23.10.2013 Views

Fox H functions in fractional diffusion - FRActional CALculus ...

Fox H functions in fractional diffusion - FRActional CALculus ...

Fox H functions in fractional diffusion - FRActional CALculus ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F. Ma<strong>in</strong>ardi et al. / Journal of Computational and Applied Mathematics 178 (2005) 321–331 323<br />

The above <strong>in</strong>tegral representation of the H <strong>functions</strong>, by <strong>in</strong>volv<strong>in</strong>g products and ratios of Gamma<br />

<strong>functions</strong>, is known to be of Mell<strong>in</strong>–Barnes <strong>in</strong>tegral type. 1 A compact notation is usually adopted for<br />

(2.1):<br />

H m,n<br />

<br />

<br />

<br />

m,n (aj<br />

, j ) j=1,...,,p<br />

p,q (z) = Hp,q z <br />

.<br />

<br />

(2.5)<br />

(bj , j ) j=1,...,q<br />

Thus, the s<strong>in</strong>gular po<strong>in</strong>ts of the kernel H are the poles of the Gamma <strong>functions</strong> enter<strong>in</strong>g the expressions of<br />

A(s) and B(s), that we assume do not co<strong>in</strong>cide.Denot<strong>in</strong>g by P(A) and P(B), the sets of these poles, we<br />

write P(A) ∩ P(B) =∅. The conditions for the existence of the H-<strong>functions</strong> can be made by <strong>in</strong>spect<strong>in</strong>g<br />

the convergence of <strong>in</strong>tegral (2.1), which can depend on the selection of the contour L and on certa<strong>in</strong><br />

relations between the parameters {ai, i} (i = 1,...,p) and {bj , j } (j = 1,...,q).For the analysis of<br />

the general case we refer to the specialized treatises on H <strong>functions</strong>, e.g. [27,28,35] and, <strong>in</strong> particular to<br />

the paper by Braaksma [2], where an exhaustive discussion on the asymptotic expansions and analytical<br />

cont<strong>in</strong>uation of these <strong>functions</strong> is found; see also [12].<br />

In the follow<strong>in</strong>g we limit ourselves to recall the essential properties of the H <strong>functions</strong> preferr<strong>in</strong>g to later<br />

analyse <strong>in</strong> detail those <strong>functions</strong> related to <strong>fractional</strong> <strong>diffusion</strong>.As it will be shown later, this phenomenon<br />

depends on one real <strong>in</strong>dependent variable and three parameters; <strong>in</strong> this case we shall have z = x ∈ R and<br />

m2, n2, p 3, q 3.<br />

The contour L <strong>in</strong> (2.1) can be chosen as follows:<br />

(i) L = L−i∞,+i∞ chosen <strong>in</strong> a manner to go from −i∞ to +i∞ leav<strong>in</strong>g to the right all the poles of<br />

P(A), namely the poles sj,k =(bj +k)/j ; j =1, 2,...,m; k =0, 1,...of the <strong>functions</strong> enter<strong>in</strong>g A(s),<br />

and to left all the poles of P(B), namely the poles sj,l = (aj − 1 − l)/j ; j = 1, 2,...,n; l = 0, 1,...<br />

of the <strong>functions</strong> enter<strong>in</strong>g B(s).<br />

(ii) L = L+∞ is a loop beg<strong>in</strong>n<strong>in</strong>g and end<strong>in</strong>g at +∞ and encircl<strong>in</strong>g once <strong>in</strong> the negative direction all<br />

the poles of P(A), but none of the poles of P(B).<br />

(iii) L = L−∞ is a loop beg<strong>in</strong>n<strong>in</strong>g and end<strong>in</strong>g at −∞ and encircl<strong>in</strong>g once <strong>in</strong> the positive direction all<br />

the poles of P(B), but none of the poles of P(A).<br />

Braaksma has shown that, <strong>in</strong>dependently of the choice of L the Mell<strong>in</strong>–Barnes <strong>in</strong>tegral makes sense<br />

and def<strong>in</strong>es an analytic function of z <strong>in</strong> the follow<strong>in</strong>g two cases:<br />

q p<br />

> 0, 0 < |z| < ∞, where = j − j , (2.6)<br />

= 0, 0 < |z| < , where =<br />

(bj , j ) 1,q<br />

j=1<br />

p<br />

j=1<br />

−j<br />

j<br />

j=1<br />

q<br />

j=1<br />

j j . (2.7)<br />

On account of the follow<strong>in</strong>g useful and important formula for the H-function<br />

H m,n<br />

<br />

<br />

(aj<br />

, j ) 1,p<br />

p,q z <br />

= H<br />

<br />

n,m<br />

<br />

<br />

1 <br />

<br />

(1 − bj , j ) 1,q<br />

q,p<br />

z <br />

, (2.8)<br />

(1 − aj , j ) 1,p<br />

1 As a historical note, we po<strong>in</strong>t out that the names refer to the two authors, who <strong>in</strong> the first 1910s developed the theory of<br />

these <strong>in</strong>tegrals us<strong>in</strong>g them for a complete <strong>in</strong>tegration of the hypergeometric differential equation.However, these <strong>in</strong>tegrals were<br />

first used <strong>in</strong> 1888 by P<strong>in</strong>cherle, see e.g. [23].Recent treatises on Mell<strong>in</strong>–Barnes <strong>in</strong>tegrals are those <strong>in</strong> [25,30].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!