23.12.2013 Views

Integral representations and integral transforms of some families of ...

Integral representations and integral transforms of some families of ...

Integral representations and integral transforms of some families of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

12 N. Elezović et al.<br />

551<br />

552<br />

553<br />

554<br />

555<br />

556<br />

557<br />

558<br />

559<br />

560<br />

561<br />

562<br />

563<br />

564<br />

565<br />

566<br />

567<br />

568<br />

569<br />

570<br />

571<br />

572<br />

573<br />

574<br />

575<br />

576<br />

577<br />

578<br />

579<br />

580<br />

581<br />

582<br />

583<br />

584<br />

585<br />

586<br />

587<br />

588<br />

589<br />

590<br />

591<br />

592<br />

593<br />

594<br />

595<br />

596<br />

597<br />

598<br />

599<br />

600<br />

<strong>and</strong><br />

F c<br />

(<br />

S<br />

(α,β)<br />

μ (r;{k 2/α }) ) (x) =<br />

∫ ∞<br />

0<br />

cos(xr)S μ<br />

(α,β) (r;{k 2/α })dr<br />

√ π · 2<br />

3/2−μ<br />

=<br />

Ɣ(μ)<br />

(<br />

x>0; μ>max<br />

∫ ∞<br />

t μ−1/2<br />

x<br />

where the -functions are given by (53), (54) <strong>and</strong> (55) with, <strong>of</strong> course,<br />

a = x 2 ,b= t 2 ,α= μ, β = μ − β α<br />

(<br />

μ, μ − β α ,μ− β α + 1 2 ; x 2 , t )<br />

dt<br />

2<br />

e t − 1 c<br />

{ 2β<br />

α , β α + 1 })<br />

, (57)<br />

2<br />

<strong>and</strong> γ = μ − β α + 1 2 . (58)<br />

In their special case when β = 0, our last results (55) <strong>and</strong> (56) would reduce immediately to<br />

(49) <strong>and</strong> (50), respectively.<br />

4. The Mellin <strong>transforms</strong><br />

I. In order to evaluate the Mellin <strong>transforms</strong> <strong>of</strong> S(r) <strong>and</strong> ˜S(r), we apply the familiar <strong>integral</strong><br />

formula [6, Vol. I, p. 68, Entry 2.3 (1)]:<br />

We thus obtain<br />

<strong>and</strong><br />

∫ ∞<br />

0<br />

sin t<br />

t ν<br />

M(S(r))(s) =<br />

dt = Ɣ(1 − ν)cos<br />

∫ ∞<br />

0<br />

∫ ∞<br />

r s−1 S(r)dr =<br />

( πν<br />

) ( )<br />

0 < R(ν) < 2 . (59)<br />

2<br />

∫ ∞<br />

(∫<br />

t ∞<br />

sin(rt)<br />

e t − 1 0 r 2−s<br />

0<br />

( 1<br />

r s−1 r<br />

)<br />

dr dt<br />

∫ ∞<br />

=<br />

0<br />

( π<br />

) ∫ ∞<br />

= Ɣ(s − 1) cos<br />

2 (2 − s) t<br />

0 e t − 1 dt<br />

( πs<br />

)<br />

=−Ɣ(s − 1)Ɣ(2)ζ(2) cos<br />

2<br />

=<br />

π 3 ( πs<br />

)<br />

12Ɣ(2 − s) csc 2<br />

M( ˜S(r))(s) =−Ɣ(s − 1) cos<br />

0<br />

t sin(rt)<br />

e t − 1 dt )<br />

dr<br />

(0 < R(s) < 2) (60)<br />

( πs<br />

) ∫ ∞<br />

2<br />

=−Ɣ(2)η(2)Ɣ(s − 1) cos<br />

=<br />

π 3<br />

24Ɣ(2 − s)<br />

( πs<br />

)<br />

2<br />

0<br />

t<br />

e t + 1 dt<br />

)<br />

( πs<br />

2<br />

(0 < R(s) < 2), (61)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!