12.10.2013 Views

Remote Sensing and Water management - FEFlow

Remote Sensing and Water management - FEFlow

Remote Sensing and Water management - FEFlow

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Remote</strong> <strong>Sensing</strong> <strong>and</strong><br />

Groundwater Modeling<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Wolfgang Kinzelbach<br />

Institute of Environmental Engineering<br />

ETH Zürich, Switzerl<strong>and</strong><br />

with<br />

Philip Brunner, Harrie-Jan Hendricks Franssen, Lesego Kgotlhang,<br />

Peter Bauer <strong>and</strong> Carmen Alberich


Contents<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

• Data problems in groundwater modeling<br />

• Possible uses of remote sensing data in<br />

groundwater models with examples<br />

• Conclusions


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Data problems of groundwater<br />

modelling<br />

• Data fields required: Recharge, transmissivity,<br />

leakage factor, evaporation rate, storage coefficient<br />

∂ h<br />

S = ∇( T∇ h) + q<br />

∂t<br />

• Only point values known, often few<br />

• Calibration usually not unique – predictive power<br />

poor<br />

• Reduction of number of degrees of freedom<br />

required (e.g. zonation, pivot points)


Typical problem<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

• Fractured rock aquifer<br />

• Few boreholes<br />

• Recharge known to plus minus 1 order of magnitude<br />

• Storage coefficient known to plus minus 1 order of<br />

magnitude<br />

• Regional transmissivity known to plus minus 1 order of<br />

magnitude<br />

• Calibration non-unique<br />

• Management strategy unclear, worst case too pessimistic<br />

• Stop modelling or get new data!


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Reduction of degrees of freedom<br />

Example recharge<br />

Recharge is a function of space <strong>and</strong> time<br />

Decompose in a spatial <strong>and</strong> a temporal factor<br />

<br />

Rxt ( , ) = gt ( ) f( xR ) average<br />

Time factor from lysimeters, spatial factor from<br />

l<strong>and</strong>use or data from remote sensing shown later<br />

Remains one degree of freedom: temporal <strong>and</strong><br />

spatial average


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Physical interpolation from point<br />

data to areal distribution<br />

Example: Precipitation from METEOSAT<br />

Station data<br />

mm/a


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Conditioning of stochastic models<br />

• Produce many equally likely realizations of the aquifer<br />

by the self-calibrating method<br />

• One source of observations maybe remote sensing fields<br />

• Set a term in the self-calibration procedure which<br />

penalizes the distance of the realization from data like<br />

the pattern obtained by remote sensing


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Types of remote sensing data<br />

• Frequency range in electromagnetic<br />

spectrum: visible, infrared, microwave<br />

(passive-active), radar<br />

• Resolution from cm to 500 km<br />

• Time sequence<br />

• Platform: satellite, airplane, balloon, tower<br />

• Geophysical remote sensing: magnetism,<br />

electromagnetic methods, gravity


Looking underground<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

• Aeromagnetics (based on differences in magnetisation of<br />

rocks)<br />

– Structure: limits of aquifer<br />

– Intrusion dikes or fracture zones<br />

• Airborne Electromagnetics (TEM)<br />

– differences in electric conductivity from water (freshwater-saline<br />

water contrast),<br />

– or from lithology differences: e.g. clay versus s<strong>and</strong><br />

• Gravity variations in time<br />

– <strong>Water</strong> content (Storage term)<br />

– GRACE mission data


Institut für<br />

UmweltingenieurwissenschaftenIfU


Aeromag data Kanye<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Lineaments from L<strong>and</strong>sat <strong>and</strong> aerial<br />

photography


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Implementation of dikes in model<br />

Model without dikes Model with three classes of dikes


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Thickness of Kalahari s<strong>and</strong> aquifer in the<br />

Okavango Delta


Magnetic depth (m)<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Calibration with ground truth<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

y = 0.9177x + 15.876<br />

R 2 = 0.9228<br />

0 50 100 150 200 250 300 350 400<br />

Borehole depth (m)<br />

Structural index<br />

N = 0.5


10 km<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Delineation of freshwater lenses in Okavango Delta<br />

with airborne TEM: Proxy for leakage factor


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Looking at the surface elevation<br />

• DTM for depth to groundwater (evaporation<br />

from groundwater)<br />

• DTM for drainage patterns<br />

• Temporal differences in DTM indicate<br />

settling caused by cone of depression<br />

• DTM from radar satellites, shuttle<br />

topography mission, LIDAR altimetry


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

DTM from radar satellite images


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

DTM from radar satellite images


LIDAR Scan<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Information related to areal recharge<br />

R= P−ET −ΔS−R • Determination of vegetation cover (NDVI)<br />

• Characterisation of l<strong>and</strong> use, l<strong>and</strong> use map (Optical range)<br />

• Soil map (Hyperspectral satellites)<br />

• Distribution of precipitation (weather radar, Meteosat)<br />

• Distribution of ET from energy balance


Precipitation<br />

sum of year 2000 from<br />

METEOSAT5 [mm/yr]<br />

Evapotranspiration<br />

over 24 hours<br />

ET 24 [mm d -1 ]<br />

from NOAA images<br />

via radiation<br />

energy balance<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU


23.5 24.5<br />

- 17.5<br />

- 18.5<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

10-year Average of Precipitation-ET (mm/yr)<br />

(from 97 images)


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Recharge rates from chloride method („ground truth“)<br />

Recharge by Chloride<br />

Method (mm/yr)<br />

60 chloride samples from boreholes<br />

Average chloride concentration: 21 mg/l<br />

⇒ Average recharge: 6.8 mm/yr<br />

25.00<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

0.00<br />

-5.00<br />

Chloride (mg/l)<br />

10000.0<br />

1000.0<br />

100.0<br />

10.0<br />

1.0<br />

y = 0.057x - 0.8448<br />

R 2 = 0.734<br />

0.1<br />

0 10 20 30 40 50 60<br />

Sample number<br />

-100 0 100 200 300 400<br />

Average Net Exchange (mm/yr)


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Recharge distribution from combination<br />

Area with nonnegligible<br />

surface runoff<br />

Only for area where<br />

surface runoff is neglible<br />

(mm/a)


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Conditioning of Stochastic Modelling<br />

Application to Kavimba Aquifer<br />

Data:<br />

• Transmissivities from pumping tests <strong>and</strong> variogram<br />

• Head observations<br />

• Digital terrain model<br />

• Recharge distribution from remote sensing plus its error<br />

from correlation analysis<br />

Two variants with 300 realizations each:<br />

• A: without using recharge distribution<br />

• B: with recharge distribution as conditioning data


Results:<br />

Application to Kavimba Aquifer<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Ensemble st<strong>and</strong>ard deviations of transmissivity, recharge <strong>and</strong> head<br />

Ensemble of realizations μ logT σ logT μ R σ R σ h<br />

A (without remote sensing<br />

information)<br />

B (with remote sensing<br />

information)<br />

-2.36 0.71 6.5 8.0 16.0<br />

-2.38 0.61 6.4 3.3 10.3<br />

Uncertainty reduction in input <strong>and</strong> output variables


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Information related to surface waters<br />

• Determination of water covered area<br />

• Seasonal <strong>and</strong> permanent swamps<br />

• Change in ponding as measure for recharge<br />

• <strong>Water</strong> surface elevation, elevation changes<br />

• Using radar satellite information or<br />

optical/infrared satellite information


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Observed water covered area<br />

NOAA AVHRR (optical, 5 b<strong>and</strong>s)<br />

- unsupervised classification<br />

9 June 2005<br />

Envisat ASAR (radar)<br />

- temporal variance <strong>and</strong> edge detection<br />

11 June 2005


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Information related to soil<br />

• Mapping of salinity with multispectral data<br />

• Mapping of soil type (hyperspectral data)<br />

• Passive microwave for soil moisture<br />

• Infrared at night for soil temperatures


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Mapping soil salinity with remote sensing<br />

Based on the spectrum of extremely saline pixels, a spectral match to<br />

that signature is defined :


GCP- conductivity (micrS/cm) j<br />

160000<br />

140000<br />

120000<br />

100000<br />

80000<br />

60000<br />

40000<br />

20000<br />

0<br />

Calibration with ground truth<br />

0 0.2 0.4 0.6 0.8 1<br />

Spectral match between GCP <strong>and</strong> Reference<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Non-irrigated<br />

areas<br />

Irrigated areas


The Yanqi Basin <strong>and</strong> its problems<br />

(due to doubling of population over the last 50 years)<br />

First Control<br />

Point Kaidu River<br />

Huang Shui River<br />

Qing Shui River<br />

Groundwater table rise due to irrigation<br />

Soil salinization<br />

Second<br />

Control Point<br />

Die-off of fish<br />

Kongque<br />

Drying up of „greenRiver corridor“<br />

Bostan<br />

Lake<br />

Decline of water level in lake<br />

Increase of salinity in lake


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Method used to gain system underst<strong>and</strong>ing<br />

Coupled modeling of groundwater <strong>and</strong> surface water resources<br />

First layer of a two-layer model


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

ET in Yanqi basin year 2000 (mm/a)


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Calibration of model using phreatic evaporation<br />

Model<br />

Using depthdependence<br />

from stable<br />

isotopes<br />

<strong>Remote</strong><br />

<strong>Sensing</strong><br />

Using ET,<br />

NDVI <strong>and</strong><br />

stable isotopes


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Usefulness of remote sensing data<br />

• New data source for regional hydrology <strong>and</strong> water<br />

resources <strong>management</strong> especially in dry regions<br />

• Allowing step from point process to area<br />

• Mostly indirect data which only unfold their<br />

usefulness in connection with modelling<br />

(conditioning data, data assimilation)<br />

• Indispensable in regions with weak infrastructure<br />

<strong>and</strong> low accessibility<br />

• Great potential for improving quality of our work<br />

in the arid <strong>and</strong> semiarid environments


Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

Problems with remote sensing data<br />

• Correlation to required information may be<br />

weak (noisy information)<br />

• Resolution problem<br />

• Availability of longer time series poor<br />

• Ground truth required <strong>and</strong> expensive<br />

• Clouds in optical <strong>and</strong> infrared window often<br />

crippling


Conclusions<br />

• The potential of remote sensing data in<br />

groundwater modelling is considerable<br />

Institut für<br />

UmweltingenieurwissenschaftenIfU<br />

• Data are indirectly related <strong>and</strong> therefore best used<br />

as conditioning data in a stochastic approach<br />

• Pattern information is more reliable than actual<br />

numbers<br />

• Ground truth is absolutely necessary<br />

• On the whole the new data sources have great<br />

potential to improve our work

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!