27.10.2013 Views

Flight-Testing of the FAA Onboard Inert Gas Generation System on ...

Flight-Testing of the FAA Onboard Inert Gas Generation System on ...

Flight-Testing of the FAA Onboard Inert Gas Generation System on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> permeate venting, because high OEA venting backpressure was measured <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> twomembrane<br />

test. The result from this backpressure would be to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> ASMs ability to flow<br />

permeate, decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g> overall efficiency and total flow out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM. As <str<strong>on</strong>g>the</str<strong>on</strong>g> system is<br />

switched to high-flow mode in descent for both c<strong>on</strong>figurati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> NEA flow tends to be more<br />

representative <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> expected relati<strong>on</strong>ship. This is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> problem in<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM inlet pressure would be less permeate flow and, thus, less<br />

permeate backpressure. The problem is observed at cruise and higher altitudes, which is also <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

point at which permeate backpressure was <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest. This c<strong>on</strong>clusi<strong>on</strong> is also supported by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

measured permeate backpressure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two-membrane c<strong>on</strong>figurati<strong>on</strong>, which was about three<br />

times <str<strong>on</strong>g>the</str<strong>on</strong>g> backpressure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> single-membrane c<strong>on</strong>figurati<strong>on</strong>.<br />

Oxygen C<strong>on</strong>centrati<strong>on</strong> (%vol)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1 Membrane<br />

2 Membranes<br />

NEA Line O2 (%) NEA Line O2 (%)<br />

ASM Inlet Pressure (Psig) ASM Inlet Pressure (Psig)<br />

NEA Flow (SCFM) NEA Flow (SCFM)<br />

70 72 74 76 78 80 82 84 86 88 90<br />

Time (min)<br />

FIGURE 9. SYSTEM FLOW AND PURITY WITH ASM PRESSURE FOR BOTH<br />

MEMBRANE CONFIGURATIONS DURING DESCENT<br />

The relati<strong>on</strong>ship between ASM pressure and NEA flow shown in figures 8 and 9 are correlated<br />

in figure 10. Again, this correlati<strong>on</strong> is <strong>on</strong>ly valid for a similar flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile with bleed air<br />

schedule, as NEA flow is a str<strong>on</strong>g functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure altitude. This is why <str<strong>on</strong>g>the</str<strong>on</strong>g> cruise curves<br />

indicate a much lesser slope than <str<strong>on</strong>g>the</str<strong>on</strong>g> ascent and descent curves. The changing altitude causes<br />

vast changes in membrane permeability and a wider range in NEA flows, while <str<strong>on</strong>g>the</str<strong>on</strong>g> cruise<br />

porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flight exhibits no altitude change effects and, thus, gives a true correlati<strong>on</strong> between<br />

pressure and flow with <str<strong>on</strong>g>the</str<strong>on</strong>g> given low-flow fixed orifice at 39,000 feet. The ascent and descent<br />

porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> graph illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> large increase in normalized NEA flow from <str<strong>on</strong>g>the</str<strong>on</strong>g> system,<br />

given a relatively small change in ASM pressure, exhibiting a benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> using HFM technology<br />

to generate inert gas at altitude. Only selected data for each flight phase were plotted because<br />

widely varying throttle settings produce rapid changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> system causing uncorrelated data<br />

for brief periods due to delays in some instrumentati<strong>on</strong>.<br />

14<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Flow (scfm) / Pressure (Psig)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!