14.11.2013 Views

Sealing of fluid pathways in overpressure cells - Ged.rwth-aachen.de

Sealing of fluid pathways in overpressure cells - Ged.rwth-aachen.de

Sealing of fluid pathways in overpressure cells - Ged.rwth-aachen.de

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Int J Earth Sci (Geol Rundsch) (2005) 94: 1039–1055<br />

DOI 10.1007/s00531-005-0492-1<br />

ORIGINAL PAPER<br />

S<strong>of</strong>ie Nollet Æ Christoph Hilgers Æ Janos Urai<br />

<strong>Seal<strong>in</strong>g</strong> <strong>of</strong> <strong>fluid</strong> <strong>pathways</strong> <strong>in</strong> <strong>overpressure</strong> <strong>cells</strong>: a case study<br />

from the Buntsandste<strong>in</strong> <strong>in</strong> the Lower Saxony Bas<strong>in</strong> (NW Germany)<br />

Received: 20 October 2004 / Accepted: 18 March 2005 / Published onl<strong>in</strong>e: 30 June 2005<br />

Ó Spr<strong>in</strong>ger-Verlag 2005<br />

Abstract We studied ve<strong>in</strong>s <strong>in</strong> the Triassic Buntsandste<strong>in</strong><br />

<strong>of</strong> the Lower Saxony Bas<strong>in</strong> (NW Germany) with the aim<br />

<strong>of</strong> quantify<strong>in</strong>g the evolution <strong>of</strong> <strong>in</strong>-situ stress, <strong>fluid</strong>s and<br />

material transport. Different generations <strong>of</strong> ve<strong>in</strong>s are<br />

observed. The first generation formed <strong>in</strong> weakly consolidated<br />

rocks without a significant <strong>in</strong>crease <strong>in</strong> fracture<br />

permeability and was filled syntectonically with fibrous<br />

calcite and blocky to elongate-blocky quartz. The stable<br />

isotopic signature (d 18 O and d 13 C) <strong>in</strong>dicates that the<br />

calcite ve<strong>in</strong>s precipitated from connate water at temperatures<br />

<strong>of</strong> 55–122°C. The second ve<strong>in</strong> generation was<br />

syntectonically filled with blocky anhydrite, which grew<br />

<strong>in</strong> open fractures. Fluid <strong>in</strong>clusions <strong>in</strong>dicate that the<br />

anhydrite ve<strong>in</strong>s precipitated at a m<strong>in</strong>imum temperature<br />

<strong>of</strong> 150°C from hypersal<strong>in</strong>e br<strong>in</strong>es. Based on d 34 S measurements,<br />

the source <strong>of</strong> the sulphate was found <strong>in</strong> the<br />

un<strong>de</strong>rly<strong>in</strong>g Zechste<strong>in</strong> evaporites. The macro- and microstructures<br />

<strong>in</strong>dicate that all ve<strong>in</strong>s were formed dur<strong>in</strong>g<br />

subsi<strong>de</strong>nce and that the anhydrite ve<strong>in</strong>s were formed<br />

un<strong>de</strong>r conditions <strong>of</strong> <strong>overpressure</strong>, generated by <strong>in</strong>flation<br />

rather than non-equilibrium compaction. The large<br />

amount <strong>of</strong> <strong>fluid</strong>s which are formed by the <strong>de</strong>hydrat<strong>in</strong>g<br />

gypsum <strong>in</strong> the un<strong>de</strong>rly<strong>in</strong>g Zechste<strong>in</strong> and are released <strong>in</strong>to<br />

the Buntsandste<strong>in</strong> dur<strong>in</strong>g progressive burial form a likely<br />

source <strong>of</strong> <strong>overpressure</strong>s and the anhydrite form<strong>in</strong>g <strong>fluid</strong>s.<br />

Keywords Ve<strong>in</strong>s Æ Lower Saxony Bas<strong>in</strong> Æ Overpressure<br />

Introduction<br />

The role <strong>of</strong> <strong>fluid</strong>s dur<strong>in</strong>g the evolution <strong>of</strong> sedimentary<br />

bas<strong>in</strong>s is partly recor<strong>de</strong>d by cements <strong>in</strong> the rock matrix<br />

and ve<strong>in</strong>s. Dur<strong>in</strong>g subsi<strong>de</strong>nce, porosity is reduced by<br />

S. Nollet (&) Æ C. Hilgers Æ J. Urai<br />

Geologie-Endogene Dynamik, RWTH Aachen,<br />

Lochnerstr. 4-20, 52056 Aachen, Germany<br />

E-mail: s.nollet@ged.<strong>rwth</strong>-<strong>aachen</strong>.<strong>de</strong><br />

Tel.: +49-241-8095416<br />

Fax: +49-241-8092358<br />

compaction. Connate and diagenetic/metamorphic <strong>fluid</strong>s<br />

are released by the <strong>de</strong>water<strong>in</strong>g <strong>of</strong> m<strong>in</strong>erals—for<br />

example the smectite–illite transition (Bruce 1984;<br />

Bjørlykke et al. 1989; Bek<strong>in</strong>s et al. 1994) or the <strong>de</strong>hydration<br />

<strong>of</strong> gypsum (Hardie 1967; Shearman et al. 1972).<br />

Additional <strong>fluid</strong>s can be released by the maturation <strong>of</strong><br />

organic components produc<strong>in</strong>g hydrocarbons (Bre<strong>de</strong>hoeft<br />

et al. 1994; Law and Spencer 1998). Besi<strong>de</strong>s these<br />

<strong>in</strong>tr<strong>in</strong>sic processes, bas<strong>in</strong> scale advective <strong>fluid</strong> flow <strong>of</strong><br />

meteoric waters is common, usually along fractures<br />

(Gross et al. 1992, Mo¨ ller et al. 1997). In a sedimentary<br />

bas<strong>in</strong>, a number <strong>of</strong> processes may produce <strong>de</strong>viations<br />

from hydrostatic pore pressure and thus drive <strong>fluid</strong> flow<br />

along a hydraulic gradient, for example topography<br />

(gravity-driven flow), compaction, thermal gradients<br />

(e.g. around salt domes due to the higher thermal conductivity<br />

<strong>of</strong> halite), or tectonic stresses (dilatancy and<br />

tectonic pump<strong>in</strong>g).<br />

Fluid <strong>overpressure</strong>s may be generated <strong>in</strong> the presence<br />

<strong>of</strong> a seal (such as clays and evaporites), the processes<br />

be<strong>in</strong>g either un<strong>de</strong>rcompaction (if the rock cannot dra<strong>in</strong><br />

fast enough dur<strong>in</strong>g subsi<strong>de</strong>nce), or <strong>in</strong>flation (if <strong>fluid</strong><br />

pressure rises after compaction by the <strong>in</strong>troduction <strong>of</strong><br />

additional pore <strong>fluid</strong>; Law and Spencer 1998; Townend<br />

and Zoback 2000). Extension fractures may form un<strong>de</strong>r<br />

many different conditions, <strong>de</strong>pend<strong>in</strong>g on the ratio <strong>of</strong> the<br />

rock’s compressive strength and the effective stress<br />

(Ingram and Urai 1999). Extension fractur<strong>in</strong>g may occur<br />

un<strong>de</strong>r conditions <strong>of</strong> overpressur<strong>in</strong>g when <strong>fluid</strong> pressures<br />

are as low as 0.6 times the total vertical stress (Ingebritsen<br />

and Sanford 1998, p 104).<br />

All <strong>of</strong> these processes could be relevant to the Triassic<br />

Ma<strong>in</strong> Buntsandste<strong>in</strong> <strong>in</strong> the Lower Saxony Bas<strong>in</strong>, which<br />

is characterized by Permian to Jurassic rift<strong>in</strong>g and<br />

Cretaceous <strong>in</strong>version, accompanied by salt tectonics<br />

(Ziegler 1990; Br<strong>in</strong>k et al. 1992; Scheck et al. 2003)<br />

(Fig. 1).<br />

Fluid activity may be recor<strong>de</strong>d <strong>in</strong> a rock when<br />

changes <strong>in</strong> parameters like temperature, pressure or <strong>fluid</strong><br />

chemistry cause supersaturation and the precipitation <strong>of</strong><br />

solute as cements or ve<strong>in</strong>s. Ve<strong>in</strong> microstructures may


1040<br />

Fig. 1 Overview map <strong>of</strong> the<br />

central and western part <strong>of</strong> the<br />

southern Permian Bas<strong>in</strong> with<br />

ma<strong>in</strong> structures (LBM London<br />

Brabant Massif, RM Rhenish<br />

Massif, LSB Lower Saxony<br />

Bas<strong>in</strong>, CG Central Graben, PB<br />

Pompeckj Block and RH<br />

R<strong>in</strong>gkøb<strong>in</strong>g-Fyn High). Inset<br />

shows an enlarged map <strong>of</strong> the<br />

LSB with the location <strong>of</strong> the<br />

four sampled boreholes and the<br />

ma<strong>in</strong> structural elements<br />

(normal faults, reverse faults<br />

and salt domes) (after Ziegler<br />

1990; Baldschuhn et al. 2001)<br />

UK<br />

NL<br />

London Amsterdam<br />

B<br />

CG RH<br />

LSB<br />

LBM RM<br />

D<br />

Borehole 1<br />

Ems<br />

Hamburg<br />

Hannover<br />

Borehole 3<br />

Osnabrück<br />

PB<br />

LSB<br />

Weser<br />

Weser<br />

Borehole 4<br />

Le<strong>in</strong>e<br />

Hannover<br />

Borehole 2<br />

N<br />

53°<br />

52°<br />

Legend:<br />

7° 8°<br />

9° 10°<br />

normal fault salt structure<br />

reverse fault<br />

25 km<br />

vary wi<strong>de</strong>ly with crystal habits rang<strong>in</strong>g from <strong>de</strong>ndritic,<br />

fibrous, elongate-blocky to blocky crystals, <strong>de</strong>pend<strong>in</strong>g<br />

on the boundary conditions <strong>of</strong> crystal growth (Ramsay<br />

and Huber 1983; Sunagawa 1984; Bons and Jessell 1997;<br />

Hilgers et al. 2001).<br />

Syntectonic ve<strong>in</strong> microstructures can be divi<strong>de</strong>d <strong>in</strong>to<br />

antitaxial, syntaxial, stretched (or ataxial crystals) and<br />

blocky ve<strong>in</strong>s. Antitaxial ve<strong>in</strong>s are <strong>of</strong>ten fibrous and grow<br />

from the ve<strong>in</strong> centre towards both si<strong>de</strong>s <strong>of</strong> the wall.<br />

Fibres are optically cont<strong>in</strong>uous even when they are<br />

curved and these fibres may sometimes be used to <strong>in</strong>fer<br />

the fracture’s open<strong>in</strong>g k<strong>in</strong>ematics (Ramsay and Huber<br />

1983; Uraietal.1991; Hilgers et al. 2001). Syntaxial<br />

ve<strong>in</strong>s are overgrowths <strong>of</strong> wall rock material, grow<strong>in</strong>g<br />

from the walls towards the centre <strong>of</strong> the ve<strong>in</strong> (Durney<br />

and Ramsay 1973). Their microstructure is usually<br />

elongate-blocky rather than truly fibrous (Bons 2000).<br />

Stretched ve<strong>in</strong>s may conta<strong>in</strong> fibrous crystals and connect<br />

fractured wall rock gra<strong>in</strong>s. Although they are assumed<br />

to have formed by <strong>de</strong>localized fractur<strong>in</strong>g (Passchier and<br />

Trouw 1996, p 135), at least some ve<strong>in</strong>s show clear evi<strong>de</strong>nce<br />

for accretion at the ve<strong>in</strong>-wall <strong>in</strong>terface (Hilgers<br />

and Urai 2002). From the ve<strong>in</strong> microstructure, the<br />

dimensions <strong>of</strong> the <strong>fluid</strong> <strong>pathways</strong> can be estimated. For<br />

example, euhedral crystals grew <strong>in</strong> open fractures or<br />

voids, while fibrous ve<strong>in</strong>s, even when they are centimetre-wi<strong>de</strong>,<br />

can only be formed when the <strong>in</strong>cremental crack<br />

open<strong>in</strong>gs are less than about 10 lm (Hilgers et al. 2001).<br />

Thus, microstructures conta<strong>in</strong> significant <strong>in</strong>formation<br />

on the boundary conditions dur<strong>in</strong>g ve<strong>in</strong> emplacement.<br />

Precipitation from <strong>fluid</strong>s as <strong>in</strong>tergranular cements <strong>in</strong><br />

the Triassic sandstones <strong>in</strong> the Central European Bas<strong>in</strong><br />

was studied by a number <strong>of</strong> researchers (Laier and<br />

Nielsen 1989; Rieken and Gaupp 1991; Purvis and<br />

Okkerman 1996; Weibel 1998, Putnis and Mauthe 2001;<br />

Weibel and Friis 2004). Laier and Nielsen (1989) showed<br />

that the Bunter Sandstone formation <strong>in</strong> Denmark,<br />

correspond<strong>in</strong>g to the Buntsandste<strong>in</strong> <strong>in</strong> Germany, is<br />

cemented with halite, which is ma<strong>in</strong>ly present <strong>in</strong> the<br />

sandstone layers. They suggested that the cement was<br />

formed very late <strong>in</strong> the diagenetic history and expla<strong>in</strong> the<br />

halite cementation by downward micro-filtration <strong>of</strong><br />

connate <strong>fluid</strong>s. Halite cementation is located above lowpermeable<br />

layers <strong>of</strong> shale, which these authors <strong>in</strong>terpreted<br />

as semi-permeable membranes.<br />

Purvis and Okkerman (1996) observed that the reservoir<br />

properties <strong>in</strong> the Ma<strong>in</strong> Buntsandste<strong>in</strong> (<strong>of</strong>fshore<br />

the Netherlands) are reduced by cementation with<br />

dolomite, anhydrite and halite. Sulphur isotopes <strong>in</strong>dicate<br />

that the source for anhydrite and halite was the un<strong>de</strong>rly<strong>in</strong>g<br />

Zechste<strong>in</strong>. In North-West Germany, halite<br />

cementation is also observed <strong>in</strong> the Soll<strong>in</strong>g Formation<br />

with<strong>in</strong> the Buntsandste<strong>in</strong> (Putnis and Mauthe 2001).<br />

Rieken and Gaupp (1991) showed that <strong>in</strong> the Tho¨ nse<br />

gasfield area, dolomite, anhydrite and quartz precipitated<br />

<strong>in</strong> ve<strong>in</strong>s <strong>in</strong> the Buntsandste<strong>in</strong> at temperatures <strong>of</strong><br />

140–230°C. Based on vitr<strong>in</strong>ite reflectance data, they<br />

suggested that the ve<strong>in</strong>s were formed dur<strong>in</strong>g short episo<strong>de</strong>s<br />

<strong>of</strong> large-scale vertical <strong>fluid</strong> flow dur<strong>in</strong>g the Upper<br />

Cretaceous (Rieken and Gaupp 1991).<br />

In this study, we focus on sealed fractures <strong>in</strong> the Ma<strong>in</strong><br />

Buntsandste<strong>in</strong> <strong>in</strong> the Lower Saxony Bas<strong>in</strong> (LSB). The<br />

aim is to unravel the complex <strong>fluid</strong> history, <strong>in</strong> particular<br />

the <strong>fluid</strong> source, transport mechanisms and the evolution<br />

<strong>of</strong> <strong>in</strong>-situ stress. This has important consequences for the<br />

total flow rate and the bulk volume <strong>of</strong> <strong>fluid</strong> flow<strong>in</strong>g <strong>in</strong> a<br />

sedimentary bas<strong>in</strong>. We use stable isotopes and microthermometry<br />

to constra<strong>in</strong> p–T conditions and tim<strong>in</strong>g<br />

<strong>of</strong> ve<strong>in</strong> formation, and we will <strong>de</strong>duce the transport<br />

mechanism <strong>of</strong> anhydrite and the structural control<br />

dur<strong>in</strong>g ve<strong>in</strong> emplacement.<br />

Geological sett<strong>in</strong>g<br />

The LSB is part <strong>of</strong> the E–W trend<strong>in</strong>g southern Permian<br />

bas<strong>in</strong>, bor<strong>de</strong>red <strong>in</strong> the north by the R<strong>in</strong>gkøb<strong>in</strong>g–Fynn<br />

High (Scheck and Bayer 1999; Kossow and Krawczyk


1041<br />

2002) (Fig. 1). It was filled with Rotliegend clastic sediments<br />

and cyclic <strong>de</strong>posits <strong>of</strong> Zechste<strong>in</strong> evaporites (carbonates,<br />

sulphates and halite). Rotliegend sandstones<br />

and Zechste<strong>in</strong> carbonates are important reservoir rocks,<br />

with the Zechste<strong>in</strong> evaporites act<strong>in</strong>g as a regional seal<br />

(Ziegler 1990). Dur<strong>in</strong>g the Triassic, NNE–SSW oriented<br />

rift<strong>in</strong>g took place and cont<strong>in</strong>ental, brackish-mar<strong>in</strong>e red<br />

beds, shallow mar<strong>in</strong>e carbonates, sulphates and halite<br />

were <strong>de</strong>posited <strong>in</strong> an arid to semi-arid climate<br />

(Michelsen and Clausen 2002; Szurlies et al. 2003). The<br />

Lower Triassic Buntsandste<strong>in</strong> <strong>in</strong> northern Germany<br />

consists <strong>of</strong> three units (Fig. 2): (1) shaly sediments <strong>in</strong> the<br />

Lower Buntsandste<strong>in</strong>; (2) four <strong>de</strong>positional sub-cycles <strong>in</strong><br />

the Middle Buntsandste<strong>in</strong> that start with a regressive<br />

sand package formed by brai<strong>de</strong>d streams and sheet<br />

floods, and close with transgressive shales, <strong>de</strong>posited<br />

un<strong>de</strong>r ephemeral playa lake conditions and (3) mar<strong>in</strong>e<br />

shales, sulphate and halite series <strong>in</strong> the Upper Buntsandste<strong>in</strong><br />

(Ro¨ t) (Herrmann et al. 1968; Ziegler 1990;<br />

Kovalevych et al. 2002; Michelsen and Clausen 2002).<br />

Dur<strong>in</strong>g the time <strong>of</strong> rapid subsi<strong>de</strong>nce <strong>in</strong> the Late<br />

Jurassic, WNW–ESE oriented normal faults were<br />

formed, for example <strong>in</strong> the Glu¨ ckstadt Graben (Br<strong>in</strong>k<br />

et al. 1992; Scheck et al. 2003). In the LSB, <strong>in</strong>version<br />

started <strong>in</strong> the Turonian and peaked dur<strong>in</strong>g the Santonian<br />

and Campanian. Total maximum <strong>in</strong>version uplift is<br />

estimated at 2 km to locally even 8 km, caus<strong>in</strong>g significant<br />

erosion. The <strong>in</strong>version created thrusts along the<br />

bas<strong>in</strong> marg<strong>in</strong>s and flower structures (<strong>de</strong> Jager 2003;<br />

Kockel 2003). In the southern part <strong>of</strong> the LSB, rocks<br />

were subjected to higher burial and stronger <strong>in</strong>version,<br />

then <strong>in</strong> the northern part (Petmecky et al. 1999).<br />

Abnormally high maturities are observed at the time <strong>of</strong><br />

<strong>in</strong>version <strong>in</strong> the Bramsche area (western part <strong>of</strong> LSB),<br />

which are expla<strong>in</strong>ed by some authors by abnormally<br />

high heat flow due to magmatic <strong>in</strong>trusions, while others<br />

suggest that tectonic events caused <strong>de</strong>ep burial and the<br />

high temperatures (Br<strong>in</strong>k et al. 1992; Petmecky et al.<br />

1999).<br />

Initial (passive) diapirism <strong>of</strong> Zechste<strong>in</strong> salt was <strong>in</strong>itiated<br />

<strong>in</strong> the Late Triassic (Trusheim 1957; Br<strong>in</strong>k 1984;<br />

Br<strong>in</strong>k et al. 1992; Baldschuhn et al. 1998; Bayer et al.<br />

1999; Scheck et al. 2003). In the Upper Jurassic, salt<br />

mobilization cont<strong>in</strong>ued and broke through the weakest<br />

units <strong>of</strong> the Mesozoic cover (Jaritz 1980). From the<br />

Early Cretaceous until Early Cenozoic, salt diapirism<br />

persisted as <strong>in</strong>dicated by salt-rim syncl<strong>in</strong>es (Scheck et al.<br />

2003; Mohr et al. this volume).<br />

In this study, the Middle Buntsandste<strong>in</strong> was sampled<br />

<strong>in</strong> four boreholes <strong>in</strong> the LSB (Fig. 1), because this<br />

formation was affected by the structural and <strong>fluid</strong> history<br />

start<strong>in</strong>g from early salt movement to bas<strong>in</strong> <strong>in</strong>version.<br />

The four boreholes are located <strong>in</strong> different<br />

tectonic sett<strong>in</strong>gs (Fig. 3). Borehole 1 is located <strong>in</strong> an<br />

<strong>in</strong>version structure where faults have been reactivated<br />

dur<strong>in</strong>g the <strong>in</strong>version <strong>in</strong> the Late Cretaceous (Kockel<br />

2003). Borehole 2 is located <strong>in</strong> an anticl<strong>in</strong>al structure,<br />

related to salt dom<strong>in</strong>g (Rieken and Gaupp 1991). The<br />

structure <strong>of</strong> borehole 3 <strong>in</strong> the southern part <strong>of</strong> LSB is<br />

also located <strong>in</strong> an <strong>in</strong>version structure where Zechste<strong>in</strong><br />

salt <strong>in</strong>tru<strong>de</strong>d <strong>in</strong>to the overly<strong>in</strong>g Triassic sediments<br />

along faults (Baldschuhn et al. 2001). Borehole 4 is<br />

Fig. 2 Stratigraphic column <strong>of</strong><br />

the Middle Triassic (anh<br />

anhydrite, h halite) (after<br />

Borchert and Muir 1964;<br />

Baldschuhn et al. 2001) and<br />

table show<strong>in</strong>g the<br />

characteristics <strong>of</strong> the observed<br />

ve<strong>in</strong>s for each formation <strong>in</strong> the<br />

Middle Buntsandste<strong>in</strong> (cc<br />

calcite, anh anhydrite, h halite, d<br />

dolomite, qtz quartz)


1042<br />

Fig. 3 Simplified cross-sections<br />

<strong>of</strong> the sampled boreholes (after<br />

Baldschuhn et al. 2001).<br />

aBorehole 1, b Borehole 2,<br />

c Borehole 3 and d Borehole 4<br />

located above a salt pillow and at 4 km from a salt<br />

dome.<br />

Methods<br />

Standard th<strong>in</strong> sections (20–30 lm) were used for<br />

microstructural analyses and cathodolum<strong>in</strong>escence.<br />

Cathodolum<strong>in</strong>escence was carried out on a Technosyn<br />

Cold Cathodo Lum<strong>in</strong>escence Mo<strong>de</strong>l 8200 MkI un<strong>de</strong>r<br />

8.5–10.5 kV and 260–350 mA. Double polished, 150-<br />

lm-thick sections were prepared for <strong>fluid</strong> <strong>in</strong>clusion<br />

analyses <strong>in</strong> anhydrite, accord<strong>in</strong>g to the method <strong>de</strong>scribed<br />

<strong>in</strong> Muchez et al. (1994). Microthermometry was carried<br />

out on a L<strong>in</strong>kham stage (K.U.Leuven, Belgium), which<br />

was calibrated at 56.6, 21.2, 0.0 and 374.1°C with<br />

synthetic Syn Fl<strong>in</strong>c <strong>in</strong>clusions. Homogenization temperatures<br />

<strong>of</strong> <strong>in</strong>clusions were measured before freez<strong>in</strong>g.<br />

Freez<strong>in</strong>g may cause a volume <strong>in</strong>crease related to the<br />

liquid water–ice transition, which <strong>in</strong>duces <strong>de</strong>formation<br />

<strong>of</strong> the crystal and a volume change <strong>in</strong> the <strong>fluid</strong> <strong>in</strong>clusions.<br />

This volume change results <strong>in</strong> <strong>in</strong>correct homogenization<br />

temperatures (Reynolds and Goldste<strong>in</strong> 1990).<br />

For d 18 O V-PDB /d 13 C V-PDB measurements, carbonate<br />

pow<strong>de</strong>rs reacted with 100% phosphoric acid at 75°C<br />

us<strong>in</strong>g a Kiel III onl<strong>in</strong>e carbonate preparation l<strong>in</strong>e connected<br />

to a ThermoF<strong>in</strong>nigan 252 mass spectrometer<br />

(Institut fu¨ r Geologie und M<strong>in</strong>eralogie, Universität Erlangen-Nu¨<br />

rnberg, Germany). All values are reported <strong>in</strong><br />

per million relative to V-PDB by assign<strong>in</strong>g a d 18 O value<br />

<strong>of</strong> 2.20& and a d 13 C value <strong>of</strong> +1.95& to NBS19.<br />

Reproducibility was checked by replicate analysis <strong>of</strong><br />

laboratory standards and is better than ± 0.03 for d 13 C<br />

and ± 0.06 for d 18 O. Sulphur isotopes were measured <strong>in</strong><br />

an EA-ConfloII-F<strong>in</strong>nigan Delta+ mass spectrometer<br />

after mix<strong>in</strong>g <strong>of</strong> the SO 2 gas with V 2 O 5 at 1,050°C<br />

(Department <strong>of</strong> Geology-Westfa¨ lische Wilhelms-Universita¨<br />

tMu¨ nster, Germany). Results are reported <strong>in</strong> the<br />

standard <strong>de</strong>lta notation (d 34 S) as per mil difference relative<br />

to Canyon Diablo Troilite (CDT). Analytical<br />

reproducibility was generally better than ±0.4&.<br />

Macroscopic observations<br />

In boreholes 1, 3 and 4, the Middle Buntsandste<strong>in</strong> is<br />

located at <strong>de</strong>pths <strong>of</strong> around 2,500 m whereas <strong>in</strong> borehole<br />

2, the Middle Buntsandste<strong>in</strong> is at 3,400 m. All the<br />

boreholes are vertical and although they are located <strong>in</strong><br />

different tectonic sett<strong>in</strong>gs and up to 200 km apart, the<br />

ve<strong>in</strong> types and the ve<strong>in</strong>-fill<strong>in</strong>g m<strong>in</strong>erals are very similar <strong>in</strong><br />

the cores studied (Fig. 2).<br />

In all boreholes, the Soll<strong>in</strong>g Formation is composed<br />

<strong>of</strong> red–brown coloured, f<strong>in</strong>e-gra<strong>in</strong>ed silt- to claystone,<br />

cemented with calcite and dolomite. Green reduction<br />

spots with diameters <strong>of</strong> 1 cm are very <strong>of</strong>ten observed.<br />

Ve<strong>in</strong>s are frequent <strong>in</strong> the Soll<strong>in</strong>g Formation, with<br />

approximately one ve<strong>in</strong> <strong>in</strong> every 2 m core. They are filled<br />

ma<strong>in</strong>ly with anhydrite and calcite and rarely with only<br />

one <strong>of</strong> the two m<strong>in</strong>erals. Occasionally, ve<strong>in</strong>s with calcite<br />

and halite were found <strong>in</strong> borehole 2. Ve<strong>in</strong>s are oriented<br />

70° to 90° to bedd<strong>in</strong>g. The thickness <strong>of</strong> the ve<strong>in</strong>s ranges<br />

from 0.5 cm up to 3 cm. Ve<strong>in</strong>s are longer than the<br />

section exposed by the cores, and <strong>in</strong> one case where the<br />

ve<strong>in</strong> is parallel to the core axis, a ve<strong>in</strong> length <strong>of</strong> 3 m<br />

was observed. The fracture morphology <strong>of</strong> the calciteanhydrite<br />

and anhydrite ve<strong>in</strong>s is very regular (Fig. 4a).<br />

When the ve<strong>in</strong> consists <strong>of</strong> calcite and anhydrite, the<br />

calcite is located at the ve<strong>in</strong> walls whereas the anhydrite<br />

is located <strong>in</strong> the centre <strong>of</strong> the ve<strong>in</strong>. In the ve<strong>in</strong>s where<br />

halite and calcite are observed, the calcite is also located<br />

at the ve<strong>in</strong> wall and the halite <strong>in</strong> the centre. The ve<strong>in</strong>s<br />

with only calcite fill<strong>in</strong>g are th<strong>in</strong> (0.5 cm), have a smooth<br />

ve<strong>in</strong>-wall <strong>in</strong>terface <strong>in</strong> claystone and a more irregular<br />

morphology <strong>in</strong> coarser-gra<strong>in</strong>ed host rock. When cross<strong>in</strong>g<br />

a layer boundary <strong>in</strong>to coarser-gra<strong>in</strong>ed host rock,<br />

they split <strong>in</strong>to different mm-th<strong>in</strong> branches (Fig. 4b).<br />

The Har<strong>de</strong>gsen Formation is only present <strong>in</strong> borehole<br />

1 and consists <strong>of</strong> coarse-gra<strong>in</strong>ed, grey-green coloured<br />

sandstone with alternations <strong>of</strong> red–brown<br />

coloured clay-rich layers. It is <strong>of</strong>ten cemented with<br />

quartz and pyrite concretions are wi<strong>de</strong>ly present <strong>in</strong> this<br />

formation. Ve<strong>in</strong>s are only occasionally observed


1043<br />

Fig. 4 Rock samples show<strong>in</strong>g<br />

the different ve<strong>in</strong> generations.<br />

a Blocky calcite-anhydrite ve<strong>in</strong><br />

with very regular wall rock<br />

<strong>in</strong>terface. Calcite (cc) is located<br />

at the ve<strong>in</strong> wall and anhydrite<br />

(anh) <strong>in</strong> the ve<strong>in</strong> centre (sample<br />

B3-14). b Fibrous calcite ve<strong>in</strong><br />

with smooth wall-rock <strong>in</strong>terface<br />

<strong>in</strong> the claystone and irregular<br />

ve<strong>in</strong> branches <strong>in</strong> the coarsegra<strong>in</strong>ed<br />

sandstone (sample<br />

B2-08). S 0 =bedd<strong>in</strong>g plane<br />

(approximately 1 ve<strong>in</strong> <strong>in</strong> every 10 m core), have<br />

thicknesses smaller than 1 mm and are filled with<br />

anhydrite or very rarely halite. They are oriented 85° to<br />

90° to the bedd<strong>in</strong>g.<br />

The Detfurth Formation consists <strong>of</strong> red-brown,<br />

coarse-gra<strong>in</strong>ed sandstone with clay-rich <strong>in</strong>tercalations.<br />

Ve<strong>in</strong>s are rare, approximately one ve<strong>in</strong> <strong>in</strong> a 5 m core and<br />

are filled with anhydrite and calcite. Thicknesses vary<br />

between 0.5 cm and 1 cm and lengths are at least 30 cm<br />

(ve<strong>in</strong>s rarely term<strong>in</strong>ate <strong>in</strong> the core). The ve<strong>in</strong>s are oriented<br />

between 65° and 90° to the bedd<strong>in</strong>g. In borehole 4,<br />

very th<strong>in</strong> (1 mm or smaller) halite ve<strong>in</strong>s are occasionally<br />

observed <strong>in</strong> this formation.<br />

The Volpriehausen Formation is composed <strong>of</strong> red- to<br />

grey-coloured sandstone with clay-rich layers. Ve<strong>in</strong>s are<br />

rare (approximately 1 <strong>in</strong> every 30 m core) and are very<br />

th<strong>in</strong> (


1044<br />

Fig. 5 aMicrostructure show<strong>in</strong>g a calcite ve<strong>in</strong> <strong>in</strong> claystone. The<br />

ve<strong>in</strong> splits <strong>in</strong> different branches <strong>in</strong> the coarse-gra<strong>in</strong>ed siltstone (th<strong>in</strong><br />

section s78, normal to bedd<strong>in</strong>g, sample B2-08). b Calcite overgrowth<br />

<strong>in</strong> sandstone show<strong>in</strong>g that the ve<strong>in</strong> is <strong>de</strong>localized and does<br />

not cross the quartz gra<strong>in</strong>s <strong>of</strong> the host rock. Quartz gra<strong>in</strong>s are<br />

partly dissolved by pressure solution (th<strong>in</strong> section s81, normal to<br />

bedd<strong>in</strong>g, sample B3-19). c Antitaxial calcite ve<strong>in</strong> <strong>in</strong> claystone<br />

towards the ve<strong>in</strong> centre. Syntaxial growth resulted <strong>in</strong><br />

significant growth competition at the ve<strong>in</strong>–wall <strong>in</strong>terface,<br />

<strong>in</strong>dicat<strong>in</strong>g that the ve<strong>in</strong> grew syntectonically with a<br />

significant open<strong>in</strong>g (>10 lm) to the oppos<strong>in</strong>g wall.<br />

Microstructures suggest that some stretched calcite<br />

crystals grew contemporaneously with the quartz<br />

(Fig. 6b). Stretched crystals <strong>of</strong> quartz are clear evi<strong>de</strong>nce<br />

for syntectonic growth. The lateral variation from<br />

stretched crystals to elongate-blocky syntaxial growth<br />

suggests that the open cavity growth with euhedral<br />

crystal term<strong>in</strong>ations <strong>in</strong> the ve<strong>in</strong>s is also syntectonic.<br />

show<strong>in</strong>g small crystals <strong>in</strong> the centre, which grew towards both si<strong>de</strong>s<br />

<strong>of</strong> the wall. The ve<strong>in</strong> grew asymmetrically (th<strong>in</strong> section s78, normal<br />

to bedd<strong>in</strong>g, sample B2-08). d Cathodolum<strong>in</strong>escence image <strong>of</strong> a<br />

calcite ve<strong>in</strong> show<strong>in</strong>g that the cements <strong>in</strong> the host rock have the same<br />

lum<strong>in</strong>escence colour as the ve<strong>in</strong>. Note that fibres connect bedd<strong>in</strong>g<br />

on both si<strong>de</strong>s <strong>of</strong> the ve<strong>in</strong> <strong>in</strong> this example (th<strong>in</strong> section s78, normal<br />

to bedd<strong>in</strong>g, sample B2-08). cc calcite, qtz quartz<br />

Locally, anhydrite fills open vugs <strong>in</strong> the syntaxial ve<strong>in</strong>s,<br />

<strong>in</strong>dicat<strong>in</strong>g that quartz–calcite grew at an earlier phase.<br />

Anhydrite ve<strong>in</strong>s<br />

Anhydrite is found <strong>in</strong> extension ve<strong>in</strong>s oriented normal to<br />

bedd<strong>in</strong>g. Fracture surfaces are more regular, <strong>in</strong> contrast<br />

to the irregular morphology <strong>of</strong> the calcite ve<strong>in</strong>s,<br />

<strong>in</strong>dicat<strong>in</strong>g that the rocks were more consolidated dur<strong>in</strong>g<br />

this phase <strong>of</strong> ve<strong>in</strong> formation.<br />

Fig. 6 a Microstructures<br />

show<strong>in</strong>g a stretched quartz ve<strong>in</strong><br />

with few solid <strong>in</strong>clusions<br />

<strong>in</strong>corporated <strong>in</strong> the quartz<br />

crystals <strong>in</strong>dicat<strong>in</strong>g syntectonic<br />

growth (th<strong>in</strong> section s61_a,<br />

normal to bedd<strong>in</strong>g, sample<br />

B2-05). b Stretched quartz and<br />

calcite crystals suggest<strong>in</strong>g that<br />

both calcite and quartz<br />

precipitated<br />

contemporaneously. Faceted<br />

quartz with euhedral crystal<br />

term<strong>in</strong>ations are also observed<br />

<strong>in</strong> the same ve<strong>in</strong> (th<strong>in</strong> section<br />

s61_b, normal to bedd<strong>in</strong>g,<br />

sample B2-05). cc calcite, qtz<br />

quartz


1045<br />

Anhydrite ve<strong>in</strong>s conta<strong>in</strong> aggregates <strong>of</strong> clear needlelike<br />

radiat<strong>in</strong>g crystals (rosettes) or s<strong>in</strong>gle, th<strong>in</strong> needles,<br />

with well-<strong>de</strong>f<strong>in</strong>ed cleavage (Murray 1964; Holliday 1970)<br />

(Fig. 7a). The rosettes radiate from a s<strong>in</strong>gle blocky<br />

anhydrite crystal. Ve<strong>in</strong>s may have a blocky or elongateblocky<br />

microstructure, with growth competition at the<br />

ve<strong>in</strong>–wall <strong>in</strong>terface (Fig. 7b).<br />

Cross-cutt<strong>in</strong>g relationships <strong>of</strong> calcite ve<strong>in</strong>s or branches<br />

and anhydrite ve<strong>in</strong>s <strong>in</strong>dicate that calcite ve<strong>in</strong>s<br />

re-opened and were filled with anhydrite (Fig.7c). This<br />

<strong>in</strong>dicates that anhydrite ve<strong>in</strong><strong>in</strong>g postdates calcite<br />

ve<strong>in</strong><strong>in</strong>g.<br />

Halite ve<strong>in</strong>s<br />

In contrast to the other boreholes, borehole 2 conta<strong>in</strong>s<br />

centimetre thick halite ve<strong>in</strong>s <strong>in</strong> the Soll<strong>in</strong>g Formation.<br />

Halite is located <strong>in</strong> the centre <strong>of</strong> a calcite ve<strong>in</strong>, which is<br />

oriented normal to bedd<strong>in</strong>g (Fig. 8a). The ve<strong>in</strong> microstructure<br />

varies laterally from fibrous to blocky with<strong>in</strong> a<br />

s<strong>in</strong>gle ve<strong>in</strong>, <strong>in</strong>dicat<strong>in</strong>g syntectonic growth at different<br />

open<strong>in</strong>g or growth rates (Hilgers et al. 2001). Halite<br />

conta<strong>in</strong>s ma<strong>in</strong>ly primary subgra<strong>in</strong>s, recognized by their<br />

fibrous shape. Few gra<strong>in</strong>s show polygonal subgra<strong>in</strong>s,<br />

which are <strong>in</strong>dicative <strong>of</strong> <strong>de</strong>formation due to dislocation<br />

creep (Fig. 8b) (see also Schle<strong>de</strong>r and Urai this volume).<br />

The subgra<strong>in</strong> size is then <strong>in</strong>versely proportional to the<br />

differential stress (Carter et al. 1993). The subgra<strong>in</strong> size<br />

was measured and results suggest low differential stresses<br />

<strong>of</strong> around 1.4 MPa.<br />

Sulphate reduction<br />

Green reduction spots and pyrite concretions are frequently<br />

observed <strong>in</strong> the shaly host rock close to anhydrite<br />

ve<strong>in</strong>s. In these ve<strong>in</strong>s, calcite is locally present at the<br />

ve<strong>in</strong>–wall <strong>in</strong>terface and with<strong>in</strong> the ve<strong>in</strong>. The texture <strong>in</strong><br />

these ve<strong>in</strong>s po<strong>in</strong>ts to replacement <strong>of</strong> the anhydrite crystals<br />

by calcite at a later stage (Fig. 7d). This may <strong>in</strong>dicate<br />

that anhydrite was dissolved and thermochemical<br />

sulphate reduction took place with methane to form<br />

calcite and H 2 S accord<strong>in</strong>g to the follow<strong>in</strong>g reaction<br />

(Machel 1987, 2001;Wor<strong>de</strong>n et al. 1995):<br />

CaSO 4 þ CH 4 ) CaCO 3 þ H 2 S þ H 2 O:<br />

Stable isotopes<br />

Oxygen and carbon isotopes<br />

The d 18 O and d 13 C isotope compositions were measured<br />

<strong>in</strong> the calcite ve<strong>in</strong>s and <strong>in</strong> dolomite and calcite cements<br />

<strong>in</strong> the host rock (Table 1, Fig. 9). Values for d 18 O vary<br />

between 11.98& and 6.11&, whereas d 13 C values<br />

range between 2.81& and 1.87& (Table 1). Signatures<br />

for ve<strong>in</strong>s and cements are very similar, <strong>in</strong>dicat<strong>in</strong>g that<br />

the ve<strong>in</strong> m<strong>in</strong>erals have the same source as the cements <strong>in</strong><br />

the host rock. This is also suggested by the cathodolum<strong>in</strong>escence<br />

colours <strong>in</strong> the calcite cements and ve<strong>in</strong>s.<br />

The d 18 O signature <strong>in</strong> the calcite ve<strong>in</strong>s <strong>de</strong>pends on the<br />

orig<strong>in</strong> <strong>of</strong> the precipitat<strong>in</strong>g <strong>fluid</strong>s and on the precipitation<br />

Fig. 7 a Microstructures<br />

show<strong>in</strong>g anhydrite rosette<br />

crystal <strong>in</strong>dicat<strong>in</strong>g that the<br />

crystals grew <strong>in</strong> an open space<br />

(th<strong>in</strong> section s67/34, normal to<br />

bedd<strong>in</strong>g, sample B1-03).<br />

b Growth competition between<br />

anhydrite crystals at the ve<strong>in</strong><br />

wall po<strong>in</strong>t<strong>in</strong>g to syntaxial<br />

growth <strong>in</strong> an open void (th<strong>in</strong><br />

section s67_a, normal to<br />

bedd<strong>in</strong>g, sample B1-03).<br />

c Cross-cutt<strong>in</strong>g relationship<br />

between elongate-blocky calcite<br />

ve<strong>in</strong> and blocky anhydrite<br />

<strong>in</strong>dicat<strong>in</strong>g that the calcite ve<strong>in</strong><br />

was reactivated and filled with<br />

anhydrite (th<strong>in</strong> section s66_a,<br />

normal to bedd<strong>in</strong>g, sample B1-<br />

02). d Anhydrite replacement by<br />

calcite, <strong>in</strong>dicated by anhydrite<br />

remnants <strong>in</strong> a blocky calcite<br />

matrix (th<strong>in</strong> section s67_1,<br />

normal to bedd<strong>in</strong>g, sample B1-<br />

03). cc calcite, anh anhydrite


1046<br />

d 18 O SMOW isotopic composition <strong>of</strong> 4&, precipitation<br />

temperatures were between 84°C and 122°C (Fig. 10).<br />

The range <strong>of</strong> d 13 C around 0& <strong>in</strong> our samples can be<br />

the result <strong>of</strong> mix<strong>in</strong>g <strong>of</strong> bacterial carbon with carbonaterich<br />

pore <strong>fluid</strong>s (Irw<strong>in</strong> et al. 1977; Harwood and Coleman<br />

1983). If the carbon had its orig<strong>in</strong> only <strong>in</strong> organic<br />

material, the d 13 C values would be extremely negative,<br />

which is not the case <strong>in</strong> our data.<br />

Sulphur isotopes<br />

Fig. 8 a Halite ve<strong>in</strong> <strong>in</strong> the Soll<strong>in</strong>g Formation with calcite (cc) on<br />

both si<strong>de</strong>s <strong>of</strong> the wall. b Halite conta<strong>in</strong>s primary subgra<strong>in</strong>s, and is<br />

almost free <strong>of</strong> <strong>de</strong>formation (1.4 MPa differential stress)<br />

temperature (Faure 1998) (Fig. 10). The Buntsandste<strong>in</strong><br />

was <strong>de</strong>posited <strong>in</strong> an arid climate and un<strong>de</strong>r these conditions,<br />

meteoric water has d 18 O SMOW values between<br />

0& and 5& (Harwood and Coleman 1983). If the<br />

meteoric water <strong>in</strong> the pores is mixed with connate<br />

waters, result<strong>in</strong>g from m<strong>in</strong>eral reactions dur<strong>in</strong>g the early<br />

compaction <strong>of</strong> the sediments, the pore <strong>fluid</strong>s will have a<br />

more positive d 18 O signature (Suchecki and Land 1983).<br />

Assum<strong>in</strong>g that the pore <strong>fluid</strong>s <strong>in</strong> the Buntsandste<strong>in</strong> have<br />

a d 18 O SMOW composition <strong>of</strong> 0& dur<strong>in</strong>g ve<strong>in</strong> growth, the<br />

calcite ve<strong>in</strong>s precipitated at a temperature <strong>of</strong> 55–84°C<br />

(Fig. 10). If the pore <strong>fluid</strong>s had a more connate<br />

In borehole 1, 3 and 4 we analysed 14 samples from<br />

anhydrite ve<strong>in</strong>s sampled <strong>in</strong> the Soll<strong>in</strong>g Formation. Values<br />

for d 34 S range between 11.9& and 13.4& CDT (Table 2),<br />

and do not show a relation with <strong>de</strong>pth. This <strong>in</strong>dicates that<br />

the ve<strong>in</strong>s precipitated from a <strong>fluid</strong> with a relative uniform<br />

d 34 S composition. Lower Triassic seawater had a sulphur<br />

isotopic composition <strong>of</strong> 16–21.5& CDT, which is significantly<br />

higher than the values <strong>in</strong> our samples (Claypool<br />

et al. 1980; Kramm and We<strong>de</strong>pohl 1991; Kampschulte<br />

and Strauss 2004) (Fig.11). The Upper Permian seawater<br />

had a lighter sulphur isotopic composition <strong>of</strong> 12.1–14.4&<br />

CDT, which corresponds very well with our data. This<br />

suggests that the sulphate <strong>in</strong> the anhydrite ve<strong>in</strong>s was remobilized<br />

from the un<strong>de</strong>rly<strong>in</strong>g Zechste<strong>in</strong>.<br />

Fluid <strong>in</strong>clusions<br />

Fluid <strong>in</strong>clusions with diameters between 5 lm and<br />

20 lm are common <strong>in</strong> growth zones <strong>in</strong> the large, blocky<br />

anhydrite crystals. Most <strong>in</strong>clusions conta<strong>in</strong> two phases,<br />

liquid and vapour, although some <strong>in</strong>clusions with only<br />

one phase (liquid) were observed. These could <strong>in</strong>dicate a<br />

formation below 50°C. However, it is more likely that<br />

the absence <strong>of</strong> a gas bubble may be due to nucleation<br />

problems (metastable one-phase <strong>in</strong>clusions), as these<br />

<strong>in</strong>clusions are small (


1047<br />

-12 -10 -8 -6 -4 -2<br />

Legend:<br />

ve<strong>in</strong>s<br />

cements<br />

0 0 1<br />

Fig. 9 Carbon isotopic signature (d 13 C) plotted aga<strong>in</strong>st oxygen<br />

isotopic signature (d 18 O) for the calcite ve<strong>in</strong>s and cements <strong>in</strong><br />

borehole 1–4. The data <strong>of</strong> the cements are very similar to the data<br />

<strong>of</strong> the ve<strong>in</strong>s, <strong>in</strong>dicat<strong>in</strong>g that they precipitated from the same <strong>fluid</strong>s.<br />

All values are <strong>in</strong> PDB (based on d 18 O (SMOW) =1.03086 · d 18 O (PDB)<br />

+ 30.86<br />

hole 1, a wi<strong>de</strong> range <strong>of</strong> <strong>fluid</strong> <strong>in</strong>clusion homogenization<br />

temperatures is observed (Fig. 12a). Such variation can<br />

be the result <strong>of</strong> re-equilibration (stretch<strong>in</strong>g) <strong>of</strong> the primary<br />

<strong>in</strong>clusions dur<strong>in</strong>g further burial. In this case, the<br />

higher temperatures do not represent the homogenization<br />

<strong>of</strong> the primary <strong>in</strong>clusions (Goldste<strong>in</strong> 1986; Burruss<br />

1987; Muchez et al. 1991). However, the lowest<br />

homogenization temperatures (between 110°C and<br />

150°C) <strong>in</strong>dicate the m<strong>in</strong>imum homogenization temperature<br />

<strong>of</strong> the orig<strong>in</strong>al <strong>fluid</strong> <strong>in</strong>clusions. The highest frequency<br />

<strong>of</strong> homogenization temperatures is observed<br />

around 150°C (Fig. 12a). After freez<strong>in</strong>g, the first melt<strong>in</strong>g<br />

(T fm ) is observed around 52°C, which suggests that the<br />

<strong>fluid</strong> is <strong>of</strong> the NaCl–CaCl 2 –H 2 O type (Roed<strong>de</strong>r 1984;<br />

Fig. 10 Oxygen isotopic signature aga<strong>in</strong>st the temperature for different<br />

isotopic compositions <strong>of</strong> the precipitat<strong>in</strong>g water (d 18 O (SMOW)<br />

water), assum<strong>in</strong>g that the <strong>fluid</strong> and the calcite ve<strong>in</strong>s were <strong>in</strong><br />

equilibrium. When the precipitat<strong>in</strong>g <strong>fluid</strong> had a composition <strong>of</strong><br />

0–4& SMOW, the calcite ve<strong>in</strong>s and cements precipitated between<br />

55°C and 122°C. Calculations based on O’Neil et al. (1969)<br />

2<br />

-1<br />

-2<br />

-3<br />

Shepherd et al. 1985; Reynolds and Goldste<strong>in</strong> 1990).<br />

The last melt<strong>in</strong>g <strong>of</strong> ice is between 28.6°C and 13.9°C,<br />

po<strong>in</strong>t<strong>in</strong>g to sal<strong>in</strong>ities 2.3–3.3wt% NaCl and 14.9–<br />

21.5wt% CaCl 2 (Oakes et al. 1990) (Table 3).<br />

In borehole 3, homogenization temperatures range<br />

between 100°C and 150°C, with the highest frequency at<br />

140°C (Fig. 12b). Higher homogenization temperatures<br />

are also observed but have a smaller frequency<br />

(Fig. 12b). This suggests, as <strong>in</strong> borehole 1, stretch<strong>in</strong>g <strong>of</strong><br />

the primary <strong>in</strong>clusions dur<strong>in</strong>g further bas<strong>in</strong> evolution.<br />

The temperature <strong>of</strong> first melt<strong>in</strong>g <strong>in</strong>dicates <strong>fluid</strong>s from a<br />

NaCl–CaCl 2 –H 2 O type, as <strong>in</strong> borehole 1. However,<br />

further heat<strong>in</strong>g resulted (<strong>in</strong> some cases) <strong>in</strong> f<strong>in</strong>al melt<strong>in</strong>g<br />

<strong>of</strong> hydrohalite crystals around 24°C, after all ice was<br />

melted around 35°C, which po<strong>in</strong>ts to sal<strong>in</strong>ities <strong>of</strong> 3.6–<br />

4.4wt% NaCl and 24.9–27.0wt% CaCl 2 (Oakes et al.<br />

1990; Zwart and Touret 1994). In some <strong>in</strong>clusions, a<br />

halite crystal was present, which dissolved between 7°C<br />

and 24°C, po<strong>in</strong>t<strong>in</strong>g to sal<strong>in</strong>ities <strong>of</strong> 39.0–40.5wt% CaCl 2<br />

(Oakes et al. 1990; Zwart and Touret 1994) (Table 3).<br />

Inclusions <strong>in</strong> anhydrite <strong>in</strong> borehole 2 and 4 could not be<br />

measured, because anhydrite crystals were not present or<br />

too small, respectively.<br />

Discussion<br />

Tim<strong>in</strong>g and paragenesis <strong>of</strong> the ve<strong>in</strong>s<br />

The extensional structures <strong>in</strong> this study are characterized<br />

by different generations <strong>of</strong> ve<strong>in</strong> formation. The first<br />

generation <strong>of</strong> ve<strong>in</strong>s consists <strong>of</strong> calcite and quartz–calcite<br />

ve<strong>in</strong>s. Their fibrous and stretched-crystal microstructure<br />

po<strong>in</strong>ts to syntectonic ve<strong>in</strong> formation. The <strong>in</strong>tergranular<br />

fracture morphology, the rough shape <strong>of</strong> the ve<strong>in</strong>–wall<br />

<strong>in</strong>terface, and the wall-rock <strong>in</strong>clusions <strong>of</strong> the calcite<br />

ve<strong>in</strong>s <strong>in</strong>dicate an emplacement <strong>in</strong> a slightly consolidated<br />

rock. Microstructural observations suggest that the<br />

anhydrite ve<strong>in</strong>s formed later and <strong>in</strong> a more consolidated<br />

rock than the calcite ve<strong>in</strong>s. This age relationship is<br />

<strong>de</strong>rived from the fracture morphology (which <strong>in</strong> turn<br />

<strong>de</strong>pends on rock strength) and is also supported by<br />

cross-cutt<strong>in</strong>g relationships <strong>of</strong> calcite and anhydrite ve<strong>in</strong>s.<br />

The d 18 Oandd 13 C signature <strong>in</strong> the calcite ve<strong>in</strong>s <strong>in</strong>dicates<br />

that they precipitated between 55°C and 122°C from<br />

meteoric <strong>fluid</strong>s mixed with connate <strong>fluid</strong>s. Homogenization<br />

temperatures <strong>in</strong> <strong>fluid</strong> <strong>in</strong>clusions show that the<br />

anhydrite ve<strong>in</strong>s precipitated at around 150°C. Rieken<br />

and Gaupp (1991) measured homogenization temperatures<br />

around 140–230°C <strong>in</strong> quartz and calcite ve<strong>in</strong>s <strong>in</strong><br />

the same area, and we therefore propose that the<br />

different ve<strong>in</strong> generations gradually change from calcite–<br />

quartz to anhydrite ve<strong>in</strong>s.<br />

The extension fractures are consistently oriented at a<br />

high angle to the bedd<strong>in</strong>g, which suggests a near vertical<br />

maximum pr<strong>in</strong>cipal stress <strong>in</strong> the rock. This <strong>in</strong>dicates that<br />

the ve<strong>in</strong>s formed dur<strong>in</strong>g bas<strong>in</strong> subsi<strong>de</strong>nce. Petmecky<br />

et al. (1999) mo<strong>de</strong>lled subsi<strong>de</strong>nce curves <strong>in</strong> the LSB and<br />

show that the bas<strong>in</strong> subsi<strong>de</strong>d rapidly from the Late


1048<br />

Table 2 Sulphur isotopic data<br />

for all boreholes conta<strong>in</strong><strong>in</strong>g<br />

anhydrite ve<strong>in</strong>s. (a) Borehole 1,<br />

(b) borehole 3 and (c) borehole<br />

4<br />

Borehole Sample name Sample <strong>de</strong>pth (m) Stratigraphic <strong>in</strong>terval d 34 S(& CDT)<br />

Borehole 1 B1-01 2576.15 Soll<strong>in</strong>g formation 12.3<br />

B1-02 2578 Soll<strong>in</strong>g formation 13.4<br />

B1-03a 2580.4 Soll<strong>in</strong>g formation 12.7<br />

B1-03b 2580.42 Soll<strong>in</strong>g formation 12<br />

B1-03c 2580.44 Soll<strong>in</strong>g formation 12.8<br />

B1-03d 2580.46 Soll<strong>in</strong>g formation 11.9<br />

B1-03e 2580.48 Soll<strong>in</strong>g formation 13.4<br />

Borehole 3 B3-14 2722.85 Soll<strong>in</strong>g Formation 11.7<br />

B3-17 2736.1 Soll<strong>in</strong>g Formation 12.6<br />

B3-19 2768.8 Soll<strong>in</strong>g Formation 11.9<br />

Borehole 4 B4-03 2360 Soll<strong>in</strong>g formation 12.4<br />

B4-04 2360.5 Soll<strong>in</strong>g formation 12.6<br />

B4-11 2362 Soll<strong>in</strong>g formation 12.8<br />

B4-12 2362 Soll<strong>in</strong>g formation 12.1<br />

Jurassic to the Early Cretaceous. The Buntsandste<strong>in</strong><br />

reached a maximum burial <strong>of</strong> up to 7-km <strong>de</strong>pth dur<strong>in</strong>g<br />

the Mid Cretaceous and was uplifted to 2–3-km <strong>de</strong>pth<br />

by <strong>in</strong>version dur<strong>in</strong>g the Late Cretaceous. Although<br />

maximum burial and <strong>in</strong>version differ <strong>in</strong> various parts <strong>of</strong><br />

the LSB, similar tectonic events and <strong>fluid</strong>s affected all<br />

parts <strong>of</strong> the bas<strong>in</strong>. We thus take one curve, represent<strong>in</strong>g<br />

borehole 3, for the <strong>fluid</strong> history <strong>of</strong> the bas<strong>in</strong> (Fig. 13a).<br />

The temperature data imply that the calcite ve<strong>in</strong>s formed<br />

at <strong>de</strong>pths <strong>of</strong> 1–3 km. We did not observe compaction<br />

halos (e.g. Price and Cosgrove 1990, p 421; Urai et al.<br />

2001) around these early ve<strong>in</strong>s and this implies that the<br />

porosity was already reduced significantly (see Appendix).<br />

The m<strong>in</strong>imum <strong>de</strong>pth <strong>of</strong> ve<strong>in</strong> formation should<br />

therefore correspond with a porosity <strong>of</strong> around 20%,<br />

which fits very well with a m<strong>in</strong>imum <strong>de</strong>pth <strong>of</strong> 1–2 km<br />

(Fig. 13b). The anhydrite ve<strong>in</strong>s formed at m<strong>in</strong>imum<br />

<strong>de</strong>pths <strong>of</strong> 3 km dur<strong>in</strong>g the upper Jurassic when the bas<strong>in</strong><br />

subsi<strong>de</strong>d rapidly (Fig. 13a). The wi<strong>de</strong> range <strong>of</strong> homogenization<br />

temperatures <strong>in</strong> the <strong>fluid</strong> <strong>in</strong>clusions is expla<strong>in</strong>ed<br />

by stretch<strong>in</strong>g, which suggests that ve<strong>in</strong>s were<br />

brought to higher temperatures after their formation.<br />

Thus, ve<strong>in</strong>s were buried to even greater <strong>de</strong>pths dur<strong>in</strong>g<br />

further bas<strong>in</strong> subsi<strong>de</strong>nce.<br />

a<br />

5<br />

Borehole 1<br />

4<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Perm. Triassic Jurassic<br />

Rot Zec Bu Mu Keuper Lias Dogger<br />

11.9-13.4 ‰<br />

0<br />

260 210 160<br />

Age [Ma]<br />

Legend<br />

mov<strong>in</strong>g average <strong>of</strong> SSS (structurally substituted sulfate)<br />

sulfate <strong>in</strong> evaporites<br />

ve<strong>in</strong> sulfate <strong>in</strong> the Buntsandste<strong>in</strong><br />

Fig. 11 Sulphur isotopic signature dur<strong>in</strong>g Permian to Jurassic time<br />

(after Kampschulte and Strauss 2004) compared with results <strong>of</strong><br />

ve<strong>in</strong>s <strong>in</strong> the Buntsandste<strong>in</strong>. The data correlate with Zechste<strong>in</strong><br />

sulphur isotopes, which suggests that the anhydrite layers <strong>in</strong> the<br />

Zechste<strong>in</strong> are the source rock for the anhydrite ve<strong>in</strong>s <strong>in</strong> the<br />

Buntsandste<strong>in</strong> (Rot Rotliegend, Zec Zechste<strong>in</strong>, Bu Buntsandste<strong>in</strong>,<br />

Mu Muschelkalk)<br />

Frequency<br />

b<br />

Frequency<br />

3<br />

2<br />

1<br />

0<br />

100 120 140 160 180 200 220 240<br />

Homogenization temperature [˚C]<br />

15<br />

10<br />

5<br />

Borehole 3<br />

0<br />

100 120 140 160 180 200 220 240<br />

Homogenization temperature [˚C]<br />

Fig. 12 Homogenization temperatures <strong>of</strong> <strong>fluid</strong> <strong>in</strong>clusions <strong>in</strong> anhydrite<br />

represented <strong>in</strong> a histogram for the two analysed boreholes: a<br />

Borehole 1 (n=21, three samples) and b Borehole 3 (n=57, four<br />

samples). The wi<strong>de</strong> range <strong>in</strong> homogenization temperature (<strong>in</strong> the<br />

same sample) suggests that the primary <strong>in</strong>clusions <strong>in</strong> the ve<strong>in</strong><br />

crystals are re-equilibrated dur<strong>in</strong>g further bas<strong>in</strong> evolution. This<br />

means that only the smallest values <strong>of</strong> T h represent the m<strong>in</strong>imum<br />

temperature <strong>of</strong> ve<strong>in</strong> formation


1049<br />

Table 3 Fluid <strong>in</strong>clusion data <strong>in</strong> anhydrite for the two boreholes<br />

Borehole Th (°C) Tfm (°C) TmI (°C) TmHH (°C) TmH (°C) wt% NaCl wt% CaCl 2<br />

Borehole 1 110–250 52 Between 28.6 and 13.9 37 – 2.3–3.3 14.9–21.5<br />

Borehole 3 105–200 52 Between 25 and 22.9 35 – 3.6–3.78 18.7–19.6<br />

105–200 52 Between 41.1 and 36.7 Between 25.7 and 22.7 – 3.6–4.4 24.9–27.0<br />

105–200 52 Between 41.3 and 29.0 Between 25.7 and 22.9 7–5 24.2 39.0–40.5<br />

Th homogenization temperature, Tfm temperature <strong>of</strong> first melt<strong>in</strong>g, TmI temperature <strong>of</strong> ice melt<strong>in</strong>g, TmHH temperature <strong>of</strong> hydrohalite<br />

melt<strong>in</strong>g, TmH=temperature <strong>of</strong> halite dissolution. Sal<strong>in</strong>ities are calculated with the program Aqso2e (Bakker 2003)<br />

Mechanical aspects<br />

All ve<strong>in</strong>s are extensional mo<strong>de</strong> I fractures, which form<br />

when the differential stress r 1 r 3


1050<br />

failure stress conditions at a particular <strong>de</strong>pth z and<br />

vary<strong>in</strong>g <strong>fluid</strong> pressures. With this plot, we can <strong>de</strong>rive the<br />

m<strong>in</strong>imum <strong>fluid</strong> <strong>overpressure</strong> required to form the<br />

anhydrite ve<strong>in</strong>s, because (1) we only observed extension<br />

ve<strong>in</strong>s and (2) we estimated the <strong>de</strong>pth <strong>of</strong> ve<strong>in</strong> formation<br />

from <strong>fluid</strong> <strong>in</strong>clusion data and a published subsi<strong>de</strong>nce<br />

curve (Fig. 13). At 10 MPa tensile strength <strong>of</strong> the rock<br />

(typical for Buntsandste<strong>in</strong> sandstones) and a m<strong>in</strong>imum<br />

<strong>de</strong>pth <strong>of</strong> 3.2 km for the onset <strong>of</strong> anhydrite ve<strong>in</strong><strong>in</strong>g,<br />

extension fractures only form at differential stresses<br />

r 1 r 3


1051<br />

cipitate a ve<strong>in</strong> with this mass from a <strong>fluid</strong> which was 5%<br />

supersaturated at 150°C, 3.4·10 5 kg H 2 O is necessary,<br />

correspond<strong>in</strong>g to a volume <strong>of</strong> 348 m 3 , assum<strong>in</strong>g a <strong>de</strong>nsity<br />

<strong>of</strong> 977.7 kg/m 3 (Blount and Dickson 1969; Freyer<br />

and Voigt 2004). When the supersaturation is 20%, only<br />

87 m 3 <strong>of</strong> <strong>fluid</strong> is necessary. Therefore, the required <strong>fluid</strong><br />

volume to precipitate the observed ve<strong>in</strong>s is, even for 20%<br />

supersaturation, very high.<br />

The d 34 S isotopes <strong>in</strong> the anhydrite ve<strong>in</strong>s have the<br />

same signature as the Zechste<strong>in</strong> anhydrite. Assum<strong>in</strong>g<br />

that the ve<strong>in</strong>-precipitat<strong>in</strong>g <strong>fluid</strong>s came from the Zechste<strong>in</strong>,<br />

we can calculate how much <strong>fluid</strong> can be produced<br />

<strong>in</strong> the Zechste<strong>in</strong>. In the anhydrite <strong>of</strong> the<br />

Zechste<strong>in</strong> 4 (‘‘Grenzanhydrit’’), the gypsum-anhydrite<br />

transition occurs around 70°C and releases about 60%<br />

water per unit volume gypsum (Borchert and Muir<br />

1964, p 133; Hardie 1967). These amounts <strong>of</strong> <strong>fluid</strong>s<br />

could be a source for the precipitated anhydrite ve<strong>in</strong>s<br />

<strong>in</strong> the overly<strong>in</strong>g sediments. However, based on the<br />

temperature <strong>in</strong> the subsi<strong>de</strong>nce curve, the <strong>fluid</strong> release<br />

from the ‘‘Grenzanhydrit’’ occurred before anhydrite<br />

ve<strong>in</strong> formation <strong>in</strong> the Buntsandste<strong>in</strong> (dur<strong>in</strong>g Early to<br />

Mid Jurassic). The <strong>fluid</strong>s <strong>in</strong> gypsum layers <strong>de</strong>eper <strong>in</strong><br />

the Zechste<strong>in</strong> sequence were produced earlier than<br />

those <strong>in</strong> the uppermost Zechste<strong>in</strong> and must have<br />

dra<strong>in</strong>ed upwards through evaporite layers with very<br />

low permeabilities. Here, it is <strong>in</strong>terest<strong>in</strong>g to speculate<br />

about the possible retention <strong>of</strong> these <strong>fluid</strong>s <strong>in</strong> the<br />

Zechste<strong>in</strong> over geological time scales, start<strong>in</strong>g to flow<br />

upwards at a later stage at <strong>de</strong>eper burial. This scenario<br />

would require extremely low permeabilities <strong>of</strong> the halite<br />

layers over geologically long periods. Although<br />

halite has very low permeabilities un<strong>de</strong>r non-dilatant<br />

conditions (dilatancy only occurs at close to lithostatic<br />

<strong>fluid</strong> pressures; Urai et al. 1986; Fokker ; Peach and<br />

Spiers 1996; Popp et al. 2001), little is known about<br />

the exact value <strong>of</strong> permeability and its anisotropy. Of<br />

particular importance here is the topology <strong>of</strong> the small<br />

amount <strong>of</strong> gra<strong>in</strong> boundary <strong>fluid</strong>s present <strong>in</strong> the halite<br />

(Lewis and Holness 1996; Schenk and Urai 2004) and<br />

the orientation <strong>of</strong> the pr<strong>in</strong>cipal stress un<strong>de</strong>r geological<br />

conditions, which affects the way <strong>fluid</strong>s are distributed<br />

<strong>in</strong> gra<strong>in</strong> boundaries dur<strong>in</strong>g dynamic recrystallization.<br />

Stress <strong>in</strong> halite is near-isotropic (Schle<strong>de</strong>r and Urai<br />

this volume) but little is known about the orientation<br />

<strong>of</strong> the pr<strong>in</strong>cipal stress which may be an important<br />

factor <strong>in</strong> controll<strong>in</strong>g permeability anisotropy. With<br />

these arguments <strong>in</strong> m<strong>in</strong>d (although much more work is<br />

nee<strong>de</strong>d here), it is possible that un<strong>de</strong>r suitable conditions,<br />

the br<strong>in</strong>e released from gypsum can be reta<strong>in</strong>ed<br />

<strong>in</strong> the halite for long periods, and released to higher<br />

levels <strong>in</strong> the bas<strong>in</strong> dur<strong>in</strong>g small changes <strong>in</strong> the state <strong>of</strong><br />

stress <strong>in</strong> the halite. The un<strong>de</strong>rly<strong>in</strong>g Rotliegend and<br />

Carboniferous sediments also conta<strong>in</strong> large volumes <strong>of</strong><br />

pore <strong>fluid</strong>s (e.g. Gaupp et al. 1993). If these <strong>fluid</strong>s are<br />

able to migrate through the Zechste<strong>in</strong> evaporites, they<br />

may have transported Zechste<strong>in</strong> components <strong>in</strong>to the<br />

Buntsandste<strong>in</strong> (van Bergen and <strong>de</strong> Leeuw 2001).<br />

Irrespective <strong>of</strong> the mechanism <strong>of</strong> overpressur<strong>in</strong>g, the<br />

claystone layers <strong>of</strong> the Upper Buntsandste<strong>in</strong> and the Ro¨ t<br />

evaporites provi<strong>de</strong> a seal for the <strong>overpressure</strong> cell <strong>in</strong> the<br />

Buntsandste<strong>in</strong>. The <strong>in</strong>crease <strong>in</strong> <strong>fluid</strong> pressure was associated<br />

with extensional fractur<strong>in</strong>g <strong>in</strong> the Middle Buntsandste<strong>in</strong><br />

(Fig. 15). The solubility <strong>of</strong> anhydrite <strong>de</strong>creases<br />

Fig. 15 Mo<strong>de</strong>l <strong>of</strong> the pressure versus the <strong>de</strong>pth dur<strong>in</strong>g ve<strong>in</strong><br />

formation. a Pore pressure versus <strong>de</strong>pth. The Middle Buntsandste<strong>in</strong><br />

forms a transitional zone between close to lithostatic and<br />

hydrostatic pressure. One possible scenario for the pressure<br />

<strong>de</strong>crease is by stepwise pressure drops <strong>in</strong> the different Buntsandste<strong>in</strong><br />

sequences with the Ro¨ t evaporite and the top claystone layers<br />

<strong>of</strong> each sequence act<strong>in</strong>g as a seal. The sha<strong>de</strong>d area shows the range<br />

<strong>of</strong> <strong>overpressure</strong>, which is at least 18 MPa above the hydrostatic<br />

<strong>fluid</strong> pressure <strong>in</strong> the Buntsandste<strong>in</strong>. In the Ro¨ t evaporite, the <strong>fluid</strong><br />

pressure is between hydrostatic and 18 MPa above hydrostatic. b<br />

Horizontal pressure versus <strong>de</strong>pth. The differential stress to form<br />

extension fractures can reach a maximum <strong>of</strong> 40 MPa and the<br />

sha<strong>de</strong>d area displays this range. Extension fractures will form when<br />

the <strong>fluid</strong> pressure is 10 MPa above the horizontal stress. In the<br />

evaporite layers, the differential stress is low and therefore the<br />

horizontal stress is close to lithostatic. (anh anhydrite layer, S<br />

Soll<strong>in</strong>g formation, H Har<strong>de</strong>gsen formation, D Detfurth formation<br />

and V Volpriehausen formation, r V vertical stress, r H =horizontal<br />

stress)


1052<br />

with <strong>de</strong>creas<strong>in</strong>g pressure and <strong>in</strong>creases with <strong>de</strong>creas<strong>in</strong>g<br />

temperature. Therefore, we assume that the supersaturation<br />

<strong>of</strong> the anhydrite <strong>fluid</strong>s is caused by a pressure<br />

drop dur<strong>in</strong>g fractur<strong>in</strong>g.<br />

The arguments above can be illustrated by a simple<br />

1D-mo<strong>de</strong>l <strong>in</strong> which the complete Buntsandste<strong>in</strong> acted as<br />

an <strong>overpressure</strong> cell dur<strong>in</strong>g progressive burial at 3–5-km<br />

<strong>de</strong>pth (Fig. 15a). This mo<strong>de</strong>l may be constra<strong>in</strong>ed for the<br />

pore <strong>fluid</strong> pressure by the follow<strong>in</strong>g parameters: (1) nearlithostatic<br />

<strong>fluid</strong> pressures <strong>in</strong> the Zechste<strong>in</strong> because <strong>of</strong> the<br />

low permeable evaporites, (2) hydrostatic <strong>fluid</strong> pressures<br />

(assumed) above Ro¨ t because <strong>of</strong> the highly permeable<br />

Keuper and Jurassic, (3) m<strong>in</strong>imum <strong>fluid</strong> pressure <strong>of</strong><br />

18 MPa above hydrostatic at a <strong>de</strong>pth <strong>of</strong> 3.2 km to cause<br />

extensional fractur<strong>in</strong>g, (4) pressure drops where<br />

anhydrite precipitated (18 MPa pressure drop =20%<br />

supersaturation), (5) near-hydrostatic <strong>fluid</strong> pressure<br />

gradients along the open fractures until sealed by<br />

anhydrite.<br />

The horizontal stress <strong>de</strong>pends l<strong>in</strong>early on the effective<br />

vertical stress and on the lithology. In the permeable<br />

layers above the Buntsandste<strong>in</strong>, the horizontal<br />

stress can be calculated by r h ¢=K 0·r v ¢ tak<strong>in</strong>g the<br />

coefficient <strong>of</strong> the earth pressure at rest K 0 as 0.4 (Mandl<br />

2000, p 177) (Fig. 15b). In the Buntsandste<strong>in</strong>, we cannot<br />

<strong>de</strong>term<strong>in</strong>e the horizontal stress exactly, because<br />

there are uncerta<strong>in</strong>ties about the <strong>fluid</strong> pressure and we<br />

only know the <strong>fluid</strong> pressure range. However, as the<br />

m<strong>in</strong>imum differential stress is 40 MPa, the range <strong>of</strong> the<br />

horizontal stress is known. Extension fractures are<br />

expected to form <strong>in</strong> the Buntsandste<strong>in</strong> where the <strong>fluid</strong><br />

pressure is 10 MPa above the horizontal stress. In the<br />

Ro¨ t and Zechste<strong>in</strong> evaporites, the horizontal stress is<br />

expected to be close to the lithostatic stress, because the<br />

differential stress is low <strong>in</strong> these layers (Schle<strong>de</strong>r and<br />

Urai, this volume).<br />

In cores from the four studied boreholes, <strong>de</strong>spite their<br />

distance <strong>of</strong> 200 km and noticeable differences <strong>in</strong> tectonics,<br />

similar extensional ve<strong>in</strong>s and ve<strong>in</strong> microstructures<br />

are observed. There is clear evi<strong>de</strong>nce for at least<br />

two generations <strong>of</strong> ve<strong>in</strong> formation, associated with different<br />

parts <strong>of</strong> the burial path. The first generation <strong>of</strong><br />

ve<strong>in</strong>s formed syntectonically <strong>in</strong> subvertical fractures and<br />

is filled with fibrous calcite. Stable isotopes <strong>in</strong>dicate that<br />

these ve<strong>in</strong>s precipitated from connate water (d 18 O=0–<br />

4& SMOW) at temperatures between 55°C and 122°C.<br />

A generation <strong>of</strong> quartz–calcite ve<strong>in</strong>s is associated with<br />

these calcite ve<strong>in</strong>s. No significant <strong>in</strong>crease <strong>of</strong> fracture<br />

permeability was created dur<strong>in</strong>g the generation <strong>of</strong> these<br />

ve<strong>in</strong>s.<br />

The second generation <strong>of</strong> ve<strong>in</strong>s is also syntectonic,<br />

formed <strong>in</strong> steeply oriented open fractures, which are<br />

usually reactivated calcite ve<strong>in</strong>s. These ve<strong>in</strong>s are filled<br />

with blocky anhydrite. In this second generation <strong>of</strong><br />

ve<strong>in</strong>s, <strong>fluid</strong> <strong>in</strong>clusions <strong>in</strong> anhydrite <strong>in</strong>dicate precipitation<br />

around 150°C, from hypersal<strong>in</strong>e br<strong>in</strong>es. Sulphur<br />

isotopes from anhydrites <strong>in</strong>dicate that the orig<strong>in</strong> <strong>of</strong> the<br />

sulphate is the un<strong>de</strong>rly<strong>in</strong>g Zechste<strong>in</strong>. The first generation<br />

calcite ve<strong>in</strong>s formed <strong>in</strong> a much less consolidated<br />

rock than the second generation anhydrite ve<strong>in</strong>s, although<br />

the cohesion <strong>of</strong> the wall rock rema<strong>in</strong>ed relatively<br />

low (no transgranular fractures were observed<br />

dur<strong>in</strong>g the whole evolution). We <strong>in</strong>terpret the first<br />

generation calcite ve<strong>in</strong>s to have formed dur<strong>in</strong>g the early<br />

stages <strong>of</strong> burial, between 1 km and 3 km <strong>de</strong>pth, and<br />

the second generation to have formed dur<strong>in</strong>g progressive<br />

burial at a <strong>de</strong>pth <strong>of</strong> m<strong>in</strong>imum 3 km. However, all<br />

ve<strong>in</strong> generations formed <strong>in</strong> a cont<strong>in</strong>uum. The second<br />

generation <strong>of</strong> ve<strong>in</strong>s formed <strong>in</strong> a phase when the Buntsandste<strong>in</strong><br />

was <strong>overpressure</strong>d, the <strong>fluid</strong> pressure at least<br />

18 MPa at 3.2 km. Pore pressures <strong>in</strong> Zechste<strong>in</strong> were<br />

near-lithostatic, dropp<strong>in</strong>g progressively to hydrostatic<br />

above the Ro¨ t, provid<strong>in</strong>g the pressure <strong>de</strong>crease to<br />

precipitate anhydrite ve<strong>in</strong>s. All mechanisms that generate<br />

<strong>overpressure</strong>s <strong>in</strong> sedimentary bas<strong>in</strong>s could have<br />

contributed to the <strong>overpressure</strong> <strong>in</strong> the Buntsandste<strong>in</strong><br />

but <strong>in</strong>flation by Zechste<strong>in</strong> <strong>fluid</strong>s, released from <strong>de</strong>hydrat<strong>in</strong>g<br />

gypsum (enclosed <strong>in</strong> halite), is the only required<br />

process.<br />

Acknowledgements We thank Dr. Jentsch (EMPG) for access to<br />

Buntsandste<strong>in</strong> cores. Werner Kraus is acknowledged for the<br />

preparation <strong>of</strong> th<strong>in</strong> sections and the <strong>fluid</strong> <strong>in</strong>clusion wafers. Philippe<br />

Muchez (K.U.Leuven) is thanked for the use <strong>of</strong> the L<strong>in</strong>kham stage<br />

and discussions on the <strong>fluid</strong> <strong>in</strong>clusions. We are very thankful to<br />

Pr<strong>of</strong>. Strauss (Mu¨ nster) for the analyses <strong>of</strong> the S isotopes and to<br />

Dr. Joachimski (Erlangen) for the d 18 O and d 13 C isotopes. Comments<br />

by Anne-Marie Bouiller and an anonymous reviewer significantly<br />

improved the manuscript. This project is fun<strong>de</strong>d by the<br />

DFG (Hi 816/1–2) and is part <strong>of</strong> the SPP 1135 ‘‘Dynamics <strong>of</strong><br />

Sedimentary Systems un<strong>de</strong>r vary<strong>in</strong>g Stress Conditions by Example<br />

<strong>of</strong> the Central European Bas<strong>in</strong> System’’.<br />

Conclusions<br />

Appendix<br />

Stra<strong>in</strong> due to compaction <strong>of</strong> clays<br />

We consi<strong>de</strong>r a <strong>fluid</strong>-saturated sediment, compact<strong>in</strong>g<br />

uniaxially. Tak<strong>in</strong>g the usual notation:<br />

V t ¼ V s þ V f ;<br />

V t ¼ total volume ½m 3 Š; V s ¼ solid volume ½m 3 Š; V f<br />

¼ <strong>fluid</strong> volume ½m 3 Š<br />

Porosity / ¼ V f<br />

V t<br />

It can be shown that when the sediment changes its<br />

porosity from / 1 to / 2 , the volumetric stretch (s v ) and<br />

the volumetric extension (e v ) are:<br />

s v ¼ V t1<br />

¼ V f1 þ V s 1 / 2<br />

and e v ¼ V t2 V t1<br />

¼ s v 1<br />

V t2 V f2 þ V s 1 / 1 V t1


1053<br />

In uniaxial compaction, this leads to a f<strong>in</strong>ite stra<strong>in</strong><br />

tensor:<br />

1 0 0<br />

D ¼<br />

0 1 0<br />

0 0 <br />

1 / 2<br />

1 / 1<br />

If the ve<strong>in</strong>s are formed shortly after <strong>de</strong>position (assume<br />

/ 1 = 50%), and compaction cont<strong>in</strong>ues to / 2 =5%<br />

dur<strong>in</strong>g the maximum burial at 5,000 m, V t2 is then 52%<br />

<strong>of</strong> V t1 and this should be visible <strong>in</strong> compaction halos<br />

around the ve<strong>in</strong>s (which would then act as rigid struts).<br />

As these structures are not observed, the <strong>in</strong>itial porosity<br />

was smaller.<br />

Tak<strong>in</strong>g / 1 = 20%, / 2 = 5%, V t2 is reduced to 84% <strong>of</strong><br />

V t1 . This m<strong>in</strong>or volume reduction is probably not observable<br />

and this fits very well with the observations <strong>of</strong><br />

the ve<strong>in</strong>s <strong>in</strong> the Buntsandste<strong>in</strong> rocks.<br />

References<br />

Bakker RJ (2003) Package FLUIDS 1. Computer programs for<br />

analysis <strong>of</strong> <strong>fluid</strong> <strong>in</strong>clusion data and for mo<strong>de</strong>ll<strong>in</strong>g bulk <strong>fluid</strong><br />

properties. Chem Geol 194:3–23<br />

Baldschuhn R, Frisch U, Kochel F (1998) Der Salzkeil, e<strong>in</strong><br />

strukturelles Requisit <strong>de</strong>r saxonischen Tektonik. Z. <strong>de</strong>utschen<br />

geologischen Gesellschaft 149(1):59–69<br />

Baldschuhn R, B<strong>in</strong>ot F, Fleig S, Kockel F (2001) Geotektonischer<br />

Atlas von Nordwest-Deutschland und <strong>de</strong>m <strong>de</strong>utschen Nordsee-<br />

Sektor-Strukturen Strukturentwicklung Palaeogeographie, E.<br />

Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p 88<br />

Bayer U, Scheck M, Rabbel W, Krawczyk CM, Go¨ tze H-J, Stiller<br />

M, Beilecke T, Marotta AM, Barrio-Alvers L, Ku<strong>de</strong>r J (1999)<br />

An <strong>in</strong>tegrated study <strong>of</strong> the NE German Bas<strong>in</strong>. Tectonophysics<br />

314:285–307<br />

Bek<strong>in</strong>s B, McCaffrey AM, Dreiss SJ (1994) Influence <strong>of</strong> k<strong>in</strong>etics on<br />

the smectite to illite transition <strong>in</strong> the Barbados accretionary<br />

prism. J Geophy Res 99(B9):18147–18158<br />

Bjørlykke K, Ramm M, Saigal GC (1989) Sandstone diagenesis<br />

and porosity modification dur<strong>in</strong>g bas<strong>in</strong> evolution. Geol Runds<br />

78:243–268<br />

Blount CW, Dickson FW (1969) The solubility <strong>of</strong> anhydrite<br />

(CaSO 4 ) <strong>in</strong> NaCl-H 2 O from 100 to 450°C and 1 to 1000 bars.<br />

Geochim Cosmochim Acta 33:227–245<br />

Bons PD (2000) The formation <strong>of</strong> ve<strong>in</strong>s and their microstructures.<br />

In: Jessell MW, Urai JL (eds) Stress, stra<strong>in</strong> and structure, a<br />

volume <strong>in</strong> honour <strong>of</strong> W.D. Means. J Virt Explor 2<br />

Bons PD, Jessell MW (1997) Experimental simulation <strong>of</strong> the formation<br />

<strong>of</strong> fibrous ve<strong>in</strong>s by localised dissolution-precipitation<br />

creep. M<strong>in</strong>eral Mag 61(1):53–63<br />

Borchert H, Muir RO (1964) Salt <strong>de</strong>posits. Van Nostrand Company,<br />

Ltd., London, p 338<br />

Bre<strong>de</strong>hoeft JD, Wesley JB, Fouch TD (1994) Simulations <strong>of</strong> the<br />

orig<strong>in</strong> <strong>of</strong> <strong>fluid</strong> pressure, fracture generation, and the movement <strong>of</strong><br />

<strong>fluid</strong>s <strong>in</strong> the U<strong>in</strong>ta Bas<strong>in</strong>, Utah. AAPG Bull 78(11):1729–1747<br />

Br<strong>in</strong>k H-J (1984) Die Salzstockentwicklung <strong>in</strong> Nordwest<strong>de</strong>utschland.<br />

Geowissenschaften <strong>in</strong> unserer Zeit 2(5):160–166<br />

Br<strong>in</strong>k HJ, Du¨ rschner H, Trappe H (1992) Some aspects <strong>of</strong> the late<br />

and post-Variscan <strong>de</strong>velopment <strong>of</strong> the Northwestern German<br />

Bas<strong>in</strong>. Tectonophysics 207:65–95<br />

Bruce CH (1984) Smectite <strong>de</strong>hydration-its relation to structural<br />

<strong>de</strong>velopment and hydrocarbon accumulation <strong>in</strong> Northern Gulf<br />

<strong>of</strong> Mexico Bas<strong>in</strong>. AAPG Bull 68(6):673–683<br />

Burrus J (1998) Overpressure mo<strong>de</strong>ls for clastic rocks, their relation<br />

to hydrocarbon expulsion: a critical reevaluation. In: Law BE,<br />

Ulmishek GF, Slav<strong>in</strong> VI (eds) Abnormal pressures <strong>in</strong> hydrocarbon<br />

environments: AAPG Memoir 70, pp 35–63<br />

Burruss RC (1987) Diagenetic palaeotemperatures from aqueous<br />

<strong>fluid</strong> <strong>in</strong>clusions: re-equilibration <strong>of</strong> <strong>in</strong>clusions <strong>in</strong> carbonate cements<br />

by burial heat<strong>in</strong>g. M<strong>in</strong>eral Maga 51:477–481<br />

Carter NL, Horseman ST, Russell JE, Hand<strong>in</strong> J (1993) Rheology<br />

<strong>of</strong> rocksalt. J Struct Geol 15(9/10):1257–1271<br />

Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The<br />

age curves <strong>of</strong> sulfur and oxygen isotopes <strong>in</strong> mar<strong>in</strong>e sulfate and<br />

their mutual <strong>in</strong>terpretation. Chem Geol 28:199–260<br />

Colten-Bradley VA (1987) Role <strong>of</strong> pressure <strong>in</strong> smectite-<strong>de</strong>hydration-effects<br />

on geopressure and smectite-to-illite transformation.<br />

AAPG Bull 71:1414–1427<br />

<strong>de</strong> Jager J (2003) Inverted bas<strong>in</strong>s <strong>in</strong> the Netherlands, similarities<br />

and differences. Netherlands Journal <strong>of</strong> Geosciences/Geologie<br />

en Mijnbouw 82(4):355–366<br />

Durney DW, Ramsay JG (1973) Incremental stra<strong>in</strong>s measured by<br />

syntectonic crystal growth. In: <strong>de</strong> Jong KA, Scholten R (eds)<br />

Gravity and tectonics. Wiley, New York, pp 67–96<br />

Faure G (1998) Pr<strong>in</strong>ciples and applications <strong>of</strong> geochemistry: a<br />

comprehensive textbook for geology stu<strong>de</strong>nts. Prentice-Hall,<br />

London, p 600<br />

Freyer D, Voigt W (2004) The measurement <strong>of</strong> sulfate m<strong>in</strong>eral<br />

solubilities <strong>in</strong> the Na-K-Ca-Cl-SO 4 -H 2 O system at temperatures<br />

<strong>of</strong> 100, 150 and 200°C. Geochim Cosmochim Acta 68:307–318<br />

Gaupp R, Matter A, Platt J, Ramseyer K, Walzebuck J (1993)<br />

Diagenesis and <strong>fluid</strong> evolution <strong>of</strong> <strong>de</strong>eply buried Permian (Rotliegen<strong>de</strong>)<br />

gas reservoirs, Northwest Germany. AAPG Bull<br />

77(7):1111–1128<br />

Goldste<strong>in</strong> R (1986) Reequilibration <strong>of</strong> <strong>fluid</strong> <strong>in</strong>clusions <strong>in</strong> lowtemperature<br />

calcium-carbonate cement. Geology 14:792–795<br />

Gross MR, Engel<strong>de</strong>r T, Poulson SR (1992) Ve<strong>in</strong>s <strong>in</strong> the Lockport<br />

dolostone: evi<strong>de</strong>nce for an acadian <strong>fluid</strong> circulation system.<br />

Geology 20:971–974<br />

Hardie LA (1967) The gypsum-anhydrite equilibrium at one<br />

atmosphere pressure. Amer M<strong>in</strong>eral 52:171–200<br />

Harwood GM, Coleman ML (1983) Isotopic evi<strong>de</strong>nce for UK<br />

Upper Permian m<strong>in</strong>eralization by bacterial reduction <strong>of</strong> evaporites.<br />

Nature 301:597–599<br />

Herrmann A, H<strong>in</strong>ze C, H<strong>of</strong>richter E, Ste<strong>in</strong> V (1968) Salzbewegungen<br />

und Deckgebirge am Nordostrand <strong>de</strong>r Soll<strong>in</strong>gscholle<br />

(Ahlsburg). Geologisches Jahrbuch, Beihefte 85:147–164<br />

Hilgers C, Koehn D, Bons PD, Urai JL (2001) Development <strong>of</strong><br />

crystal morphology dur<strong>in</strong>g unitaxial growth <strong>in</strong> a progressively<br />

wi<strong>de</strong>n<strong>in</strong>g ve<strong>in</strong>: II. Numerical simulations <strong>of</strong> the evolution <strong>of</strong><br />

antitaxial fibrous ve<strong>in</strong>s. J Struct Geol 23:873–885<br />

Hilgers C, Urai JL (2002) Microstructural observations on natural<br />

syntectonic fibrous ve<strong>in</strong>s: implications for the growth process.<br />

Tectonophysics 352:257–274<br />

Holliday DW (1970) The petrology <strong>of</strong> secondary gypsum rocks: a<br />

review. J Sediment Petrol 40(2):734–744<br />

Hubbert MK, Rubey WW (1959) Role <strong>of</strong> <strong>fluid</strong> pressure <strong>in</strong><br />

mechanics <strong>of</strong> overthrust fault<strong>in</strong>g. Bull Geol Soc Am 70:115–166<br />

Ingebritsen SE, Sanford WE (1998) Groundwater flow <strong>in</strong> geologic<br />

processes. Cambridge University Press, Cambridge, p 341<br />

Ingram GM, Urai JL (1999) Top-seal leakage through faults and<br />

fractures: the role <strong>of</strong> mudrock properties. In: Apl<strong>in</strong> AC, Fleet<br />

AJ, MacQuaker JHS (eds) Muds and mudstones: Physical and<br />

Fluid Flow Properties. Geological Society, London, pp 124–135<br />

Irw<strong>in</strong> H, Curtis C, Coleman M (1977) Isotopic evi<strong>de</strong>nce for source<br />

<strong>of</strong> diagenetic carbonates formed dur<strong>in</strong>g burial <strong>of</strong> organic-rich<br />

sediments. Nature 269:209–213<br />

Jaritz W (1980) E<strong>in</strong>ige Aspekte <strong>de</strong>r Entwicklungsgeschichte <strong>de</strong>r<br />

nordwest<strong>de</strong>utschen Salzsto¨ cke. Geowissenschaftliche Aspekte<br />

<strong>de</strong>r Endlagerung radioaktiver Abfaelle 131(2):387–408<br />

Kampschulte A, Strauss H (2004) The sulfur isotopic evolution <strong>of</strong><br />

Phanerozoic seawater based on the analysis <strong>of</strong> structurally<br />

substituted sulfate <strong>in</strong> carbonates. Chem Geol 204:255–286<br />

Kockel F (2003) Inversion structures <strong>in</strong> Central Europe - Expressions<br />

and reasons, an open discussion. Netherlands J Geosci<br />

Geol Mijnbouw 82(4):367–382<br />

Kossow D, Krawczyk CM (2002) Structure and quantification <strong>of</strong><br />

processes controll<strong>in</strong>g the evolution <strong>of</strong> the <strong>in</strong>verted NE-German<br />

Bas<strong>in</strong>. Mar<strong>in</strong>e Petrol Geol 19:601–618


1054<br />

Kovalevych V, Peryt TM, Beer W, Geluk MC, Halas S (2002)<br />

Geochemistry <strong>of</strong> Early Triassic seawater as <strong>in</strong>dicated by study<br />

<strong>of</strong> the Ro¨ t halite <strong>in</strong> the Netherlands, Germany, and Poland.<br />

Chem Geol 182:549–563<br />

Kramm U, We<strong>de</strong>pohl KH (1991) The isotopic composition <strong>of</strong><br />

strontium and sulfur <strong>in</strong> seawater <strong>of</strong> Late Permian (Zechste<strong>in</strong>)<br />

age. Chem Geol 90:253–262<br />

Laier T, Nielsen BL (1989) Cement<strong>in</strong>g halite <strong>in</strong> Triassic Bunter<br />

Sandstone (Ton<strong>de</strong>r, southwest Denmark) as a result <strong>of</strong> hyperfiltration<br />

<strong>of</strong> br<strong>in</strong>es. Chem Geol 76:353–363<br />

Law BE, Spencer CW (1998) Abnormal pressure <strong>in</strong> hydrocarbon<br />

environments. In: Law BE, Ulmishek GF, Slav<strong>in</strong> VI (eds)<br />

Abnormal pressures <strong>in</strong> hydrocarbon environment, vol 70.<br />

AAPG MEMOIR, pp 1–11<br />

Lewis S, Holness M (1996) Equilibrium halite–H 2 O dihedral angles:<br />

high rock-salt permeability <strong>in</strong> the shallow crust? Geology<br />

24(5):431–434<br />

Machel HG (1987) Some aspects <strong>of</strong> diagenetic sulphate-hydrocarbon<br />

redox reactions. In: Marshall JD (ed) Diagenesis <strong>of</strong> sedimentary<br />

sequences, vol 36. Geological Society Special<br />

Publication, London, pp 15–28<br />

Machel HG (2001) Bacterial and thermochemical sulfate reduction<br />

<strong>in</strong> diagenetic sett<strong>in</strong>gs - old and new <strong>in</strong>sights. Sedimen Geol<br />

140(1–2):143–175<br />

Michelsen O, Clausen OR (2002) Detailed stratigraphic subdivision<br />

and regional correlation <strong>of</strong> the southern Danish Triassic succession.<br />

Mar<strong>in</strong>e Petrole Geol 19:563–587<br />

Mohr M, Kukla PA, Urai JL, Bresser G, Blei (2005) Multiphase<br />

salt tectonic evolution <strong>in</strong> NW Germany: seismic <strong>in</strong>terpretation<br />

and retro-<strong>de</strong>formation, (this volume)<br />

Mo¨ ller P, Weise SM, Althaus E, Bach W, Behr HJ, Borchardt R,<br />

Braeuer K, Drescher J, Erz<strong>in</strong>ger J, Faber E, Hansen BT, Horn<br />

EE, Huenges E, Kaempf H, Kessels W, Kirsten T, Landwehr D,<br />

Lo<strong>de</strong>mann M, Machon L, Pek<strong>de</strong>ger A, Pielow HU, Reutel C,<br />

Simon K, Walther J, We<strong>in</strong>lich FH, Zimmer M (1997) Pale<strong>of</strong>luids<br />

and recent <strong>fluid</strong>s <strong>in</strong> the upper cont<strong>in</strong>ental crust; results<br />

from the German Cont<strong>in</strong>ental Deep-Drill<strong>in</strong>g Program (KTB). J<br />

Geophys Res 102(8):18233–18254<br />

Muchez P, Viaene W, Marshall JD (1991) Orig<strong>in</strong> <strong>of</strong> shallow burial<br />

cements <strong>in</strong> the Late Vise´ an <strong>of</strong> the Camp<strong>in</strong>e Bas<strong>in</strong>, Belgium.<br />

Sediment Geol 73:257–271<br />

Muchez P, Marshall JD, Touret JLR, Viaene W (1994) Orig<strong>in</strong> and<br />

migration <strong>of</strong> palae<strong>of</strong>luids <strong>in</strong> the Upper Visean <strong>of</strong> the Camp<strong>in</strong>e<br />

Bas<strong>in</strong>, northern Belgium. Sedimentology 41:133–145<br />

Murray RC (1964) Orig<strong>in</strong> and diagenesis <strong>of</strong> gypsum and anhydrite.<br />

J Sediment Petrol 34(3):512–523<br />

Nollet S, Urai JL, Bons PD, Hilgers C (2005) Numerical simulations<br />

<strong>of</strong> polycrystal growth <strong>in</strong> ve<strong>in</strong>s. J Struct Geol 27(2):217–<br />

230<br />

Oakes CS, Bodnar RJ, Simonson JM (1990) The system NaCl–<br />

CaCl 2 –H 2 O: I. The ice liquidus at 1 atm total pressure. Geochim<br />

Cosmochim Acta 54:603–610<br />

O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation<br />

<strong>in</strong> divalent metal carbonates. J Chem Phys 51:5547–<br />

5558<br />

Palciauskas VV, Domenico PA (1989) Fluid pressure <strong>in</strong> <strong>de</strong>form<strong>in</strong>g<br />

porous rocks. Water Resources Research 25(2):203–213<br />

Passchier CW, Trouw RAJ (1996) Microtectonics. Spr<strong>in</strong>ger, Berl<strong>in</strong><br />

Hei<strong>de</strong>lberg New York, p 289<br />

Peach CJ, Spiers CJ (1996) Influence <strong>of</strong> crystal plastic <strong>de</strong>formation<br />

on dilatancy and permeability <strong>de</strong>velopment <strong>in</strong> synthetic salt<br />

rock. Tectonophysics 256(1–4):101–128<br />

Petmecky S, Meier L, Reiser H, Littke R (1999) High thermal<br />

maturity <strong>in</strong> the Lower Saxony Bas<strong>in</strong>: <strong>in</strong>trusion or <strong>de</strong>ep burial?<br />

Tectonophysics 304:317–344<br />

Plumley WJ (1980) Abnormally high <strong>fluid</strong> pressures: survey <strong>of</strong><br />

some basic pr<strong>in</strong>ciples. AAPG Bull 64(3):414–423<br />

Popp T, Kern H, Schulze O (2001) Permeation and <strong>de</strong>velopment <strong>of</strong><br />

dilatancy <strong>in</strong> rock salt. In: Cristescu ND, Hardy HR, Simionescu<br />

RO (eds) Basic and Applied Salt<br />

Price NJ, Cosgrove JW (1990) Analysis <strong>of</strong> geological structures.<br />

Cambridge University Press, Cambridge<br />

Purvis K, Okkerman JA (1996) Inversion <strong>of</strong> reservoir quality by<br />

early diagenesis: an example from the Triassic Buntsandste<strong>in</strong>,<br />

<strong>of</strong>fshore the Netherlands. In: Ron<strong>de</strong>el HE, Batjes DAJ, Nieuwenhuijs<br />

WH (eds) Geology <strong>of</strong> gas and oil un<strong>de</strong>r the Netherlands.<br />

Kluwer, Dordrecht, pp 179–189<br />

Putnis A, Mauthe G (2001) The effect <strong>of</strong> pore size on cementation<br />

<strong>in</strong> porous rocks. Ge<strong>of</strong>luids 1:37–41<br />

Ramsay JG, Huber (1983) Techniques <strong>in</strong> mo<strong>de</strong>rn structural geology,<br />

vol 1: stra<strong>in</strong> analysis. Aca<strong>de</strong>mic, London, p 307<br />

Reynolds J, Goldste<strong>in</strong> R (1990) Fluid <strong>in</strong>clusions <strong>in</strong> sedimentary<br />

rocks: systematics <strong>of</strong> <strong>fluid</strong> <strong>in</strong>clusions <strong>in</strong> authigenic m<strong>in</strong>erals and<br />

applications <strong>in</strong> sedimentary bas<strong>in</strong> analysis. Short course University<br />

<strong>of</strong> Manchester, p 83<br />

Rieken R, Gaupp R (1991) Flui<strong>de</strong><strong>in</strong>schluß-Untersuchungen<br />

an Sandste<strong>in</strong>en <strong>de</strong>s Gasfel<strong>de</strong>s Tho¨ nse. Nie<strong>de</strong>rsa¨ chsische Aka<strong>de</strong>mie<br />

<strong>de</strong>r Geowissenschaften Vero¨ ffentlichungen Heft 6:68–<br />

98<br />

Roed<strong>de</strong>r E (1984) Fluid Inclusions, vol 12. BookCrafters, Inc.,<br />

Virg<strong>in</strong>ia, p 644<br />

Scheck M, Bayer U (1999) Evolution <strong>of</strong> the Northeast German<br />

Bas<strong>in</strong>—<strong>in</strong>ferences from a 3D structural mo<strong>de</strong>l and subsi<strong>de</strong>nce<br />

analysis. Tectonophysics 313:145–169<br />

Scheck M, Bayer U, Lewerenz B (2003) Salt redistribution dur<strong>in</strong>g<br />

extension and <strong>in</strong>version <strong>in</strong>ferred from 3D backstripp<strong>in</strong>g. Tectonophysics<br />

373:55–73<br />

Schenk O, Urai JL (2004) Microstructural evolution and gra<strong>in</strong><br />

boundary structure dur<strong>in</strong>g static recrystallization <strong>in</strong> synthetic<br />

polycrystals <strong>of</strong> Sodium Chlori<strong>de</strong> conta<strong>in</strong><strong>in</strong>g saturated br<strong>in</strong>e.<br />

Contrib M<strong>in</strong>eral Petrol 146:671–682<br />

Schle<strong>de</strong>r Z, Urai JL (this volume) Microstructural evolution <strong>of</strong><br />

<strong>de</strong>formation modified primary halite from the Middle Triassic<br />

Ro¨ t Formation at Hengelo, the Netherlands<br />

Secor DT (1965) Role <strong>of</strong> <strong>fluid</strong> pressure <strong>in</strong> jo<strong>in</strong>t<strong>in</strong>g. Am J Sci<br />

263:633–646<br />

Shearman DJ, Mossop G, Dunsmore H, Mart<strong>in</strong> M (1972) Orig<strong>in</strong><br />

<strong>of</strong> gypsum ve<strong>in</strong>s by hydraulic fracture. Institution <strong>of</strong> M<strong>in</strong><strong>in</strong>g<br />

and Metallurgy; Transactions Section B:B149–B155<br />

Shepherd T, Rank<strong>in</strong> AH, Al<strong>de</strong>rton DHM (1985) A practical gui<strong>de</strong><br />

to <strong>fluid</strong> <strong>in</strong>clusion studies. Blackie, London, p 239<br />

Sibson RH (2003) Brittle-failure controls on maximum susta<strong>in</strong>able<br />

<strong>overpressure</strong> <strong>in</strong> different tectonic regimes. AAPG Bull<br />

87(6):901–908<br />

Sibson RH (2004) Controls on maximum <strong>fluid</strong> <strong>overpressure</strong><br />

<strong>de</strong>f<strong>in</strong><strong>in</strong>g conditions for mesozonal m<strong>in</strong>eralization. J Struct Geol<br />

26(6–7):1127–1136<br />

Suchecki RK, Land LS (1983) Isotopic geochemistry <strong>of</strong> burialmetamorphosed<br />

volcanogenic sediments, Great Valley sequence,<br />

northern California. Geochim Cosmochim Acta<br />

47:1487–1499<br />

Sunagawa I (1984) Growth <strong>of</strong> crystals <strong>in</strong> nature. In: Sunagawa I<br />

(ed) Material science <strong>of</strong> the earth’s <strong>in</strong>terior. Terra Scientific<br />

Publish<strong>in</strong>g Company, Tokyo, pp 63–105<br />

Szurlies M, Bachmann GH, Menn<strong>in</strong>g M, Nowaczyk NR, Ka¨ d<strong>in</strong>g<br />

K-C (2003) Magnetostratigraphy and high-resolution lithostratigraphy<br />

<strong>of</strong> the Permian-Triassic boundary <strong>in</strong>terval <strong>in</strong> Central<br />

Germany. Earth Planet Sci Lett 212:263–278<br />

Teufel LW, Rhett. DW, Farrel HE (1991) Effect <strong>of</strong> reservoir<br />

<strong>de</strong>pletion and pore pressure drawdown on <strong>in</strong> situ stress and<br />

<strong>de</strong>formation <strong>in</strong> the Ek<strong>of</strong>isk Field, North Sea. In: Roegiers JC<br />

(ed) Rock mechanics as a multidiscipl<strong>in</strong>ary science, Proceed<strong>in</strong>gs<br />

<strong>of</strong> the 32nd U.S. Symposium, A.A. Balkema, Rotterdam,<br />

Brookfield, pp 63–72<br />

Townend J, Zoback MD (2000) How fault<strong>in</strong>g keeps the crust<br />

strong. Geology 28(5):399–402<br />

Trusheim F (1957) U¨ ber Halok<strong>in</strong>ese und ihre Be<strong>de</strong>utung fu¨ r die<br />

struktruelle Entwicklung Nord<strong>de</strong>utschlands. Z. <strong>de</strong>utschen geologischen<br />

Gesellschaft 109:111–151<br />

Urai JL, Spiers CJ, Zwart HJ, Lister GS (1986) Weaken<strong>in</strong>g <strong>of</strong> rock<br />

salt by water dur<strong>in</strong>g long-term creep. Nature 324(6097):554–557<br />

Urai JL, Williams PF, Roermond HLM (1991) K<strong>in</strong>ematics <strong>of</strong><br />

crystal growth <strong>in</strong> syntectonic fibrous ve<strong>in</strong>s. J Struct Geol<br />

13(7):823–836


1055<br />

van Bergen F, <strong>de</strong> Leeuw K (2001) Mechanism proposed to expla<strong>in</strong><br />

salt cementation near salt domes. TNO-NITG-Information<br />

May:19–20<br />

Weibel R (1998) Diagenesis <strong>in</strong> oxidis<strong>in</strong>g and locally reduc<strong>in</strong>g<br />

conditions – an example from the Triassic Skagerrak Formation,<br />

Denmark. Sediment Geol 121(3–4):259–276<br />

Weibel R, Friis H (2004) Opaque m<strong>in</strong>erals as keys for dist<strong>in</strong>guish<strong>in</strong>g<br />

oxidis<strong>in</strong>g and reduc<strong>in</strong>g diagenetic conditions <strong>in</strong> the<br />

Lower Triassic Bunter Sandstone, North German Bas<strong>in</strong>. Sediment<br />

Geol 169:129–149<br />

Wor<strong>de</strong>n RH, Smalley PC, Oxtoby NH (1995) Gas sour<strong>in</strong>g by<br />

thermochemical sulfate reduction at 140°C. AAPG Bull 79:854–<br />

863<br />

Ziegler PA (1990) Geological atlas <strong>of</strong> Western and Central Europe,<br />

Shell International Petroleum Maatschappij B.V., Bath, p 239<br />

Zwart EW, Touret JLR (1994) Melt<strong>in</strong>g behaviour and composition<br />

<strong>of</strong> aqueous <strong>fluid</strong> <strong>in</strong>clusions <strong>in</strong> fluorite and calcite: applications<br />

with<strong>in</strong> the system H 2 O–CaCl 2 –NaCl. Euro J M<strong>in</strong>eral<br />

6:773–786

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!