23.10.2013 Views

Fox H functions in fractional diffusion - FRActional CALculus ...

Fox H functions in fractional diffusion - FRActional CALculus ...

Fox H functions in fractional diffusion - FRActional CALculus ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

326 F. Ma<strong>in</strong>ardi et al. / Journal of Computational and Applied Mathematics 178 (2005) 321–331<br />

For = 0 we have a symmetric operator with respect to x, that can be <strong>in</strong>terpreted as<br />

xD 0 =−<br />

<br />

− d2<br />

dx2 /2<br />

. (3.6)<br />

This can be formally deduced by writ<strong>in</strong>g −|| =−( 2 ) /2 . For 0 < < 2 and || m<strong>in</strong> {, 2 − }, the<br />

Riesz–Feller derivative can be shown to admit the <strong>in</strong>tegral representation <strong>in</strong> the x doma<strong>in</strong>,<br />

xD <br />

<br />

(1 + )<br />

∞ f(x + ) − f(x)<br />

f(x) = s<strong>in</strong> [( + )/2]<br />

<br />

0 1+<br />

d<br />

∞<br />

<br />

+ s<strong>in</strong>[( − )/2]<br />

d . (3.7)<br />

0<br />

f(x − ) − f(x)<br />

1+<br />

By denot<strong>in</strong>g the Laplace transform of a sufficiently well-behaved (generalized) function f(t), f(s) =<br />

L {f(t); s}= ∞<br />

0 e −st f(t) dt,R(s)>af , the Caputo time-<strong>fractional</strong> derivative of order (m−1 < m,<br />

m ∈ N) turns out to be def<strong>in</strong>ed through<br />

L{ tD ∗ f(t); s}=s m−1 <br />

f(s) −<br />

k=0<br />

s −1−k f (k) (0 + ), m − 1 < m. (3.8)<br />

This leads to def<strong>in</strong>e, see e.g. [7,31],<br />

tD ⎧<br />

⎪⎨<br />

1 t f<br />

∗ f(t) := (m − ) 0<br />

⎪⎩<br />

(m) () d<br />

,<br />

+1−m (t − )<br />

d<br />

m−1 <

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!