27.10.2013 Views

Flight-Testing of the FAA Onboard Inert Gas Generation System on ...

Flight-Testing of the FAA Onboard Inert Gas Generation System on ...

Flight-Testing of the FAA Onboard Inert Gas Generation System on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> flow (10%-20%) around <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger, which makes c<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> air<br />

temperature to <str<strong>on</strong>g>the</str<strong>on</strong>g> ASMs easier with <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger cooling air-modulating valve.<br />

The system did not have a flow mode c<strong>on</strong>troller. This required <str<strong>on</strong>g>the</str<strong>on</strong>g> operator to change from low-<br />

to high-flow mode manually. The low-flow mode was used for ground taxi, take<str<strong>on</strong>g>of</str<strong>on</strong>g>f, climb, and<br />

cruise phases <str<strong>on</strong>g>of</str<strong>on</strong>g> flight, while <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow mode was used for <str<strong>on</strong>g>the</str<strong>on</strong>g> descent phase <str<strong>on</strong>g>of</str<strong>on</strong>g> flight. For<br />

this test, if descent was halted for an extended period <str<strong>on</strong>g>of</str<strong>on</strong>g> time, <str<strong>on</strong>g>the</str<strong>on</strong>g> system was switched back to<br />

low-flow mode. One test used low-flow mode during <str<strong>on</strong>g>the</str<strong>on</strong>g> complete flight cycle. To set <str<strong>on</strong>g>the</str<strong>on</strong>g> flow<br />

c<strong>on</strong>trol needle valves to <str<strong>on</strong>g>the</str<strong>on</strong>g> proper setting, prior to flight test, <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed air system was charged<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft auxiliary power unit (APU). This bleed air pressure was used to run <str<strong>on</strong>g>the</str<strong>on</strong>g> system at<br />

sea level with <str<strong>on</strong>g>the</str<strong>on</strong>g> low-flow needle valve set to generate 5% oxygen NEA, while <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow<br />

needle valve was set to generate 11% oxygen NEA.<br />

4. ANALYSIS.<br />

Calculati<strong>on</strong>s performed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> test data determined <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed air c<strong>on</strong>sumed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system. Additi<strong>on</strong>ally, a simple inerting model was developed to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> in a tank volume, given a flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and performance schedule <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

4.1 CALCULATION OF BLEED AIR CONSUMPTION.<br />

To determine <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> bleed air <str<strong>on</strong>g>the</str<strong>on</strong>g> system was c<strong>on</strong>suming, <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> an ASM were<br />

examined. Intuitively, <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed airflow into <str<strong>on</strong>g>the</str<strong>on</strong>g> system is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NEA flow and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> permeate flow.<br />

Q&<br />

= Q&<br />

+<br />

Bleed<br />

Also, a balance <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in and out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM yields <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>.<br />

NEA<br />

Q&<br />

Perm<br />

& = &<br />

] ⋅ Q&<br />

( 0.<br />

21)<br />

QBleed<br />

[ O2<br />

] NEA ⋅ QNEA<br />

+ [ O2<br />

With: O ] = NEA Oxygen C<strong>on</strong>centrati<strong>on</strong><br />

[ 2<br />

[ O 2 ]<br />

NEA<br />

Perm<br />

Perm<br />

= OEA Oxygen C<strong>on</strong>centrati<strong>on</strong><br />

Combining equati<strong>on</strong>s 1 and 2 gives <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong> for bleed airflow.<br />

Perm<br />

([ O2<br />

] NEA [ O2<br />

] Perm )<br />

Q&<br />

−<br />

Bleed = Q&<br />

NEA ⋅<br />

(3)<br />

( 0.<br />

21−<br />

[ O ] )<br />

2<br />

Perm<br />

A more complete derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> is given in appendix D.<br />

10<br />

(1)<br />

(2)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!