23.10.2013 Views

Fox H functions in fractional diffusion - FRActional CALculus ...

Fox H functions in fractional diffusion - FRActional CALculus ...

Fox H functions in fractional diffusion - FRActional CALculus ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

328 F. Ma<strong>in</strong>ardi et al. / Journal of Computational and Applied Mathematics 178 (2005) 321–331<br />

K <br />

<br />

, (x) =<br />

1 2,1<br />

H3,3 x<br />

x<br />

<br />

<br />

<br />

<br />

<br />

(1, 1 −<br />

)(1, )(1, 2 )<br />

(1, 1 −<br />

)(1, 1)(1, 2 )<br />

, > . (4.2b)<br />

When = the correspond<strong>in</strong>g H function is s<strong>in</strong>gular <strong>in</strong> z = x = 1. However, the s<strong>in</strong>gularity is removable<br />

because, surpris<strong>in</strong>gly, the correspond<strong>in</strong>g (reduced) Green function can be expressed (<strong>in</strong> explicit form) <strong>in</strong><br />

terms of a (nonnegative) elementary function, that we denote by N (x), as it is shown <strong>in</strong> [21].We refer<br />

to this case as to neutral-<strong>fractional</strong> <strong>diffusion</strong> and the correspond<strong>in</strong>g representation through H <strong>functions</strong><br />

is redundant.Explicitly we write, for x>0,<br />

Neutral <strong>diffusion</strong> :0< = < 2; m<strong>in</strong>{, 2 − },<br />

K , := N 1 x<br />

(x) =<br />

<br />

−1 s<strong>in</strong>[(/2)( − )]<br />

1 + 2x . (4.3)<br />

cos[(/2)( − )]+x2 As far as we know, this case of <strong>fractional</strong> <strong>diffusion</strong> seems not so well treated <strong>in</strong> the literature.We note that<br />

N (x) may be considered the <strong>fractional</strong> generalization (with skewness) of the well-known (symmetric)<br />

Cauchy density.<br />

For the other particular cases outl<strong>in</strong>ed <strong>in</strong> Section 3 we have to properly use properties (2.9)–(2.11) <strong>in</strong><br />

general expressions (4.2a)–(4.2b) <strong>in</strong> order to obta<strong>in</strong> the correspond<strong>in</strong>g representations <strong>in</strong> terms of simpler<br />

<strong>Fox</strong> H <strong>functions</strong>.<br />

Normal <strong>diffusion</strong> : = 2, = 1; = 0.<br />

The case of normal (or standard) <strong>diffusion</strong> is known to be characterized by the Gaussian probability<br />

density function.Indeed the reduced Green function reads<br />

<br />

K 0 1<br />

2,1 (x) := D(x) =<br />

2 √ exp(−x2 /4), x ∈ R, (4.4)<br />

so, for x>0, we have<br />

D(x) = 1 1<br />

2x 2i<br />

+i∞<br />

−i∞<br />

(1 − s)<br />

(1 − s/2) xs ds = 1<br />

<br />

1,0<br />

H1,1 x<br />

2<br />

<br />

<br />

(<br />

<br />

<br />

1 2 , 1 2 )<br />

<br />

. (4.5)<br />

(0, 1)<br />

Space-<strong>fractional</strong> <strong>diffusion</strong>:0< < 2, = 1;|| m<strong>in</strong>{, 2 − }.<br />

In this case the reduced Green function K ,1 (x) is known to be the -strictly stable Lévy density that<br />

(x).Then, for x>0, we have<br />

we denote by L <br />

+i∞<br />

K ,1 (x) := L 1 1<br />

(x) =<br />

x 2i −i∞<br />

(s/)(1 − s)<br />

([( − )/2]s)(1 −[(− )/2]s) xs ds (4.6)<br />

with 0 < < m<strong>in</strong>(, 1), Then, by dist<strong>in</strong>guish<strong>in</strong>g the two cases as <strong>in</strong> Eqs.(4.2), we obta<strong>in</strong>:<br />

(a) 0 < < 1;||,<br />

L <br />

1 1,1 1<br />

<br />

(1, 1)(<br />

(x) = H2,2 <br />

x <br />

− −<br />

2 , 2 )<br />

<br />

. (4.7a)<br />

(b) 1 < < 2;||2 − ,<br />

<br />

<br />

<br />

x <br />

<br />

L 1 1,1<br />

(x) = H2,2 <br />

( 1 , 1 )(−<br />

2<br />

, −<br />

2 )<br />

(1 − 1 , 1 <br />

(0, 1)(1 − −<br />

2<br />

− −<br />

)(1 − 2 , 2 )<br />

, −<br />

2 )<br />

<br />

. (4.7b)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!