spectrum<br />

Improvements<br />

Summary for heavy <strong>quark</strong>onia<br />

Light mesons<br />

Heavy-light mesons<br />

Strong decay<br />

Some ma<strong>the</strong>matical developments<br />

I married <strong>the</strong>m<br />

Friar Laurence, Romeo and Juliet<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Quantum numbers<br />

Consider symmetric <strong>quark</strong>onia Q ¯ Q<br />

Spin of <strong>quark</strong>s S, orbital momentum ℓ, spin of <strong>the</strong> meson J,<br />

parity P and charge conjugation C<br />

Lowest <strong>quark</strong>onium states<br />

2 s+1ℓJ 1S0 3S1 1P1 3P0 3P1 3P2 1D2 3D1 3D2 3D3 JPC 0−+ 1−− 1 +− 0 ++ 1 ++ 2 ++ 2−+ 1−− 2−− 3−− Remarks<br />

Some quantum numbers are absent, e.g., J PC = 1 −+<br />

Some J PC occur twice. For instance 1 −− may be a combination<br />

of 3 S1 and 3 D1<br />

In addition, radial number. Here, notation n = 1, 2, . . .. For<br />

instance,<br />

ηc is ηc(1S) or 1 1 S0<br />

η ′ c is ηc(2S) or 2 1 S0<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Radial equation<br />

Assume a simple V (r) without spin dependence, and let<br />

Ψ = uℓ(r)<br />

r<br />

ℓz<br />

Yℓ (ˆr) × spin × colour ,<br />

Thus for u = uℓ(r) (no dependence upon ℓz)<br />

−u ′′ (r) +<br />

ℓ(ℓ + 1)<br />

r 2<br />

u(r) + m V (r) u(r) = m E u(r) ,<br />

with boundary conditions u(0) = u(∞) = 0<br />

Exactly solvable in a few cases<br />

Coulomb, see section on a<strong>to</strong>ms<br />

HO, reduces <strong>to</strong> −u ′′ (r) + ℓ(ℓ + 1) u(r)/r 2 + r 2 u(r) = ɛ u(r) , with<br />

ɛ = 3 + 4 (n − 1) + 2 ℓ = 3 + 2 N<br />

Linear for ℓ = 0<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Linear potential for ℓ = 0<br />

very similar <strong>to</strong> <strong>the</strong> Airy equation<br />

−u ′′ (r) + r u(r) = ɛ u(r) ,<br />

−y ′′ (x) + x y(x) = 0<br />

Aix<br />

0.4<br />

0.2<br />

6 4 2 2 4<br />

0.2<br />

0.4<br />

ɛ = −zero of <strong>the</strong> Airy function = −an<br />

vn(r) = Ai(r + an)/ Ai ′ (an) .<br />

JMR Quark Model<br />

x


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Scaling<br />

Note <strong>the</strong> simple scaling properties<br />

−u ′′ (r) +<br />

−u ′′ (r) +<br />

ℓ(ℓ + 1)<br />

r 2<br />

ℓ(ℓ + 1)<br />

r 2<br />

u(r) ± m g r α u(r) = m E u(r) ,<br />

u(r) ± r α u(r) = ɛ u(r) ,<br />

with <strong>the</strong> scaling in (m g) 1/(2+α) for <strong>the</strong> distances, and<br />

m −α/(2+α) g 2/(2+α) for <strong>the</strong> energies.<br />

For a logarithmic potential, m → m ′ gives En,ℓ → E ′ n,ℓ = En,ℓ + C st<br />

The Coulomb-plus-linear −a/r + b r + c can be reduced <strong>to</strong><br />

−∆ − λ/r + r − ɛψ(r) = 0 , with only one parameter.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Solving <strong>the</strong> radial equation<br />

−u ′′ ℓ(ℓ + 1)<br />

(r) +<br />

r 2 u(r) + m V (r) u(r) = m E u(r) ,<br />

See, e.g., Hartree, where V (r) was <strong>the</strong> effective one-body<br />

potential,<br />

Integrate inwards, and outwards, and fix E by imposing continuity<br />

of both u and u ′ at <strong>the</strong> matching point,<br />

Or discretise, and solve an approximatively equivalent matrix<br />

eignevalue equation,<br />

Or use a variational method, e.g.,<br />

u(r) = <br />

i<br />

Ci r ℓ+1 exp(−ai r 2 /2) ,<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Simplest <strong>quark</strong>onium <strong>model</strong><br />

“Funnel” potential V (r) = −a/r + b r + c<br />

Constituent mass mc<br />

Minimal adjustment mc ∼ 1.5, a ∼ 0.4, b ∼ 0.2, and c ∼ −0.35<br />

(all units in powers of GeV)<br />

ur ,V r <br />

2<br />

1<br />

1<br />

2<br />

3<br />

1 2 3 4 5 6 7<br />

Reproduces also (b ¯ b) with mb ∼ 4.5 GeV<br />

JMR Quark Model<br />

r


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Simplest <strong>quark</strong>onium <strong>model</strong><br />

c¯c b ¯ b<br />

1S 2S 1P 1D 1S 2S 1P 1D 2P<br />

Model 3.07 3.68 3.48 3.78 9.47 9.99 9.87 10.11 10.23<br />

exp. 3.07 3.67 3.52 3.77 9.44 10.01 9.89 10.16 10.26<br />

In particular, <strong>the</strong> hierarchy of excitations (radial vs. orbital)<br />

corresponds <strong>to</strong> <strong>the</strong> observation.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Simplest <strong>quark</strong>onium <strong>model</strong> (c¯c) = dotted lines<br />

M (GeV)<br />

10.2<br />

9.8<br />

9.4<br />

-<br />

-<br />

-<br />

3S<br />

2S<br />

1S<br />

2P<br />

1P<br />

1D<br />

M (GeV)<br />

10.2<br />

9.8<br />

9.4<br />

-<br />

-<br />

-<br />

3S<br />

2S<br />

1S<br />

2P<br />

1P<br />

JMR Quark Model<br />

1D<br />

- 3.80<br />

- 3.40<br />

- 3.00


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Improvements: central potentials<br />

Better potentials<br />

Ng+Tye, Buchmüller, Richardson, etc., include asymp<strong>to</strong>tic<br />

freedom<br />

− a<br />

r<br />

→ −a(r)<br />

r<br />

Schnitzer, . . . , Gonzalez et al., . . . use a softer confinement, due<br />

<strong>to</strong> pair-creation effects,<br />

etc.<br />

Better simultaneous fit of (b ¯ b) and (c¯c)<br />

Simpler potentials<br />

V (r) = g ln r + C (Quigg + Rosner, etc. )<br />

V (r) = A r α + B (Martin)<br />

as α → 0 becomes logarithmic<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Improvements: relativistic corrections<br />

p 2<br />

2 m → m 2 + p 2 − m ,<br />

Better than a simple renormalisation of <strong>the</strong> parameters.<br />

However, often used with an instantaneous interaction,<br />

Much better: Be<strong>the</strong>–Salpeter equation (Bonn group, etc. )<br />

But much more difficult,<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Improvements: loop corrections<br />

¯D (∗)<br />

(c¯c) (c¯c)<br />

D (∗)<br />

Provide <strong>the</strong> state above threshold a width,<br />

Can be calculated using <strong>the</strong> 3 P0 <strong>model</strong>, and an overall of initial<br />

and final wave functions<br />

Give a mass-shift (dispersive part)<br />

One expects many cancellations. For instance, if D = D ∗ , all 3 PJ<br />

states receive <strong>the</strong> same shift. But if D ∗ > D, <strong>the</strong>n differential shift<br />

in addition, thus mimicking spin-orbit and tensor forces.<br />

Should be more pronounced near a threshold,<br />

see below ψ ′ − η ′ c<br />

If <strong>to</strong>o large an effect, back <strong>to</strong> <strong>the</strong> bootstrap?<br />

¯c<br />

c<br />

JMR Quark Model<br />

q<br />

¯q<br />

¯c<br />

c


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Improvements: fine structure<br />

ψ ′ → χJ + γ , χJ → J/ψ + γ ,<br />

Masses accurately measured with antipro<strong>to</strong>ns<br />

analysed with<br />

<strong>to</strong> first order<br />

M( 3 P0) = Mt − 2 〈Vls〉 − 4 〈Vt〉 ,<br />

M( 3 P1) = Mt − 〈Vls〉 + 2 〈Vt〉 ,<br />

M( 3 P2) = Mt + 〈Vls〉 − 2<br />

〈Vt〉 ,<br />

5<br />

V (r) + Vss(r) σ1.σ2 + Vls(r) ℓ.s + Vt(r) S12 ,<br />

Mt = 1<br />

<br />

M(<br />

9<br />

3 P0) + 3 M( 3 P1) + 5 M( 3 <br />

P2) ,<br />

〈Vls〉 = 1<br />

<br />

−2 M(<br />

12<br />

3 P0) − 3 M( 3 P1) + 5 M( 3 <br />

P1) ,<br />

〈Vt〉 = 5<br />

<br />

2 M(<br />

72<br />

3 P0) − 3 M( 3 P1) + M( 3 <br />

P1) .<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Improvements: fine structure<br />

1P of (c¯c)<br />

Mt = 3.525 , 〈Vls〉 = 0.035 , and 〈Vt〉 = 0.010 GeV .<br />

1P level of (b ¯ b),<br />

2P<br />

Mt = 9.900 , 〈Vls〉 = 0.014 , and 〈Vt〉 = 0.003 GeV ,<br />

∗Mt = 10.260 , 〈Vls〉 = 0.009 , and 〈Vt〉 = 0.002 GeV . (1)<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Improvements: hyperfine structure<br />

Singlet governed by Vc − 3 Vss<br />

Triplet by Vc+, Vss<br />

So, in perturbation, 3 S1 − 1 S0 = 4 〈Vss〉S<br />

<strong>An</strong>d for P states, 3 Pm − 1 P1 = 4 〈Vss〉P<br />

Where 3 Pm is an average spin-triplet, or say, a fictitious<br />

spin-triplet free of spin-orbit and tensor.<br />

To first order<br />

3 Pm = [M( 3 P0) + 3 M( 3 P1) + 5 M( 3 P2)]/9 ,<br />

but if spin-forces are treated non perturbatively,<br />

3 Pm ≥ [M( 3 P0) + 3 M( 3 P1) + 5 M( 3 P2)]/9 ,<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

The shaky his<strong>to</strong>ry of spin singlets<br />

In 1977, a candidate for ηc claimed in Germany 300 MeV below<br />

<strong>the</strong> J/ψ, → a lot of excitation<br />

tentatively explained by relativistic dynamics,<br />

difficult <strong>to</strong> digest in most current <strong>model</strong>s,<br />

not confirmed at SLAC,<br />

and eventually found about 120 MeV below J/ψ<br />

Then η ′ c = ηc(2S) predicted about 70–80 MeV below ψ ′<br />

However, it was pointed out that loop effects tend <strong>to</strong> decrease<br />

this splitting substantially<br />

Intense search with antipro<strong>to</strong>ns at Fermilbab, but in a range of<br />

<strong>to</strong>o low masses,<br />

Eventually found at Belle, Cleo, etc. about 50 MeV below ψ ′<br />

Interesting process of double-charm production<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Spin singlets: P wave<br />

Even harder for 1 P1, as anticipated (Renard in <strong>the</strong> late 70s)<br />

First indication in ISR: cooled ¯p on jet target<br />

Resisted for a while formation in a better ¯p beam at Fermilab<br />

Then seen in several experiments<br />

hc = 1 P1 almost coincides with <strong>the</strong> naive centre of gravity of<br />

triplets,<br />

Probably due <strong>to</strong> <strong>the</strong> cancellation of several small effects.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Spin singlets: (b ¯ b)<br />

Some results are very recent<br />

Two remarks<br />

δ(1S) = 0.067 , hb(1P) = 9.898 ,<br />

δ(2S) = 0.049 , hb(2P) = 10.260 GeV .<br />

1 δ(1S) b ¯ b predicted <strong>to</strong> be 70 ± 9 MeV from Lattice If you cannot<br />

afford Lattice QCD, use a logarithmic potential,<br />

δ(1S) b ¯ b = δ(1S)c¯c<br />

−1/2 mb<br />

mc<br />

∼ 65 MeV .<br />

2 The ratio δ(2S)/δ(1S) is about 1.4 in (b ¯ b) and about 2.3 in (c¯c).<br />

This illustrates how anomalously high is ηc(2S) — or<br />

anomalously low is ψ ′ — due <strong>to</strong> <strong>the</strong> neighbouring threshold.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Orbital mixing<br />

Except 3 P0, <strong>the</strong> states with unnatural parity contain two partial<br />

waves,<br />

For instance 3 S1 and 3 D1 for <strong>the</strong> states formed in e + e −<br />

ψ = u(r)<br />

r<br />

| 3 S1〉 + w(r)<br />

|<br />

r<br />

3 D1〉 ,<br />

− w ′′ (r)<br />

m +<br />

<br />

6<br />

m r 2 + Vc(r) − 3 Vls(r) − 2 Vt(r)<br />

See nuclear-physics textbooks<br />

For instance<br />

− u′′ (r)<br />

m + Vc(r) u(r) + √ 8 Vt(r) w(r) = E u(r) ,<br />

<br />

w(r) + √ 8 Vt(r) u(r) = E u(r)<br />

ψ(3770) = a| 3 D1, n = 1〉 + b1| 3 S1, n = 1〉 + b2| 3 S1, n = 2〉 + · · ·<br />

|b2| ≫ |b1|? Not sure!<br />

Contributions of J/ψ ↔ D (∗) ¯ D (∗) ↔ ψ ′′<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

The origin of spin dependent forces<br />

Much discussed at <strong>the</strong> beginning of charmonium<br />

Then discussed by Lattice QCD (Rebbi et al., etc.)<br />

<strong>An</strong>d o<strong>the</strong>r non perturbative methods (Brambilla et al.)<br />

Early approaches inspired by<br />

QED<br />

One-boson-exchange picture of nuclear forces<br />

Scalar exchange → central, and spin-orbit,<br />

Vec<strong>to</strong>r exchange → central, spin-spin, tensor and spin-orbit<br />

Early <strong>model</strong>s: vec<strong>to</strong>r linked <strong>to</strong> 1/r and scalar linked <strong>to</strong><br />

confinement,<br />

One should be careful: some terms come from <strong>the</strong> reduction of<br />

Dirac opera<strong>to</strong>rs in terms of Pauli spinors, o<strong>the</strong>r come from <strong>the</strong><br />

non-relativistic reduction (Thomas precession)<br />

It <strong>to</strong>ok some time <strong>to</strong> get a consistent picture compatible with<br />

Lorentz invariance (Gromes, Eichten-Sucher, etc.)<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Summary for <strong>quark</strong>onium<br />

η c (2S)<br />

hadrons<br />

η c (1S)<br />

γ<br />

γ<br />

γ<br />

ψ(2S)<br />

η,π<br />

ππ<br />

0<br />

hadrons<br />

J/ ψ (1S)<br />

hadrons hadrons γ∗ radiative<br />

γ∗ γ<br />

χ<br />

h<br />

c1<br />

(1P)<br />

c (1P)<br />

γ<br />

hadrons<br />

γ<br />

χ c0 (1P)<br />

hadrons π0 χ c2 (1P)<br />

hadrons<br />

J = PC 0−+ 1−− 0 ++ 1 ++ 1 +− 2 ++<br />

γ<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Summary for <strong>quark</strong>onium<br />

η b (3S)<br />

η b (2S)<br />

η b (1S)<br />

hadrons<br />

(11020)<br />

(10860)<br />

(4S)<br />

(3S)<br />

hadrons<br />

(2S)<br />

hadrons<br />

(1S)<br />

γ<br />

γ<br />

γ<br />

γ<br />

h b (2P)<br />

h b (1P)<br />

BB threshold<br />

χ b0 (2P)<br />

χ b0 (1P)<br />

χ b1 (2P)<br />

χ b1 (1P)<br />

χ b2 (2P)<br />

χ b2 (1P)<br />

J = PC 0−+ 1−− 1 +− 0 ++ 1 ++ 2 ++<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Summary for <strong>quark</strong>onium<br />

η c (2S)<br />

hadrons<br />

η c (1S)<br />

γ<br />

γ<br />

γ<br />

ψ(2S)<br />

η,π<br />

ππ<br />

0<br />

hadrons<br />

J/ ψ (1S)<br />

hadrons hadrons γ∗ radiative<br />

γ∗ γ<br />

χ<br />

h<br />

c1<br />

(1P)<br />

c<br />

(1P)<br />

γ<br />

hadrons<br />

γ<br />

χ c0 (1P)<br />

hadrons π0 χ c2 (1P)<br />

hadrons<br />

J = PC 0−+ 1−− 0 ++ 1 ++ 1 +− 2 ++<br />

γ<br />

η b (3S)<br />

η b (2S)<br />

η b (1S)<br />

hadrons<br />

(11020)<br />

(10860)<br />

(4S)<br />

(3S)<br />

hadrons<br />

(2S)<br />

hadrons<br />

(1S)<br />

γ<br />

γ<br />

γ<br />

γ<br />

h b (2P)<br />

h b (1P)<br />

BB threshold<br />

χ b0 (2P)<br />

χ b0 (1P)<br />

χ b1 (2P)<br />

χ b1 (1P)<br />

χ b2 (2P)<br />

χ b2 (1P)<br />

J = PC 0−+ 1−− 1 +− 0 ++ 1 ++ 2 ++<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Summary for <strong>quark</strong>onium<br />

4.0<br />

3.5<br />

3.0<br />

D ∗ s ¯ D ∗ s<br />

Ds ¯ D ∗ s<br />

D ∗ ¯ D ∗<br />

Ds ¯ Ds<br />

D ¯ D ∗<br />

D ¯ D<br />

η ′ c<br />

ηc<br />

☛<br />

✢ ✾<br />

γ<br />

hc<br />

γ<br />

γ<br />

❂<br />

π 0<br />

4320 ÷ 4360<br />

Y (4260)<br />

ψ(4170)<br />

ψ(4040)<br />

❅❘<br />

ππψ ′<br />

❅❘<br />

ππJ/ψ<br />

Z ± (4430)<br />

❄<br />

π ± ψ ′<br />

Y (3940) Z(3930)X(3940)<br />

❄<br />

ωJ/ψ ❄<br />

DD¯ ❄<br />

DD¯ ∗<br />

ψ ′<br />

ψ(3770)<br />

X(3872)<br />

✡<br />

✡ π<br />

✡<br />

✡✢<br />

+ π−J/ψ π + π−π0J/ψ ππJ/ψ<br />

❄ηJ/ψ<br />

J/ψ ❄ ✌ ✢✢<br />

❅ γ<br />

❅❅❅❅❅❅❘<br />

γ<br />

γ χc2<br />

χc1<br />

◆ χc0<br />

J P C : 0−+ 1 +− 1−− 0 ++ 1 ++ 2 ++ ?<br />

M GeV<br />

ππ<br />

η<br />

π 0<br />

γ<br />

γ<br />

JMR Quark Model<br />

γ


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Light mesons<br />

In principle, <strong>the</strong> <strong>quark</strong> <strong>model</strong> not applicable<br />

Though this was attempted!<br />

Two examples:<br />

First positive-parity excitations of (q¯q) with I = 1 are a0(980),<br />

b1(1235), a1(1260) and a2(1320).<br />

In <strong>the</strong> <strong>quark</strong> <strong>model</strong>, <strong>the</strong>y correspond <strong>to</strong> <strong>the</strong> partial wave 3 P0, 1 P1,<br />

3 P1 and 3 P2.<br />

Same pattern as for charmonium 1P.<br />

Regge trajec<strong>to</strong>ries M 2 vs. J<br />

Linear behaviour reproduced with relativistic kinematics and<br />

V ∝ r<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Heavy-light mesons<br />

Most dangerous sec<strong>to</strong>r<br />

Remember: electron more relativistic in H than in Ps<br />

Never<strong>the</strong>less, some properties of <strong>the</strong> naive <strong>quark</strong> <strong>model</strong> applied<br />

<strong>to</strong> (Q¯q) survive.<br />

Reduced mass<br />

1<br />

µ = 1 1<br />

+<br />

m M<br />

dominated by <strong>the</strong> light <strong>quark</strong>.<br />

1<br />

m ,<br />

Thus universal excitation energies and wave functions<br />

One aspect of Heavy <strong>quark</strong> symmetry<br />

Spin effects ∝ 1/M<br />

D ∗ − D = 2010 − 1870 = 140 MeV<br />

B ∗ − B = 5325 − 5280 = 45 MeV<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Ma<strong>the</strong>matical aspects<br />

Quarkonium physics stimulated studies on <strong>the</strong> properties of<br />

Schrödinger opera<strong>to</strong>rs<br />

See Quigg & Rosner, Martin,Bertlmann, Stubbe, Grosse, etc.<br />

Level order<br />

Wave function at <strong>the</strong> origin<br />

Consequences of flavour independence<br />

With new applications in a<strong>to</strong>mic physics!<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Level order<br />

M (GeV)<br />

10.2<br />

9.8<br />

9.4<br />

-<br />

-<br />

-<br />

3S<br />

2S<br />

1S<br />

2P<br />

1P<br />

1D<br />

Breaking of Coulomb<br />

degeneracy guided by <strong>the</strong><br />

sign of ∆V<br />

See alkalin a<strong>to</strong>ms vs. muonic<br />

a<strong>to</strong>ms<br />

Breaking of harmonic<br />

oscilla<strong>to</strong>r degeneracy<br />

according <strong>to</strong> <strong>the</strong> sign of<br />

JMR Quark Model<br />

d 2 V [r 2 ]<br />

d (r 2 ) 2


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Wave function at <strong>the</strong> origin<br />

|Φ(0]| 2 governs most decays, in particular lep<strong>to</strong>nic width of<br />

charmonium<br />

Schwinger<br />

pn = |Φn(0)| 2 = 1<br />

4 π u′ n(0) 2 .<br />

u ′ (0) 2 ∞<br />

= 2 µ<br />

0<br />

dV<br />

dr u2 (r) dr .<br />

pn is independent of n for a linear potential<br />

If V ′′ (r) has a given sign, pn ↗ or ↘<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Convexity properties of <strong>the</strong> spectrum in flavour space<br />

Frequent use of a property of H = A + λ B<br />

The ground-state (or <strong>the</strong> sum of n first levels) is concave in λ<br />

With λ <strong>the</strong> inverse reduced mass<br />

(Q ¯ Q) + (q¯q) ≤ 2 (Q¯q) ,<br />

Martin-Bertlmann, Nussinov, Witten, . . .<br />

Consider Vc + σ1.σ2 Vss <strong>the</strong>n<br />

Consider<br />

<strong>the</strong>n<br />

M(Vc) ≥ 1<br />

4 [3 M(Vc + Vss) + M(Vc − 3 Vss]<br />

Vct + Vls(r) ℓ.s + Vt(r) S12 ,<br />

E[Vct] ≥ [EJ=0 + 3 EJ=1 + 5 EJ=2] /9 ,<br />

so we know <strong>the</strong> sign of <strong>the</strong> error when treating spin-orbit and<br />

tensor <strong>to</strong> first order <strong>to</strong> define a “centre of gravity” of spin-triplet<br />

states.<br />

Important for <strong>the</strong> interpretation of hc and hb masses.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Baryons in <strong>the</strong> <strong>quark</strong> <strong>model</strong><br />

Three <strong>quark</strong>s in a baryon<br />

a Three makes a company<br />

Content<br />

His<strong>to</strong>ry<br />

Jacobi coordinates, permutations<br />

The three-body problem<br />

Light baryons, <strong>the</strong> di<strong>quark</strong> alternative<br />

Heavy baryons<br />

Spin splittings<br />

Convexity properties<br />

Link between mesons and baryons,<br />

String potential<br />

JMR Quark Model<br />

Tres faciunt collegium a<br />

Latin sentence


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Baryons: his<strong>to</strong>ry<br />

Started by Dalitz et al. in <strong>the</strong> 60s<br />

Many groups, Hey, Kelly, Cutkosky, Stancu, Gromes, Taxil + R.,<br />

Schöberl et al, Guimares, etc., etc.<br />

Best known are Isgur, Karl, Capstick,<br />

The most widely used <strong>to</strong>ol is <strong>the</strong> harmonic oscilla<strong>to</strong>r (HO)<br />

Sometimes difficult <strong>to</strong> distinguish between nice properties or<br />

difficulties<br />

specific <strong>to</strong> HO<br />

shared by constituent <strong>model</strong>s<br />

For instance, <strong>the</strong> location of <strong>the</strong> Roper resonance! (same<br />

quantum number as <strong>the</strong> ground state, this generalises <strong>the</strong> radial<br />

excitation for mesons)<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Baryons: Jacobi coordinates<br />

q1<br />

<br />

x<br />

<br />

q2<br />

<br />

√ 3y/2<br />

q3<br />

For (qqq)<br />

R = r 1 + r 2 + r 3<br />

,<br />

3<br />

x = r 2 − r 1 ,<br />

y = 2 r 3 − r 1 − r 2<br />

√ 3<br />

For (qqQ), same x and y, R<br />

modified<br />

For (q1q2q3), one should modify<br />

y ∝ (m1 + m2)r 3 − m1 r 1 − m2 r 2<br />

Note: Jacobi coordinates are<br />

convenient, but not compulsory<br />

JMR Quark Model<br />

,


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Baryons: Jacobi coordinates<br />

From<br />

H = <br />

i<br />

p 2 i<br />

2 mi<br />

+ V<br />

one can remove <strong>the</strong> c.d.m. free motion and work with <strong>the</strong> intrinsic<br />

Hamil<strong>to</strong>nian<br />

h = p2 x<br />

µx<br />

with µx = µy = m for (qqq)<br />

for (qqQ)<br />

+ p2 y<br />

µy<br />

+ V (x, y) ,<br />

µx = m , µ −1<br />

y = (m −1 + 2 M −1 )/3 .<br />

More involved but straightforward for (q1q2q3)<br />

Again not necessary if you use variational methods 〈Ψ|H|Ψ〉 with<br />

Ψ translation invariant.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Permutation symmetry for (qqQ)<br />

For instance Ξ − = (ssd) or Λ = (uds) in <strong>the</strong> limit where SU(2) is<br />

exact<br />

Ψ = ψ(x, y) ψs ψi ψc ,<br />

should be antisymmetric (A), given that ψc is A,<br />

For instance Λ ground state has I = 0 (A), and Sqq = 0 (A), while<br />

ψ(x, y) is symmetric (S) in x,<br />

For instance, ψ(x, y) ∝ exp[−a x 2 − b y 2 ] in HO.<br />

First orbital excitation of Λ? Keep I = 0. If ψ(x, y) is excited in y,<br />

i.e., ℓy = 1, <strong>the</strong>n keep Sqq = 0, thus Sqqs = 1/2 and two<br />

possibilities<br />

J = 1/2<br />

J = 3/2<br />

with <strong>the</strong> possibility of spin-orbit splitting among <strong>the</strong>m<br />

O<strong>the</strong>r orbital excitation of Λ? Yes, with ψ(x, y) now odd in x, and<br />

thus Sqq = 1, and various recoupling for Sqqs and J.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Permutation symmetry for (qqQ)<br />

For Ξ − = (ssd) or Σ 0 = (uds) with I = 1, this is inverted, <strong>the</strong><br />

ground state has S12 = 1, with two possibilities, J = 1/2 or<br />

J = 3/2, and <strong>the</strong> possibility of hyperfine splitting.<br />

In <strong>the</strong> early days of SU(3), <strong>the</strong> mass difference between Σ 0 and<br />

Λ was a difficulty<br />

In <strong>the</strong> explicit <strong>quark</strong> <strong>model</strong>, it is unders<strong>to</strong>od by<br />

spin 1 for (ud) in Σ 0<br />

spin 0 for (ud) in Λ<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Permutation symmetry for (qqq)<br />

Again<br />

Ψ = ψ(x, y) ψs ψi ψc ,<br />

For <strong>the</strong> ground state of ∆ ++ = (uuu) or Ω − = (sss), this is easy,<br />

each fac<strong>to</strong>r is ei<strong>the</strong>r S or A, where S now means “fully<br />

symmetric” and A “fully antisymmetric”<br />

For <strong>the</strong> nucleon, one has <strong>to</strong> introduce <strong>the</strong> concept of “mixed<br />

symmetry”<br />

The pro<strong>to</strong>type is given by <strong>the</strong> Jacobi coordinates<br />

x = r 2 − r 1 , y = 2 r 3 − r 1 − r 2<br />

√ 3<br />

Odd or even under P12, but ( j = exp(2 i π/3))<br />

P→[y + i x] = j [y + i x] ,<br />

JMR Quark Model<br />

,


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Permutation symmetry for (qqq)<br />

The Clebsch–Gordan rules for two mixed-symmetry doublets<br />

z = v + i u and Z = V + i U are<br />

ℜe[z Z ∗ ] = u U + v V ,<br />

ℑm[z Z ∗ ] = v U − u V ,<br />

[z Z ] ∗ = (u U − v V ) − i (u V + v U) .<br />

So SM × SM → S, A, or SM.<br />

In particular, <strong>the</strong> coupling of three spins 1/2 <strong>to</strong> spin 1/2, with, say<br />

S3 = +1/2 is<br />

Sx = 1<br />

√ 2 [↑↓↑ − ↓↑↑] , Sy = 1<br />

√ 6 [2 ↑↑↓ − ↑↓↑ − ↓↑↑] ,<br />

is completely analogous <strong>to</strong> (x, y) and form a SM doublet,<br />

So do <strong>the</strong> isospin wave function for<br />

(1/2) × (1/2) × (1/2) → (1/2)<br />

In <strong>the</strong> nucleon, <strong>the</strong> spin–isospin wave function is symmetric<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Permutation symmetry for (qqq)<br />

Most remarkable is <strong>the</strong> possibility of antisymmetric spin–isospin<br />

wave function<br />

ψx Sx + ψy Sy<br />

√<br />

2<br />

,<br />

Which requires an antisymmetric orbital wave function,<br />

For instance, in <strong>the</strong> HO<br />

x × y exp[−a(x 2 + y 2 )]<br />

, with ℓ P = 1 + . This state is excited in both coordinates. It has<br />

not yet been seen.<br />

See <strong>the</strong> discussion on <strong>the</strong> di<strong>quark</strong> alternative<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

The three-body problem<br />

Several methods, developed earlier in a<strong>to</strong>mic or nuclear physics<br />

HO expansion, Gaussian expansion and o<strong>the</strong>r variational<br />

methods<br />

Integro-differential equations: Faddeev, AGS, etc.,<br />

Hyperspherical expansion,<br />

etc.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

The harmonic oscilla<strong>to</strong>r (HO)<br />

V =<br />

2 K<br />

3<br />

H(m, m, m) = p2 x<br />

m + p2 y<br />

2<br />

r12 + r 2 23 + r 2 <br />

31<br />

m + K (x 2 + y 2 ) ,<br />

<br />

K<br />

E = (6 + 4 nx + 2ℓx + 4 ny + 2 ℓy)<br />

m<br />

N = 2 nx + ℓx + 2 ny + ℓy)<br />

Levels named after <strong>the</strong> multiplicity and ℓ P ,<br />

For instance [56, 0 + ] for <strong>the</strong> ground state with 8 spin 1/2 and 10<br />

spin 3/2, i.e., 2 × 8 + 4 × 10 = 56 states. [56, 0 + ] ′ for Roper.<br />

The first orbital excitation is [70, 1 − ],<br />

<strong>the</strong> first state with a full antisymmetric orbital wave function is<br />

[20, 1 + ].<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

The harmonic oscilla<strong>to</strong>r (HO): (qqQ), (q1q2q3)<br />

H(m, m, M) = p2 x<br />

m + p2 y<br />

µ + K (x 2 + y 2 ) ,<br />

with µ given earlier. Still an exact decoupling,<br />

<br />

K<br />

E(m, m, M) =<br />

m (3 + 4 nx<br />

<br />

K<br />

+ 2 ℓx) +<br />

µ (3 + 4 ny + 2 ℓy) .<br />

For (q1q2q3), use Jacobi coordinates, and rescale<br />

.<br />

x → x/ √ µx y → y/ √ µy<br />

H(m1, m2, m3) = p 2 x + p2 y + A x 2 + B y 2 + 2 C x y ,<br />

One is left with a 2 × 2 diagonalisation.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Perturbation around HO<br />

0.2∆<br />

0.2∆<br />

0.1∆<br />

0.5∆<br />

V = K (x 2 + y 2 ) + δV ,<br />

One often violates <strong>the</strong> rules of perturbation <strong>the</strong>ory (δE small as<br />

compared <strong>to</strong> initial spacings)<br />

Never<strong>the</strong>less, interesting phenomenology,<br />

For instance, hierarchy of N = 2 states<br />

[20, 1 + ]<br />

[70, 1 + ]<br />

[70, 0 + [56, 2<br />

]<br />

+ ]<br />

[56, 0 + ] ′<br />

Except that one would like <strong>to</strong> push<br />

<strong>the</strong> lowest state below N = 1!<br />

[56, 0 + ] ′ becomes decoupled with<br />

three body forces (Gromes et al.)<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Converged variational methods<br />

Problems with<br />

More fashionable<br />

Ψ(x, y) = <br />

cn φn(x, y) ,<br />

n<br />

Ψ(x, y) = <br />

γi exp[−(a.i x 2 + biy 2 + 2 ci x.y)] .<br />

i<br />

with res<strong>to</strong>ration of permutation symmetry.<br />

Detailed search of parameter delicate. see Varga et al. or Hiyama et<br />

al.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Hyperspherical expansion<br />

Consider {x, y} as a single 6-d vec<strong>to</strong>r<br />

Solve <strong>the</strong> 6-d Schrödinger equation with a potential which is not<br />

6-d central<br />

Except HO, which is 6-d central<br />

−u ′′ + 3/2)(L + 5/2)<br />

[L] (ϱ)+(L<br />

ϱ2 u [L]+ <br />

V [L],[L] ′(ϱ) u [L] ′(ϱ) = E u [L](ϱ) ,<br />

[L] ′<br />

Very good convergence, very systematic<br />

Hypercentral approximation, see Genoa group<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Light-<strong>quark</strong> baryons<br />

<strong>An</strong> impressive description of many data with a simple <strong>to</strong>ol,<br />

But some persisting problems,<br />

Let us concentrate on two of <strong>the</strong>m<br />

The Roper resonance = radial excitation of N or ∆<br />

In most <strong>model</strong>s, predicted above <strong>the</strong> orbital excitations with<br />

P = −1<br />

Similar <strong>to</strong> ψ ′ > χJ<br />

This is unavoidable with <strong>model</strong>s with ∆V (r) > 0<br />

One suggestion: Yukawa type of interaction among <strong>quark</strong>s<br />

(Glozmann)<br />

Missing states, e.g., [20, 1 + ]<br />

Absent or not seen since weakly coupled <strong>to</strong> usual entrance<br />

channels?<br />

A <strong>quark</strong>-di<strong>quark</strong> <strong>model</strong> has been proposed (Lichtenberg, Torino<br />

group)<br />

<strong>An</strong>d is often revisited (Jaffe-Wilczek, Maiani et al., etc.)<br />

Warning: if D = (qq) taken seriously, do you predict ( ¯ DD) or<br />

(DDD)? New spectroscopy!<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Baryons with a single heavy <strong>quark</strong>s<br />

M(cqq)<br />

The domain with most recent discoveries in baryon spectroscopy<br />

(MeV)<br />

2900 -<br />

5/2 +<br />

2700 -<br />

2500 -<br />

1/2− 3/2− 2300 - 1/2 +<br />

Λc<br />

3/2 +<br />

1/2 +<br />

Σc<br />

1/2− 3/2− 3/2 +<br />

1/2 +<br />

1/2 +<br />

Ξc<br />

3/2 +<br />

1/2 +<br />

Ωc<br />

1/2− 3/2− 1/2 +<br />

Λb<br />

1/2 +<br />

3/2 +<br />

Σb<br />

3/2 +<br />

1/2 +<br />

Ξb<br />

1/2 +<br />

Ωb<br />

JMR Quark Model<br />

M(bqq)<br />

(MeV)<br />

- 6200<br />

- 6000<br />

- 5800<br />

- 5600


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Baryons with a single heavy <strong>quark</strong>s<br />

(Qqq) central forces governed by reduced masses dominated by<br />

q<br />

Excitation spectrum nearly independent upon Q<br />

See <strong>the</strong> debate about Ωb = (bss) of D0 vs. CDF and LHCb<br />

Flavour independence is important!<br />

Spin splittings in <strong>the</strong> light <strong>quark</strong> sec<strong>to</strong>r almost independent of Q<br />

Spin splittings involving Q decreases as 1/M<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Baryons with two heavy <strong>quark</strong>s<br />

Perhaps <strong>the</strong> most interesting of ordinary hadrons<br />

For <strong>the</strong> price of one, get <strong>the</strong> two extremes<br />

Heavy–heavy motion like in charmonium<br />

Relativistic motion of a light <strong>quark</strong>, as in D or B mesons<br />

Often described as [(QQ) − q] in a di<strong>quark</strong>–<strong>quark</strong> <strong>model</strong> or<br />

approximation<br />

But <strong>the</strong> first excitations are in (QQ)!<br />

Then a Born–Oppenheimer picture looks more suited (Fleck et<br />

al.), as for H2 + in a<strong>to</strong>mic physics<br />

Recently <strong>the</strong> hierarchy of Q − Q vs. q excitations addressed by<br />

Cohen et al., Roberts et al.,<br />

If (QQ) is frozen, <strong>the</strong>n a new heavy-<strong>quark</strong> symmetry, linking<br />

double-charm baryons <strong>to</strong> singly-charmed mesons<br />

Experiment: Positive results at SELEX, negative at FOCUS and<br />

BABAR<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Baryons with three heavy <strong>quark</strong>s<br />

The ultimate deal of baryon spectroscopy (Bjorken)<br />

The true baryon analogue of charmonium<br />

For instance,look at <strong>the</strong> hierarchy of levels and compare <strong>to</strong> <strong>the</strong><br />

prediction of static potential computed on <strong>the</strong> lattice<br />

Let us dream for <strong>the</strong> future physicists.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Spin splittings in baryons<br />

Very advertised by DGG, Lipkin et al., Isgur and Karl,<br />

As a possible evidence for QCD within <strong>the</strong> hostile environment of<br />

confinement<br />

In particular<br />

Vss = <br />

i


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Spin splittings in baryons<br />

Long standing problem of spin-orbit forces<br />

IK declared <strong>the</strong> abolition of spin-orbit forces in baryons, see also<br />

Reinders,<br />

OK, with noticeable exceptions, in particular, <strong>the</strong> famous<br />

Λ(1405) − Λ(1520) splitting,<br />

Most widely accepted explanation: nearby ¯ K N threshold.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Convexity properties<br />

(MM) + (mm) ≤ 2(Mm) in two-body problems with a given<br />

potential (flavour independence)<br />

Makes it tempting <strong>to</strong> conjecture about<br />

(m, m, m ′ ) + (M, M, m ′ ) ≤ 2 (m, M, m ′ ) ,<br />

Generally true, so heavy <strong>quark</strong>s tend <strong>to</strong> cluster <strong>to</strong>ge<strong>the</strong>r<br />

But ∃ conterexamples with sharp (unphysical) potentials and very<br />

large mass ratios<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

From mesons <strong>to</strong> baryons<br />

His<strong>to</strong>rically disconnected, nuclear physicists working on light<br />

baryons, particle physicists working on heavy <strong>quark</strong>onia<br />

If colour-octet exchange<br />

V = 1<br />

2 [v(r12 + · · · ] ,<br />

So-called 1/2 rule<br />

Works reasonably well for a combined phenomenology of<br />

mesons and baryons<br />

Challenged by a string picture<br />

B<br />

C<br />

<br />

J<br />

A<br />

V (r 1, r 2, r 3) = b min<br />

J (r1J + r2J + r3J) ,<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

String potential for baryons<br />

Link <strong>to</strong> past work by Fermat, Torricelli and Napoleon<br />

B ′<br />

C ′<br />

<br />

B<br />

<br />

A<br />

<br />

J<br />

*<br />

120◦ A ′<br />

<br />

<br />

C<br />

<br />

C ′<br />

<br />

C1<br />

B<br />

JMR Quark Model<br />

<br />

<br />

A<br />

<br />

A ′<br />

A1<br />

<br />

B1<br />

<br />

C<br />

B ′


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Mass inequalities for mesons and baryons<br />

If p is <strong>the</strong> perimeter and Y <strong>the</strong> minimal Toricelli path<br />

p<br />

2 ≤ Y ≤ p √ 3 ,<br />

The lower bound is saturated for a flat triangle, <strong>the</strong> upper one for<br />

an equilateral triangle, thus<br />

For <strong>the</strong> Hamil<strong>to</strong>nians<br />

H3 = p2 1<br />

1<br />

+ · · · + V ≥<br />

2 m 2<br />

From <strong>the</strong> variational principle<br />

V ≥ 1<br />

2 [v(r12) + v(r23) + v(r31)] .<br />

2 p1 2 m + p2 <br />

2 + v(r12) + · · · .<br />

2 m<br />

2 M(qqq) ≥ 3 M(q¯q) .<br />

Which becomes inverted with different masses, if M/m large<br />

( ¯ Q ¯ Q ¯ Q) + (qqq) ≤ 3 ( ¯ Qq) ,<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Multi<strong>quark</strong>s and o<strong>the</strong>r exotics<br />

Exotic hadrons<br />

Le plus grand dérèglement de l’esprit,<br />

c’est de croire les choses parce qu’on veut qu’elles soient,<br />

et non parce qu’on a vu qu’elles sont en effet. a<br />

Bossuet<br />

a The biggest disorder of <strong>the</strong> spirit, it is <strong>to</strong> believe things because we want that <strong>the</strong>y<br />

are, and not because we saw that <strong>the</strong>y are indeed.<br />

Content<br />

Glueballs, hybrids, molecules<br />

Baryonium<br />

Chromomagnetic binding<br />

Chromoelectric binding<br />

Generalised Steiner-tree potential<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Glueballs and hybrids<br />

Glueballs very fashionable in <strong>the</strong> 80s,<br />

Constituent <strong>model</strong>s, bag <strong>model</strong>s, and later lattice QCD and QCD<br />

SR<br />

Often non exotic, so can be confused with ordinary mesons<br />

Or mix with ordinary mesons<br />

Present status not very clear<br />

Hybrids sometimes seen as (Q ¯ Qg)<br />

or in <strong>the</strong> Born–Oppenheimer approach as <strong>the</strong> second potential<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Charmonium hybrids in <strong>the</strong> early 80s<br />

Using a variant of <strong>the</strong> bag <strong>model</strong><br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Light and heavy hybrids<br />

A candidate with J PC = 1 −+ at BNL (Chung)<br />

Perhaps one of X, Y , Z ?<br />

Many <strong>the</strong>oretical developments (Close, Barnes, Kuti et al.)<br />

Flux tube <strong>model</strong> (string vibration)<br />

Predicts decay <strong>to</strong> excited mesons in a first step<br />

One argument in <strong>the</strong> 80s: (c¯c) is clean, so any extra state should<br />

be clearly visible<br />

We realise now that <strong>the</strong> situation is also complicated in this<br />

sec<strong>to</strong>r.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Molecules<br />

It is regularly rediscovered that <strong>the</strong> Yukawa mechanism is not<br />

restricted <strong>to</strong> nucleons,<br />

<strong>An</strong>y hadron containing light <strong>quark</strong>(s) can enter a nuclear-type of<br />

interaction,<br />

Even without! Remember ηc–nucleus attraction sometimes<br />

predicted.<br />

The charm sec<strong>to</strong>r is no exception<br />

Törnqvist, Manohar & Wise, Ericson & Karl, Swanson, Close and<br />

Thomas, etc., etc., have noticed a possible long-range attraction<br />

between DD ∗ , D ∗ D ∗ or D ¯ D ∗ or D ∗ ¯ D ∗<br />

Weaker than <strong>the</strong> pro<strong>to</strong>n–neutron potential,<br />

But in<br />

− ∆<br />

1<br />

+ g V (r) = [−∆ + m g V (r)]<br />

m m<br />

what matters is m g for <strong>the</strong> existence of a discrete spectrum.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Molecules<br />

When <strong>the</strong> X(3872) was discovered, it was considered as a<br />

success for this approach,<br />

Just at <strong>the</strong> D ¯ D ∗ threshold!<br />

But some more recent measurements better call for a 2P state of<br />

charmonium, in particular<br />

X(3872) → ψ ′ + γ<br />

X(3872) → J/ψ + γ<br />

> 1 ,<br />

Probably a mixture of (c¯c) 2P and molecule,<br />

But do we have two states, or a single (c¯c) with more higher<br />

Fock components than usual?<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Molecules<br />

We learned <strong>to</strong> be careful in this sec<strong>to</strong>r<br />

In 1975, Iwazaki suggested ψ ′ = (c¯cq¯q)<br />

In 1976–77, Voloshin & Okun, and De Rujùla, Georgi & Glashow<br />

molecular structures out of D (∗) and ¯ D (∗)<br />

In particular, DGG were puzzled by ψ(4.04) decaying <strong>to</strong>o often in<br />

D ∗ ¯ D ∗ relative <strong>to</strong> D ¯ D and D ¯ D ∗ + c.c., as compared <strong>to</strong> spin<br />

counting and phase-space.<br />

But Le Yaouanc et al., and Eichten et al. have shown this was<br />

due <strong>to</strong> <strong>the</strong> node structure of this state.<br />

We were accus<strong>to</strong>med <strong>to</strong> orbital excitations (Regge trajec<strong>to</strong>ries),<br />

less <strong>to</strong> radial excitations<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Molecules<br />

Baryon–baryon states (Julia-Diaz & Riska) with charm ≥ 2?<br />

Perhaps a new periodic table, based on charmed baryons<br />

Meson–baryon<br />

Beauty baryons, etc.<br />

<strong>the</strong> Pandora-box syndrome strikes again!<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Baryonium<br />

Tentative peaks in antipro<strong>to</strong>n cross-sections in <strong>the</strong> 70s<br />

Bumps in <strong>the</strong> inclusive γ spectrum ¯p + p → γ + X<br />

The name “baryonium” was invented for mesons preferentially<br />

coupled <strong>to</strong> baryon–antibaryon<br />

Two main approaches<br />

Quasi-nuclear baryonium (Shapiro et al., Dover et al.). Today,<br />

would be named “molecular”<br />

With meson-exchange between N and ¯ N, deduced from NN<br />

interaction by <strong>the</strong> Fermi–Yang rule (G-parity rule)<br />

<strong>An</strong>nihilation underestimated in this approach,<br />

[(qq)¯ 3 − (¯q¯q)3] structure, with an orbital-momentum barrier<br />

preventing from rearrangement in<strong>to</strong> mesons (Rossi & Veneziano,<br />

Jaffe, etc.), named T-baryonium by Chan H.M. et al.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Baryonium<br />

Chan et al. invented colour chemistry,<br />

In particular, speculated about [(qq)¯ 6 − (¯q¯q)6], named<br />

M-baryonium, narrow for both decay in<strong>to</strong> mesons and decay in<strong>to</strong><br />

baryon–antibaryon<br />

Note that <strong>the</strong> clustering in<strong>to</strong> di<strong>quark</strong>s with such colour structure<br />

was just assumed, not demonstrated from a dynamical<br />

calculation,<br />

Many followers: exotic baryons with (q 4 ¯q) and similar cluster<br />

structure, dibaryons, etc. (de Swart et al., Sorba et al., Nicolescu<br />

et al., etc.)<br />

New experiments with an intense, cooled antipro<strong>to</strong>n beam at<br />

LEAR (CERN). No baryonium confirmed.<br />

Still some enhancements in Jψ → baryon + antibaryon + · · · at<br />

BES, indicatging a strong final-state interaction<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Chromomagnetic binding<br />

A by now famous paper by DGG suggested <strong>the</strong> spin-dependent<br />

part of one-gluon-exchange as responsible for spin–spin<br />

splittings in mesons and baryons<br />

It reads<br />

Vss = <br />

i


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Chromomagnetic binding<br />

Namely attractive and<br />

〈O〉H = 3 〈O〉Λ ,<br />

Thus with Λ = N = ΣΞ all receiving 150 MeV of attraction from<br />

spin-spin<br />

He deduced that H is bound by about 150 MeV below <strong>the</strong><br />

degenerate threshold ΛΛ = NΞ = ΣΣ,<br />

More than 20 experiments looked at <strong>the</strong> H<br />

No positive signal, in particular from S = −2 hypernuclei<br />

Chromomagnetism is remarkable, as it induces a net excess of<br />

attraction in <strong>the</strong> Hamil<strong>to</strong>nian, before considering any induced<br />

polarisation in sub-clusters,<br />

The usual situation is: no excess of attraction<br />

For instance Ps2 vs. 2 (e + e − ), both governed by gij/rij, both<br />

have <strong>the</strong> same gij = −2<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Chromomagnetic binding<br />

The H was revisited by several <strong>the</strong>orists (Yazaki et al. Karl et al.,<br />

Rosner, Gignoux et al., in particular for<br />

SU(3)F breaking<br />

Self-consistent calculation of ¯vss = 〈vss(rij)〉<br />

Inclusion of central forces and spin–spin forces in a consistent<br />

6-body calculation<br />

Each effect reduces <strong>the</strong> binding<br />

<strong>An</strong>d eventually <strong>the</strong> H is unbound!<br />

The main effect is that ms ↗ splits ΛΛ from o<strong>the</strong>r thresholds, ΛΛ<br />

chromomagnetic energy being not penalised, hence <strong>the</strong><br />

coherence ΛΛ + NΞ + · · · → H is lost!<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Chromomagnetic binding<br />

In 1987, Lipkin, and Gignoux et al. realised that<br />

P = ( ¯ Qqqqq)<br />

with (qqqq) = (uuds) or (udds) or (udss)<br />

has <strong>the</strong> same 150 MeV binding below <strong>the</strong> [( ¯ Qq) + (qqq)]<br />

threshold in <strong>the</strong> limit where mQ → ∞ and same assumptions<br />

than Jaffe for <strong>the</strong> light <strong>quark</strong><br />

This was named “penta<strong>quark</strong>” (now, one should say: “<strong>the</strong><br />

chromomagnetic penta<strong>quark</strong>”)<br />

It was searched for in 1 experiment at Fermilab (Ashery et al.),<br />

not conclusive<br />

A re-analysis, including mQ < ∞, indicate that relaxing <strong>the</strong> <strong>the</strong> P<br />

likely becomes unbound<br />

O<strong>the</strong>r configurations analysed, see Leandri et al.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Chromoelectric binding<br />

If chromomagnetism does not work, why not chromo-electricity?<br />

It works! at least in a certain limit<br />

Miracle: all <strong>the</strong>orists agree! instead of fighting.<br />

Consider first a simple additive <strong>model</strong> with colour fac<strong>to</strong>rs, and<br />

next a better <strong>model</strong>ling of confinement.<br />

The additive <strong>model</strong> with colour fac<strong>to</strong>rs reads<br />

V = − 16<br />

3<br />

<br />

˜λi. ˜ λj v(rij) ,<br />

i


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Chromoelectric binding: equal masses<br />

Both Ps2 and (qq¯q¯q), and <strong>the</strong>ir thresholds are governed by<br />

H4 = <br />

i<br />

p2 i<br />

2 m − [ pi ] 2<br />

8 m<br />

<br />

+ gij v(rij) , <br />

gij = 2 ,<br />

For this family of Hamil<strong>to</strong>nians, <strong>the</strong> highest ground state obtained<br />

for gij = ¯g = 2/15.<br />

Then, <strong>the</strong> more one departs from this symmetric case, <strong>the</strong> lower<br />

<strong>the</strong> binding<br />

Can be measured by <strong>the</strong> variance of <strong>the</strong> {gij} set of coefficients<br />

State Pair 12 34 13 24 14 23 ¯g ∆g<br />

Threshold 0 0 1 1 0 0 1/3 0.22<br />

Ps2 −1 −1 1 1 −1 −1 1/3 0.89<br />

T 1/2 1/2 1/4 1/4 1/4 1/4 1/3 0.01<br />

M −1/4 −1/4 5/8 5/8 5/8 5/8 1/3 0.17<br />

i


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Chromoelectric binding: equal masses<br />

<br />

State Pair 12 34 13 24 14 23 ¯g ∆g<br />

Threshold 0 0 1 1 0 0 1/3 0.22<br />

Ps2 −1 −1 1 1 −1 −1 1/3 0.89<br />

T 1/2 1/2 1/4 1/4 1/4 1/4 1/3 0.01<br />

M −1/4 −1/4 5/8 5/8 5/8 5/8 1/3 0.17<br />

Ps2 is more asymmetric than its threshold: it is stable<br />

Both T-type and M-type of tetra<strong>quark</strong>s are less symmetric than<br />

<strong>the</strong>ir threshold, <strong>the</strong>y are unstable<br />

Hence tetra<strong>quark</strong> with equal masses is penalised by <strong>the</strong><br />

non-Abelian character of <strong>the</strong> <strong>the</strong>ory<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Chromoelectric binding: unequal masses<br />

Can ano<strong>the</strong>r asymmetry overcome this problem?<br />

Yes! Remember (M + , M + , m − , m − ) becomes more stable as<br />

M/m departs from 1<br />

The same mechanism makes (QQ¯q¯q) evolving from unbound <strong>to</strong><br />

stable<br />

See Ader et al. (1982), Heller & Tjon, Brink & Stancu, Rosina &<br />

Janc, Barnea, Vijande & Valcarce, etc.<br />

The problem is <strong>the</strong> critical value of M/m required,<br />

(cc¯q¯q) bound or do we need (bb¯q¯q)<br />

Two b or not two b, that is <strong>the</strong> question!<br />

<strong>An</strong>d what about a better potential<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Chromoelectric binding: string potential<br />

The additive <strong>model</strong><br />

V = − 16<br />

3<br />

<br />

˜λi. ˜ λj v(rij) ,<br />

i


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Chromoelectric binding: string potential<br />

The good surprise is that this potential gives better binding than<br />

<strong>the</strong> simple additive <strong>model</strong>,<br />

Hence, (cc¯q¯q), marginally bound in <strong>the</strong> additive <strong>model</strong>, should<br />

be stable with this improved <strong>quark</strong> dynamics<br />

Hence, beyond double-charm baryons, one could look at double<br />

charm mesons, a genuine exotic,<br />

For instance, since e + e − → J/ψ + ηc is observed (double charm<br />

production), TQQ + ¯ D + ¯ D + · · · could be observed.<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

String potential: some rigorous results<br />

<br />

w12<br />

c12<br />

<br />

v1<br />

<br />

<br />

p<br />

v2<br />

<br />

<br />

s1<br />

<br />

t12<br />

t34<br />

s2<br />

<br />

v3<br />

<br />

h k<br />

q<br />

<br />

v4<br />

<br />

c34<br />

JMR Quark Model<br />

w34


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

String potential: some rigorous results<br />

v2<br />

<br />

w12<br />

<br />

C12<br />

v1<br />

<br />

<br />

s1<br />

s2<br />

<br />

<br />

v4<br />

<br />

w34<br />

C34<br />

<br />

v3<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

String potential: some rigorous results<br />

√<br />

3<br />

Vs ≤ a (x + y)<br />

2 + z√ <br />

2 ,<br />

H4 ≤ p2x m + p2y m + p2z + a<br />

m<br />

<br />

(x + y)<br />

√<br />

3<br />

2 + z√ <br />

2 ,<br />

Stability demonstrated analytically for M/m 6402! (Ay et al.)<br />

q<br />

q<br />

<br />

x y<br />

√ 2z<br />

<br />

<br />

¯q<br />

<br />

<br />

¯q<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

String potential: penta<strong>quark</strong><br />

Found stable if antisymmetrisation is disregarded<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

String potential: hexa<strong>quark</strong><br />

Found stable if antisymmetrisation is disregarded<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

String potential: hexa<strong>quark</strong><br />

Found stable if antisymmetrisation is disregarded<br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Light penta<strong>quark</strong><br />

Speculation by Diakonov et al.<br />

Indication by Nakano et al.<br />

Confirmed by o<strong>the</strong>r groups having data on tapes, never analysed<br />

for such search,<br />

Eventually not confirmed by high-statistics experiments<br />

Also doubts among <strong>the</strong>orists, in particular about <strong>the</strong> small width<br />

in this <strong>model</strong>,<br />

Situation somewhat confusing in constituent <strong>model</strong>s, QCD SR,<br />

and lattice QCD calculations trying <strong>to</strong> reproduce <strong>the</strong> light<br />

penta<strong>quark</strong><br />

JMR Quark Model


Few-charge systems His<strong>to</strong>ry of <strong>the</strong> <strong>quark</strong> <strong>model</strong> Mesons Baryons Multi<strong>quark</strong>s and o<strong>the</strong>r exotics Outlook<br />

Outlook<br />

Long way from strangeness, SU(3) symmetry, intriguing decay<br />

pattern of <strong>the</strong> φ(1020) <strong>to</strong> <strong>the</strong> present state of art in QCD<br />

Hadron spectroscopy boosted by heavy <strong>quark</strong>s<br />

The question of exotics remain puzzling,<br />

But some configurations have not yet been investigated<br />

experimentally<br />

JMR Quark Model

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!