12.11.2013 Views

Effect of flow rate, molecular weight of (His) -tagged proteins, and ...

Effect of flow rate, molecular weight of (His) -tagged proteins, and ...

Effect of flow rate, molecular weight of (His) -tagged proteins, and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Innovations Forum: Performance <strong>of</strong> <strong>His</strong>Trap HP<br />

<strong>Effect</strong> <strong>of</strong> <strong>flow</strong> <strong>rate</strong>, <strong>molecular</strong> <strong>weight</strong> <strong>of</strong><br />

(<strong>His</strong>) 6 -<strong>tagged</strong> <strong>proteins</strong>, <strong>and</strong> expression<br />

system on the performance <strong>of</strong><br />

<strong>His</strong>Trap HP columns<br />

K. Öberg*, L. C. Andersson*, J. Lundqvist*, L. Anderson † , <strong>and</strong> H. Stålbr<strong>and</strong> †<br />

*Amersham Biosciences AB, Uppsala, Sweden<br />

† Department <strong>of</strong> Biochemistry, Lund University, Lund, Sweden<br />

(<strong>His</strong>) 6 -<strong>tagged</strong> <strong>proteins</strong> were used in studies to evaluate the purification performance<br />

<strong>of</strong> <strong>His</strong>Trap HP columns. (<strong>His</strong>) 6 -<strong>tagged</strong> maltose-binding protein (MBP-[<strong>His</strong>] 6 , M r ~43 000)<br />

expressed in E. coli was purified on <strong>His</strong>Trap HP 1 ml columns at <strong>flow</strong> <strong>rate</strong>s <strong>of</strong> 1, 2, or 4 ml/min.<br />

The yield <strong>of</strong> MBP-(<strong>His</strong>) 6 was lower at the higher <strong>flow</strong> <strong>rate</strong>s, but still satisfactory. Sample<br />

purity remained high <strong>and</strong> unaffected. A (<strong>His</strong>) 6 -<strong>tagged</strong> mannanase (M r ~100 000) <strong>and</strong><br />

a hydrolase (M r ~34 000), were expressed in E. coli <strong>and</strong> P. pastoris, respectively. The<br />

(<strong>His</strong>) 6 -mannanase was purified using a two-step protocol with a <strong>His</strong>Trap HP column<br />

followed by gel filtration on Superdex 200 10/300 GL; (<strong>His</strong>) 6 -hydrolase was purified<br />

using a one-step IMAC protocol on a <strong>His</strong>Trap HP column. High yield <strong>and</strong> purity <strong>of</strong> these<br />

(<strong>His</strong>) 6 -<strong>tagged</strong> enzymes were observed. The results <strong>of</strong> this study show that the performance<br />

<strong>of</strong> Ni Sepharose High Performance, the prepacked medium in <strong>His</strong>Trap HP columns, was<br />

not limited by <strong>flow</strong> <strong>rate</strong>, <strong>molecular</strong> <strong>weight</strong> <strong>of</strong> the three (<strong>His</strong>) 6 -<strong>tagged</strong> <strong>proteins</strong> used, or<br />

the two expression systems employed.<br />

Introduction<br />

The (<strong>His</strong>) 6 tag is the most used affinity tag due to its small size,<br />

strong metal ion binding, <strong>and</strong> ability to bind under denaturing,<br />

as well as native conditions (1, 2). Immobilized metal ion affinity<br />

chromatography (IMAC) with nickel-charged media is a welldocumented<br />

method for purifying histidine-<strong>tagged</strong> <strong>proteins</strong> ✧ (3).<br />

<strong>His</strong>Trap HP columns, prepacked with Ni Sepharose High Performance,<br />

are effective <strong>and</strong> convenient tools for this application. The medium,<br />

supplied precharged with Ni 2+ ions, strongly binds <strong>His</strong>-<strong>tagged</strong><br />

<strong>proteins</strong>, which are then easily eluted from the column.<br />

The aim <strong>of</strong> this study was to evaluate the performance <strong>of</strong> prepacked<br />

<strong>His</strong>Trap HP columns 1) at different <strong>flow</strong> <strong>rate</strong>s; 2) using (<strong>His</strong>) 6<br />

-<strong>tagged</strong><br />

<strong>proteins</strong> <strong>of</strong> diverse <strong>molecular</strong> <strong>weight</strong>; 3) in one-step or two-step<br />

purification <strong>of</strong> (<strong>His</strong>) 6<br />

-<strong>tagged</strong> <strong>proteins</strong> expressed in different hosts.<br />

High yield <strong>and</strong> purity at increased <strong>flow</strong> <strong>rate</strong><br />

C-terminally (<strong>His</strong>) 6<br />

-<strong>tagged</strong> maltose binding protein, MBP-(<strong>His</strong>) 6<br />

, was<br />

subcloned <strong>and</strong> expressed in E. coli. Prior to cell lysis, PMSF was added<br />

to a final concentration <strong>of</strong> 1 mM to prevent proteolysis. Sodium<br />

chloride <strong>and</strong> imidazole were added to the cell lysate to give final<br />

concentrations <strong>of</strong> 500 mM <strong>and</strong> 35 mM, respectively; the pH was<br />

adjusted to 7.4. The cell lysate was centrifuged <strong>and</strong> filtered prior to<br />

IMAC. Extracts with MBP-(<strong>His</strong>) 6 were loaded onto equilib<strong>rate</strong>d 1-ml<br />

<strong>His</strong>Trap HP columns at <strong>flow</strong> <strong>rate</strong>s <strong>of</strong> 1, 2, or 4 ml/min. All steps in the<br />

purification procedure i.e. equilibration, sample application, <strong>and</strong> wash<br />

were performed at these <strong>flow</strong> <strong>rate</strong>s. The imidazole concentration<br />

during equilibration, sample application, <strong>and</strong> wash was 35 mM, which<br />

reduced the amount <strong>of</strong> contaminating E. coli <strong>proteins</strong> <strong>and</strong> allowed<br />

selective binding <strong>of</strong> MBP-(<strong>His</strong>) 6<br />

. One-step elution was performed<br />

with buffer containing 500 mM imidazole <strong>and</strong> 1-ml fractions<br />

were collected. The concentration <strong>and</strong> yield <strong>of</strong> MBP-(<strong>His</strong>) 6<br />

were<br />

estimated by measurement at 280 nm. Sample purity was<br />

analyzed by SDS polyacrylamide gel electrophoresis using<br />

ExcelGel SDS Gradient 8–18.<br />

A decrease in yield <strong>of</strong> MBP-(<strong>His</strong>) 6 was observed in runs at the higher<br />

<strong>flow</strong> <strong>rate</strong>s <strong>of</strong> 2 <strong>and</strong> 4 ml/min (Fig 1). This can, in many cases, be<br />

regarded as an acceptable loss. The loss at high <strong>flow</strong> <strong>rate</strong>s might be<br />

minimized by washing at a lower concentration <strong>of</strong> imidazole than the<br />

35 mM used here. MBP-(<strong>His</strong>) 6<br />

purity was unaffected by changes in<br />

<strong>flow</strong> <strong>rate</strong> as indicated in Figure 2.<br />

✧ See licensing information on page 2.<br />

Life Science News 18, 2004 Amersham Biosciences 3


Innovations Forum: Performance <strong>of</strong> <strong>His</strong>Trap HP<br />

3000<br />

2000<br />

1000<br />

Fig 1. Purification <strong>of</strong> MBP-(<strong>His</strong>) 6<br />

with different <strong>flow</strong> <strong>rate</strong>s on <strong>His</strong>Trap HP columns. Yields<br />

for 1, 2, <strong>and</strong> 4 ml/min <strong>flow</strong> <strong>rate</strong>s were 11, 9, <strong>and</strong> 8 mg MBP-(<strong>His</strong>) 6<br />

, respectively.<br />

M r<br />

97 000<br />

66 000<br />

45 000<br />

30 000<br />

20 100<br />

14 400<br />

Column:<br />

<strong>His</strong>Trap HP 1 ml<br />

Sample: E. coli extract containing MBP-(<strong>His</strong>) 6<br />

Sample load: 8 ml<br />

Binding buffer: 20 mM sodium phosphate, 500 mM sodium chloride,<br />

35 mM imidazole, pH 7.4<br />

Elution buffer: 20 mM sodium phosphate, 500 mM sodium chloride,<br />

500 mM imidazole, pH 7.4<br />

Elution:<br />

One-step elution with elution buffer<br />

Flow <strong>rate</strong>s: 1, 2, or 4 ml/min<br />

System: ÄKTAexplorer 10<br />

A 280<br />

(mAU)<br />

0<br />

0.0<br />

LMW<br />

E. coli extract,<br />

dil. 1:20<br />

8 mg<br />

9 mg<br />

10.0 20.0 30.0 40.0<br />

1 ml/min<br />

48 min<br />

11 mg yield<br />

1 2 3<br />

2 ml/min<br />

24 min<br />

9 mg yield<br />

1 2 3<br />

1 ml/min<br />

2 ml/min<br />

4 ml/min<br />

11 mg<br />

4 ml/min<br />

12 min<br />

8 mg yield<br />

1 2 3<br />

Fig 2. Purity analysis <strong>of</strong> eluted MBP-(<strong>His</strong>) 6 as determined by SDS-PAGE on Multiphor II.<br />

The gel was Coomassie stained. Lanes 1–3 shown for each <strong>flow</strong> <strong>rate</strong>.<br />

Lane 1: <strong>flow</strong>through diluted 1:10 with sample buffer; lane 2: wash, undiluted;<br />

lane 3: eluted MBP-(<strong>His</strong>) 6 pool diluted 1:5.<br />

Two-step purification <strong>of</strong> a high <strong>molecular</strong> <strong>weight</strong><br />

(<strong>His</strong>) 6 -<strong>tagged</strong> protein expressed in E. coli<br />

A (<strong>His</strong>) 6<br />

-<strong>tagged</strong> mannanase (Man 26A from Cellulomonas fimi)<br />

was expressed in E. coli. Sample preparation was performed according<br />

to the procedures described for MBP-(<strong>His</strong>) 6<br />

. Initial purification was<br />

min<br />

performed using Ni Sepharose High Performance. The buffer used<br />

for equilibration, sample application, <strong>and</strong> wash contained 30 mM<br />

imidazole, which optimized recovery <strong>of</strong> this particular protein.<br />

Extract with (<strong>His</strong>) 6 -Man 26A was loaded onto an equilib<strong>rate</strong>d<br />

<strong>His</strong>Trap HP column at a <strong>flow</strong> <strong>rate</strong> <strong>of</strong> 1 ml/min. Elution was performed<br />

using a linear gradient <strong>of</strong> elution buffer <strong>and</strong> 1-ml fractions <strong>of</strong> eluted<br />

(<strong>His</strong>) 6 -Man 26A were collected, analyzed, <strong>and</strong> pooled. One ml <strong>of</strong> the<br />

concent<strong>rate</strong>d pool was loaded onto a Superdex 200 10/300 GL<br />

column for gel filtration. Sample purity was analyzed by SDS-PAGE<br />

as described previously.<br />

The results <strong>of</strong> this purification are shown in Figure 3. Enzymatically<br />

active, pure (<strong>His</strong>) 6<br />

-Man 26A was obtained using the two-step<br />

protocol described.<br />

One-step purification <strong>of</strong> a (<strong>His</strong>) 6<br />

-<strong>tagged</strong><br />

protein expressed in P. pastoris<br />

A (<strong>His</strong>) 6 -<strong>tagged</strong> hydrolase (putative hydrolase from Saccharomyces<br />

cerevisiae) was expressed in Pichia pastoris. The methods used<br />

for IMAC <strong>of</strong> the clarified cell lysate were as described for<br />

(<strong>His</strong>) 6 -mannanase except that 85 mM imidazole was used<br />

during equilibration, sample application, <strong>and</strong> wash. Sample<br />

purity was analyzed by SDS-PAGE as described previously.<br />

The one-step IMAC purification resulted in the recovery <strong>of</strong> pure<br />

(<strong>His</strong>) 6 -hydrolase (Figs 4–5).<br />

Conclusions<br />

The excellent binding properties <strong>of</strong> Ni Sepharose High Performance<br />

allow high <strong>flow</strong> <strong>rate</strong> purifications <strong>of</strong> MBP-(<strong>His</strong>) 6 with an acceptable<br />

loss <strong>of</strong> yield <strong>and</strong> unaffected purity. Moreover, effective purification <strong>of</strong><br />

(<strong>His</strong>) 6 -<strong>tagged</strong> <strong>proteins</strong> with different <strong>molecular</strong> <strong>weight</strong>s obtained from<br />

different expression systems was possible using <strong>His</strong>Trap HP columns.<br />

References<br />

1. Gaberc-Porekar, V. <strong>and</strong> Menart, V. Perspectives <strong>of</strong> immobilized-metal<br />

affinity chromatography. J. Biochem. Biophys. Methods 49, 335–360 (2001).<br />

2. Ueda, E. K. M. et al. Current <strong>and</strong> prospective applications <strong>of</strong> metal ion<br />

protein binding. J. Chromatogr A 988, 1–23 (2003).<br />

3. The Recombinant Protein H<strong>and</strong>book: Protein Amplification <strong>and</strong> Simple<br />

Purification, Amersham Biosciences, 18-1142-75 AB (2001).<br />

Ordering Information<br />

<strong>His</strong>Trap HP (5 × 1 ml) 17-5247-01<br />

<strong>His</strong>Trap HP (100 × 1 ml*) 17-5247-05<br />

<strong>His</strong>Trap HP (1 × 5 ml) 17-5248-01<br />

<strong>His</strong>Trap HP (5 × 5 ml) 17-5248-02<br />

<strong>His</strong>Trap HP (100 × 5 ml*) 17-5248-05<br />

<strong>His</strong>Trap HP Kit 17-5249-01<br />

(includes 3 × 1 ml columns plus binding <strong>and</strong> elution buffers)<br />

Ni Sepharose High Performance (25 ml) 17-5268-01<br />

Ni Sepharose High Performance (100 ml) 17-5268-02<br />

* Pack size available by special order.<br />

To shop online, go to www.amershambiosciences.com<br />

To obtain brochures on the products, please visit www.lsn-online.com/more-info.<br />

4<br />

Life Science News 18, 2004 Amersham Biosciences


Innovations Forum: Performance <strong>of</strong> <strong>His</strong>Trap HP<br />

IMAC conditions<br />

Column:<br />

<strong>His</strong>Trap HP 1 ml<br />

Sample:<br />

E. coli extract containing (<strong>His</strong>) 6<br />

-Man 26A<br />

Sample load: 10 ml<br />

Binding buffer: 20 mM sodium phosphate, 500 mM sodium<br />

chloride, 30 mM imidazole, pH 7.4<br />

Elution buffer: 20 mM sodium phosphate, 500 mM sodium<br />

chloride, 500 mM imidazole, pH 7.4<br />

Elution:<br />

25 ml linear gradient 30–300 mM imidazole<br />

Flow <strong>rate</strong>:<br />

1 ml/min<br />

System: ÄKTAexplorer 10<br />

Gel filtration conditions<br />

Column:<br />

Superdex 200 10/300 GL<br />

Buffer:<br />

20 mM sodium phosphate, 500 mM sodium<br />

chloride, pH 7.4<br />

Flow <strong>rate</strong>:<br />

0.5 ml/min<br />

System: ÄKTAexplorer 10<br />

A 280<br />

(mAU)<br />

A 280<br />

(mAU)<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

(B)<br />

0.0<br />

0.0 10.0 20.0 30.0 ml<br />

LMW<br />

E. coli extract<br />

IMAC <strong>flow</strong>through<br />

Early IMAC fraction<br />

IMAC eluted pool<br />

Gel filtration pool<br />

Fig 3. Two-step<br />

purification <strong>of</strong> (<strong>His</strong>) 6 -<br />

Man 26A expressed in<br />

E. coli. (A) First-step IMAC<br />

using <strong>His</strong>Trap HP. (B) The<br />

fractions between the<br />

black lines were pooled<br />

<strong>and</strong> further purified by gel<br />

filtration on Superdex 200<br />

10/300 GL. (C) Purity<br />

analysis <strong>and</strong> confirmation<br />

<strong>of</strong> the apparent <strong>molecular</strong><br />

<strong>weight</strong> <strong>of</strong> (<strong>His</strong>) 6 -Man 26A.<br />

The purified (<strong>His</strong>) 6 -Man<br />

26A is indicated by the<br />

arrow. Note: Previous<br />

results have indicated that<br />

the contaminants present<br />

after IMAC include various<br />

truncated, <strong>His</strong>-<strong>tagged</strong><br />

forms <strong>of</strong> the mannanase<br />

(data not shown).<br />

(A)<br />

400<br />

M r<br />

97 000<br />

300<br />

66 000<br />

45 000<br />

200<br />

30 000<br />

100<br />

20 100<br />

14 400<br />

0<br />

0.0 10.0 20.0 30.0 40.0 50.0 ml<br />

(C)<br />

A 280<br />

(mAU)<br />

2500<br />

2000<br />

1500<br />

P. pastoris extract<br />

Flowthrough<br />

Final pool<br />

LMW<br />

Fig 5. SDS-PAGE results <strong>of</strong><br />

the one-step purification<br />

<strong>of</strong> (<strong>His</strong>) 6<br />

-hydrolase. (<strong>His</strong>) 6<br />

-<br />

hydrolase in the extract is<br />

indicated by the arrow.<br />

1000<br />

500<br />

0<br />

0 20 40 60 80 100 ml<br />

M r<br />

97 000<br />

66 000<br />

45 000<br />

Fig 4. Purification <strong>of</strong> (<strong>His</strong>) 6<br />

-hydrolase expressed in P. pastoris on <strong>His</strong>Trap HP 1 ml.<br />

Running conditions were as shown in Figure 1 with the following exceptions: 50 ml <strong>of</strong><br />

extract was applied; the binding buffer <strong>and</strong> extract contained 85 mM imidazole; the linear<br />

gradient employed was 25 ml 85–300 mM imidazole; <strong>and</strong> the <strong>flow</strong> <strong>rate</strong> was 1 ml/min.<br />

30 000<br />

20 100<br />

14 400<br />

Life Science News 18, 2004 Amersham Biosciences 5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!