23.12.2013 Views

Integral representations and integral transforms of some families of ...

Integral representations and integral transforms of some families of ...

Integral representations and integral transforms of some families of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

<strong>Integral</strong> Transforms <strong>and</strong> Special Functions<br />

Vol. 00, No. 0, Month 2008, 1–15<br />

<strong>Integral</strong> <strong>representations</strong> <strong>and</strong> <strong>integral</strong> <strong>transforms</strong> <strong>of</strong> <strong>some</strong><br />

<strong>families</strong> <strong>of</strong> Mathieu type series<br />

Neven Elezović a , H.M. Srivastava b * <strong>and</strong> Živorad Tomovski c<br />

a Department <strong>of</strong> Applied Mathematics, Faculty <strong>of</strong> Electrical Engineering <strong>and</strong> Computing, Zagreb, Croatia;<br />

b Department <strong>of</strong> Mathematics <strong>and</strong> Statistics, University <strong>of</strong> Victoria, Victoria, British Columbia, Canada;<br />

c Institute <strong>of</strong> Mathematics, Faculty <strong>of</strong> Natural Sciences <strong>and</strong> Mathematics, St. Cyril <strong>and</strong> Methodius<br />

University, Skopje, Republic <strong>of</strong> Macedonia<br />

By using <strong>some</strong> <strong>integral</strong> <strong>representations</strong> for several Mathieu type series (see P.L. Butzer, T.K. Pogány, <strong>and</strong><br />

H.M. Srivastava, A linear ODE for the Omega function associated with the Euler function E α (z) <strong>and</strong><br />

the Bernoulli function B α (z), Appl. Math. Lett. 19 (2006), pp. 1073–1077, P. Cerone <strong>and</strong> C.T. Lenard,<br />

On <strong>integral</strong> forms <strong>of</strong> generalised Mathieu series, J. Inequal. Pure Appl. Math. 4 (5) (2003), Article 100,<br />

pp. 1–11 (electronic), T.K. Pogány, H.M. Srivastava <strong>and</strong> Ž. Tomovski, Some <strong>families</strong> <strong>of</strong> Mathieu a-series<br />

<strong>and</strong> alternating Mathieu a-series, Appl. Math. Comput. 173 (2006), pp. 69–108, H.M. Srivastava <strong>and</strong><br />

Ž. Tomovski, Some problems <strong>and</strong> solutions involving Mathieu’s series <strong>and</strong> its generalizations, J. Inequal.<br />

Pure Appl. Math. 5 (2) (2004), Article 45, pp. 1–13 (electronic), Ž. Tomovski, <strong>Integral</strong> <strong>representations</strong> <strong>of</strong><br />

generalized Mathieu series via Mittag-Leffler type functions, Fract. Calc. Appl. Anal. 10 (2007), pp. 127–<br />

138.) via the Bessel function J ν <strong>of</strong> the first kind, the Gauss hypergeometric function 2 F 1 , the generalized<br />

hypergeometric function p F q <strong>and</strong> the Fox–Wright generalization p q <strong>of</strong> the hypergeometric function p F q ,<br />

a number <strong>of</strong> <strong>integral</strong> <strong>representations</strong> <strong>of</strong> the Laplace, Fourier, <strong>and</strong> Mellin types are derived here for certain<br />

general <strong>families</strong> <strong>of</strong> Mathieu type series. Some interesting corollaries <strong>and</strong> consequences <strong>of</strong> these <strong>integral</strong><br />

<strong>representations</strong> are also considered.<br />

Keywords: <strong>integral</strong> <strong>representations</strong>; Mathieu series; alternating Mathieu series; Laplace <strong>transforms</strong>;<br />

Fourier sine <strong>transforms</strong>; Fourier cosine <strong>transforms</strong>; Mellin <strong>transforms</strong>; Bessel function; Gauss hypergeometric<br />

function; generalized hypergeometric function; Fox–Wright function; Riemann Zeta function;<br />

Dirichlet Eta function; Sonine-Schafheitlin formula; Weber-Sonine <strong>integral</strong>; Legendre’s duplication<br />

formula; Gauss–Legendre multiplication formula.<br />

2000 Mathematics Subject Classifications: Primary: 33E20, 44A10; Secondary: 33C10, 33C20, 44A20<br />

1. Introduction<br />

The following familiar infinite series:<br />

S(r) =<br />

∞∑<br />

n=1<br />

*Corresponding author. Email: tomovski@iunona.pmf.ukim.edu.mk<br />

ISSN 1065-2469 print/ISSN 1476-8291 online<br />

© 2008 Taylor & Francis<br />

DOI: 10.1080/10652460801965456<br />

http://www.informaworld.com<br />

2n<br />

(n 2 + r 2 ) 2 (r ∈ R + ) (1)<br />

Techset Composition Ltd, Salisbury GITR296711.TeX Page#: 15 Printed: 5/3/2008


2 N. Elezović et al.<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

69<br />

70<br />

71<br />

72<br />

73<br />

74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87<br />

88<br />

89<br />

90<br />

91<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

98<br />

99<br />

100<br />

is named after Émile Leonard Mathieu (1835–1890), who investigated it in his work [8] on<br />

elasticity <strong>of</strong> solid bodies. An alternating version <strong>of</strong> the Mathieu series (1) in the form:<br />

˜S(r) =<br />

∞∑<br />

(−1) n−1 2n<br />

(r ∈ R + ) (2)<br />

(n 2 + r 2 ) 2<br />

n=1<br />

was introduced by Pogány et al. [10].<br />

<strong>Integral</strong> <strong>representations</strong> <strong>of</strong> the Mathieu series (1) <strong>and</strong> the alternating Mathieu series (2) are<br />

given by (see [10])<br />

S(r) = 1 ∫ ∞<br />

t sin(rt)<br />

dt (3)<br />

r 0 e t − 1<br />

<strong>and</strong><br />

˜S(r) = 1 ∫ ∞<br />

t sin(rt)<br />

dt. (4)<br />

r 0 e t + 1<br />

Recently, Srivastava <strong>and</strong> Tomovski [15] defined the following five-parameter family <strong>of</strong><br />

generalized Mathieu series:<br />

S μ<br />

(α,β) (r; a) = S μ (α,β) (r;{a k }) =<br />

∞∑<br />

n=1<br />

2a β n<br />

(a α n + r2 ) μ (r,α,β,μ∈ R + ), (5)<br />

where (<strong>and</strong> throughout this paper)itistacitly assumed that the positive sequence:<br />

(<br />

)<br />

a := {a k } ∞ k=1 ={a 1,a 2 ,a 3 ,...} lim a k =∞<br />

(6)<br />

k→∞<br />

is so chosen (<strong>and</strong> then the positive parameters α, β, <strong>and</strong> μ) are so constrained that the infinite<br />

series in the definition (5) converges, that is, that the following auxiliary series:<br />

∞∑ 1<br />

is convergent.<br />

The following special cases:<br />

n=1<br />

a μα−β<br />

n<br />

S (2,1)<br />

2 (r;{a k }), S μ (r) = S μ (2,1) (r;{k}), S μ (2,1) (r;{k γ }), <strong>and</strong> S μ<br />

(α,α/2) (r;{k})<br />

were investigated by Qi [11], Dian<strong>and</strong>a [4], Tomovski [16], <strong>and</strong> Cerone <strong>and</strong> Lenard [3].<br />

The main object <strong>of</strong> this sequel to the aforementioned investigations is to derive several formulas<br />

involving the Laplace, Fourier, <strong>and</strong> Mellin <strong>transforms</strong> <strong>of</strong> various functions belonging to the family<br />

<strong>of</strong> generalized Mathieu series considered here.<br />

2. The Laplace <strong>transforms</strong><br />

In this section, we shall compute the Laplace <strong>transforms</strong> <strong>of</strong> various functions from the family <strong>of</strong><br />

generalized Mathieu series.<br />

I. Using the table <strong>of</strong> Laplace <strong>transforms</strong> [6, Vol. I, p. 152, Entry 4.7 (16)], it follows that<br />

∫ ∞<br />

( ∫ 1 ∞<br />

)<br />

L(S(r))(x) = e −rx t sin(rt)<br />

r e t − 1 dt dr<br />

=<br />

0<br />

∫ ∞<br />

0<br />

t<br />

e t − 1<br />

0<br />

(∫ ∞<br />

−rx<br />

sin(rt)<br />

e<br />

r<br />

0<br />

)<br />

dr dt (7)


101<br />

102<br />

103<br />

104<br />

105<br />

106<br />

107<br />

108<br />

109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

125<br />

126<br />

127<br />

128<br />

129<br />

130<br />

131<br />

132<br />

133<br />

134<br />

135<br />

136<br />

137<br />

138<br />

139<br />

140<br />

141<br />

142<br />

143<br />

144<br />

145<br />

146<br />

147<br />

148<br />

149<br />

150<br />

<strong>Integral</strong> Transforms <strong>and</strong> Special Functions 3<br />

∫ ∞<br />

( )<br />

t<br />

t<br />

=<br />

0 e t − 1 arctan dt.<br />

x<br />

(8)<br />

In the same way, one can obtain the Laplace transform given below:<br />

∫ ∞<br />

( )<br />

t t<br />

L( ˜S(r))(x) =<br />

e t + 1 arctan dt. (9)<br />

x<br />

0<br />

II. The function S μ+1 has the following <strong>integral</strong> representation via the Bessel function J ν <strong>of</strong><br />

the first kind (see Cerone <strong>and</strong> Lenard [3]):<br />

S μ+1 (r) =<br />

√ ∫ π<br />

∞<br />

t μ+1/2<br />

(2r) μ−1/2 Ɣ(μ + 1) 0 e t − 1 J μ−1/2(rt)dt (r,μ ∈ R + ). (10)<br />

Similarly, it can be shown that (see Srivastava <strong>and</strong> Tomovski [15])<br />

S μ (α,0) (r;{k 2/α 2 √ ∫<br />

π ∞<br />

t μ−1/2<br />

}) =<br />

(2r) μ−1/2 Ɣ(μ) 0 e t − 1 J μ−1/2(rt)dt<br />

(<br />

r ∈ R + ; μ> 1 )<br />

. (11)<br />

2<br />

We shall also need the following known result involving the Laplace–Mellin transform [6, Vol.<br />

I, p. 182, Entry 4.14 (9)]:<br />

∫ ∞<br />

0<br />

( ρ<br />

) [ ν<br />

e −st t λ−1 J ν (ρt)dt = s<br />

−λ<br />

Ɣ(ν + λ) 1<br />

2s Ɣ(ν + 1) 2 F 1<br />

2 (ν+λ), 1 ]<br />

(ν+λ+1); ν+1;−ρ2<br />

2 s 2<br />

( )<br />

R(s) > |I(ρ)|; R(ν + λ) > 0 .<br />

Making use <strong>of</strong> the known result (12) <strong>and</strong> the Legendre duplication formula for the gamma function,<br />

it follows that<br />

√ ∫ π ∞<br />

t μ+1/2 (∫ ∞<br />

e −xr<br />

)<br />

L(S μ+1 (r))(x) =<br />

Ɣ(μ + 1) 0 e t − 1 0 (2r) J μ−1/2(rt)dr dt<br />

μ−1/2<br />

√ ∫ π<br />

∞<br />

t μ+1/2 (∫ ∞<br />

)<br />

=<br />

e −xr r 1/2−μ J<br />

2 μ−1/2 Ɣ(μ + 1) 0 e t μ1/2 (rt)dr dt<br />

− 1 0<br />

√ ∫ π<br />

∞<br />

t 2μ ( 1<br />

=<br />

2 2μ−1 xƔ(μ + 1)Ɣ (μ + 1/2) 0 e t − 1 2 F 1<br />

2 , 1; μ + 1 2 )<br />

2 ;−t dt<br />

x 2<br />

∫<br />

2 ∞<br />

t 2μ (<br />

=<br />

xƔ(2μ + 1) e t − 1 2 F 1 1, 1 2 ; μ + 1 2 )<br />

2 ;−t dt, (13)<br />

x 2<br />

provided that each member <strong>of</strong> (13) exists.<br />

Similarly, we have<br />

L( ˜S μ+1 (r))(x) =<br />

where ˜S μ+1 (r) is the alternating version <strong>of</strong> S μ+1 (r).<br />

0<br />

(12)<br />

∫<br />

2 ∞<br />

t 2μ (<br />

xƔ(2μ + 1) 0 e t + 1 2 F 1 1, 1 2 ; μ + 1 2 )<br />

2 ;−t dt, (14)<br />

x 2


4 N. Elezović et al.<br />

151<br />

152<br />

153<br />

154<br />

155<br />

156<br />

157<br />

158<br />

159<br />

160<br />

161<br />

162<br />

163<br />

164<br />

165<br />

166<br />

167<br />

168<br />

169<br />

170<br />

171<br />

172<br />

173<br />

174<br />

175<br />

176<br />

177<br />

178<br />

179<br />

180<br />

181<br />

182<br />

183<br />

184<br />

185<br />

186<br />

187<br />

188<br />

189<br />

190<br />

191<br />

192<br />

193<br />

194<br />

195<br />

196<br />

197<br />

198<br />

199<br />

200<br />

Using the same procedure as described above, each <strong>of</strong> the following two Laplace <strong>transforms</strong><br />

can be derived:<br />

L(S μ<br />

(α,0) (r;{k 2/α }))(x) = 2√ ∫<br />

π ∞<br />

t μ−1/2 (∫ ∞<br />

e −xr<br />

)<br />

Ɣ(μ) 0 e t − 1 0 (2r) J μ−1/2(rt)dr dt<br />

μ−1/2<br />

2 √ ∫<br />

π ∞<br />

t μ−1/2 (∫ ∞<br />

)<br />

=<br />

e −xr r 1/2−μ J<br />

2 μ−1/2 Ɣ(μ) 0 e t μ−1/2 (rt)dr dt<br />

− 1 0<br />

∫<br />

2 ∞<br />

t 2μ−1 (<br />

=<br />

xƔ(2μ) 0 e t − 1 2 F 1 1, 1 2 ; μ + 1 2 )<br />

2 ;−t dt (15)<br />

x 2<br />

<strong>and</strong><br />

∫<br />

L( ˜S μ (α,0) (r;{k 2/α 2 ∞<br />

t 2μ−1 (<br />

}))(x) =<br />

xƔ(2μ) 0 e t + 1 2 F 1 1, 1 2 ; μ + 1 2 )<br />

2 ;−t dt, (16)<br />

x 2<br />

where ˜S μ<br />

(α,0) (r;{k 2/α }) is the alternating version <strong>of</strong> S μ (α,0) (r;{k 2/α }).<br />

III. We next recall the following <strong>integral</strong> representation from the work <strong>of</strong> Srivastava <strong>and</strong><br />

Tomovski [15]:<br />

S (α,β)<br />

μ (r;{k q/α }) =<br />

2<br />

Ɣ (q [μ − β/α])<br />

· 1F q<br />

[μ; <br />

∫ ∞<br />

x q(μ−β/α)−1<br />

0 e x − 1<br />

(<br />

q; q<br />

[<br />

μ − β α<br />

])<br />

;−r 2 ( x<br />

q<br />

where, for convenience, (q; λ) abbreviates the array <strong>of</strong> q parameters:<br />

λ<br />

q , λ + 1 ,..., λ + q − 1<br />

q<br />

q<br />

For q = 2, we find from (17) that<br />

S (α,β)<br />

μ (r;{k 2/α }) =<br />

(q ∈ N).<br />

∫<br />

2<br />

∞<br />

x 2(μ−β/α)−1<br />

Ɣ (2 [μ − β/α]) 0 e x − 1<br />

(<br />

· 1F 2 μ; μ − β α ,μ− β α + 1 x 2<br />

2 ;−r2 4<br />

(<br />

r, α, β ∈ R + ; μ − β α > 1 )<br />

.<br />

2<br />

) q ]<br />

dx, (17)<br />

)<br />

dx (18)<br />

The following hypergeometric <strong>integral</strong> formula involving the Laplace–Mellin transform is<br />

well-known (see, for example, [7, p. 60]):<br />

(<br />

p+2F q σ, σ + 1 ) ∫ ∞<br />

2 ,α p; β q ;− 4ω2 = zσ<br />

e −zt t σ −1 (<br />

pF<br />

z 2 q αp ; β q ;−ω 2 t 2) dt (19)<br />

Ɣ(σ)<br />

(<br />

R(σ ) > 0; z ̸= 0; p ≦ q − 2; |arg(z)| < π 2<br />

which, for σ = 1, yields the special case given below:<br />

(<br />

p+2F q 1, 3 ) ∫ ∞<br />

2 ,α p; β q ;− 4ω2 = z e −zt (<br />

pF<br />

z 2 q αp ; β q ;−ω 2 t 2) dt (20)<br />

0<br />

(<br />

z ̸= 0; p ≦ q − 2; |arg(z)| < π )<br />

,<br />

2<br />

0<br />

)<br />

,


<strong>Integral</strong> Transforms <strong>and</strong> Special Functions 5<br />

201<br />

202<br />

203<br />

204<br />

205<br />

206<br />

207<br />

208<br />

209<br />

210<br />

211<br />

212<br />

213<br />

214<br />

215<br />

216<br />

217<br />

218<br />

219<br />

220<br />

221<br />

222<br />

223<br />

224<br />

225<br />

226<br />

227<br />

228<br />

229<br />

230<br />

231<br />

232<br />

233<br />

234<br />

235<br />

236<br />

237<br />

238<br />

239<br />

240<br />

241<br />

242<br />

243<br />

244<br />

245<br />

246<br />

247<br />

248<br />

249<br />

250<br />

where α p <strong>and</strong> β q denote the p- <strong>and</strong> q-parameter arrays:<br />

α 1 ,...,α p <strong>and</strong> β 1 ,...,β q ,<br />

respectively. Indeed, under <strong>some</strong> additional parametric constraints, the hypergeometric <strong>integral</strong><br />

formulas (19) <strong>and</strong> (20) hold true also when p = q − 1 (see, for details, [7, p. 60]; see also Equation<br />

(23) below).<br />

In light <strong>of</strong> the hypergeometric <strong>integral</strong> formula (20), we find that<br />

<strong>and</strong><br />

L(S μ (α,β) (r;{k q/α 2<br />

}))(x) =<br />

Ɣ (q [μ − β/α]) 0<br />

[∫ ∞<br />

· e −rx 1F q<br />

[μ; <br />

=<br />

L( ˜S (α,β)<br />

μ (r;{k q/α }))(x) =<br />

0<br />

2<br />

xƔ (q [μ − β/α])<br />

· 3F q<br />

[<br />

1, 3 2 ,μ; (q; q<br />

∫<br />

2<br />

∞<br />

xƔ (q [μ − β/α])<br />

· 3F q<br />

[<br />

1, 3 2 ,μ; (q; q<br />

∫ ∞<br />

t q(μ−β/α)−1<br />

e t − 1<br />

(<br />

q; q<br />

[<br />

μ − β α<br />

∫ ∞<br />

t q(μ−β/α)−1<br />

0 e t − 1<br />

0<br />

[<br />

μ − β α<br />

t q(μ−β/α)−1<br />

e t + 1<br />

[<br />

μ − β α<br />

]) ( ) t q ] ]<br />

;−r 2 dr dt<br />

q<br />

])<br />

;− 4 x 2 ( t<br />

q<br />

])<br />

;− 4 x 2 ( t<br />

q<br />

) q ]<br />

dt (q ≧ 3)<br />

) q ]<br />

dt (q ≧ 3).<br />

Next, by using the following special case a known Laplace transform <strong>of</strong> the class (20) when<br />

p − 1 = q = 2 (see [7, p. 60]):<br />

we obtain<br />

(<br />

3F 2 1, 3 )<br />

2 ,α 1; β 1 ,β 2 ;− 4ω2 = z<br />

z 2<br />

L(S (α,β)<br />

μ (r;{k 2/α }))(x) =<br />

=<br />

∫ ∞<br />

(z ̸= 0; R(z) > 2|R(ω)| ≧ 0 ) ,<br />

2<br />

Ɣ (2 [μ − β/α])<br />

[∫ ∞<br />

·<br />

0<br />

0<br />

(21)<br />

(22)<br />

e −zt 1F 2<br />

(<br />

α1 ; β 1 ,β 2 ;−ω 2 t 2) dt (23)<br />

∫ ∞<br />

t 2(μ−β/α)−1<br />

0 e t − 1<br />

e −rx 2F 1<br />

(<br />

μ; μ − β/α, μ − β α + 1 2 ;−r2 t 2<br />

2<br />

xƔ (2 [μ − β/α])<br />

∫ ∞<br />

t 2(μ−β/α)−1<br />

0 e t − 1<br />

4<br />

) ]<br />

dr dt<br />

· 3F 2<br />

(<br />

1, 3 2 ,μ; μ − β α ,μ− β α + 1 2 ;−t 2<br />

x 2 )<br />

dt (24)


6 N. Elezović et al.<br />

251<br />

252<br />

253<br />

254<br />

255<br />

256<br />

257<br />

258<br />

259<br />

260<br />

261<br />

262<br />

263<br />

264<br />

265<br />

266<br />

267<br />

268<br />

269<br />

270<br />

271<br />

272<br />

273<br />

274<br />

275<br />

276<br />

277<br />

278<br />

279<br />

280<br />

281<br />

282<br />

283<br />

284<br />

285<br />

286<br />

287<br />

288<br />

289<br />

290<br />

291<br />

292<br />

293<br />

294<br />

295<br />

296<br />

297<br />

298<br />

299<br />

300<br />

<strong>and</strong><br />

∫<br />

L( ˜S μ (α,β) (r;{k 2/α 2<br />

∞<br />

t 2(μ−β/α)−1<br />

}))(x) =<br />

xƔ (2 [μ − β/α]) 0 e t + 1<br />

(<br />

· 3F 2 1, 3 2 ,μ; μ − β α ,μ− β α + 1 2 )<br />

2 ;−t dt. (25)<br />

x 2<br />

IV. The following <strong>integral</strong> representation was derived by Srivastava <strong>and</strong> Tomovski [15]:<br />

S (α,β)<br />

μ (r;{k γ }) = 2<br />

Ɣ(μ)<br />

∫ ∞<br />

x γ (μα−β)−1<br />

0 e x − 1<br />

1 1 [(μ, 1); (γ (μα − β),γα);−r 2 x γα ]dx (26)<br />

(<br />

r, α, β, γ ∈ R + ; γ (μα − β) > 1 ) ,<br />

where p q denotes the Fox–Wright generalization <strong>of</strong> the hypergeometric function p F q with<br />

p numerator <strong>and</strong> q denominator parameters (see, for example, [13, p. 19]). Moreover, the Laplace–<br />

Mellin transform <strong>of</strong> the Fox–Wright p q -function can be found in the work <strong>of</strong> Srivastava et al. [14,<br />

p. 944, Equation (6.1)]:<br />

∫ ∞<br />

[ ]<br />

e −st t ρ−1 (a1 ,A 1 ),...,(a p ,A p )<br />

p q 0<br />

(b 1 ,B 1 ),...,(b q ,B q ) ∣ ztσ dt<br />

⎡<br />

⎤<br />

(ρ, σ ), (a 1 ,A 1 ),...,(a p ,A p )<br />

= s −ρ p+1 q<br />

⎣<br />

z<br />

⎦<br />

(b 1 ,B 1 ),...,(b q ,B q ) ∣ s σ<br />

(<br />

R(ρ) > 0; R(s) > 0; σ ∈ R<br />

+ ) . (27)<br />

Thus, by applying (26) as well as (27) with ρ = 1, we get<br />

L(S μ (α,β) (r;{k γ }))(x) = 2<br />

Ɣ(μ)<br />

(∫ ∞<br />

·<br />

0<br />

= 1<br />

xƔ(μ)<br />

∫ ∞<br />

t γ (μα−β)−1<br />

0 e t − 1<br />

e −rx 1 1 [(μ, 1); (γ (μα − β),γα);−r 2 t γα ]dr<br />

∫ ∞<br />

t γ (μα−β)−1<br />

0 e t − 1<br />

)<br />

dt<br />

[<br />

· 2 1 (1, 2); (μ, 1); ( γ (μα − β),γα ) ;− t γα ]<br />

dt<br />

x 2 (28)<br />

<strong>and</strong><br />

L( ˜S μ (α,β) (r;{k γ }))(x) = 1 ∫ ∞<br />

t γ (μα−β)−1<br />

xƔ(μ) 0 e t + 1<br />

[<br />

· 2 1 (1, 2); (μ, 1); ( γ (μα − β),γα ) ;− t γα ]<br />

dt. (29)<br />

x 2<br />

V. About a decade ago, in their investigation <strong>of</strong> the complex-index Euler function E α (z), Butzer<br />

et al. [1] introduced the following special function:<br />

(ω) = 2<br />

∫ 1/2<br />

0+<br />

sin h(ωu) cot(πu)du (ω ∈ C), (30)<br />

which they called the complete Omega function. Recently, Butzer et al. [2] made use <strong>of</strong> an<br />

<strong>integral</strong> representation for the alternating Mathieu series ˜S μ (ω) in order to derive the following


<strong>Integral</strong> Transforms <strong>and</strong> Special Functions 7<br />

301<br />

302<br />

303<br />

304<br />

305<br />

306<br />

307<br />

308<br />

309<br />

310<br />

311<br />

312<br />

313<br />

314<br />

315<br />

316<br />

317<br />

318<br />

319<br />

320<br />

321<br />

322<br />

323<br />

324<br />

325<br />

326<br />

327<br />

328<br />

329<br />

330<br />

331<br />

332<br />

333<br />

334<br />

335<br />

336<br />

337<br />

338<br />

339<br />

340<br />

341<br />

342<br />

343<br />

344<br />

345<br />

346<br />

347<br />

348<br />

349<br />

350<br />

new <strong>integral</strong> representation for the Omega function:<br />

(x) = 2 ( x<br />

) ∫ ∞<br />

( ) xt dt<br />

π sin h cos<br />

2<br />

2π e t + 1<br />

Since<br />

∫ ∞<br />

0<br />

( x<br />

) ( xt<br />

e −sx sin h cos<br />

2 2π<br />

= 1 2<br />

=<br />

∫ ∞<br />

0<br />

e −(2s−1)x/2 cos<br />

0<br />

)<br />

dx<br />

( xt<br />

2π<br />

)<br />

dx − 1 2<br />

∫ ∞<br />

0<br />

(x ∈ R). (31)<br />

( xt<br />

e −(2s+1)x/2 cos<br />

2π<br />

2s − 1<br />

(2s − 1) 2 + t 2 /π 2 − 2s + 1<br />

(2s + 1) 2 + t 2 /π 2 (R(s) > 1 2<br />

)<br />

dx<br />

)<br />

, (32)<br />

the Laplace transform for the Omega function (x) in (30) is given by<br />

∫ ∞<br />

∫ ∞<br />

[ 2<br />

( x<br />

) ∫<br />

L((x))(s) = e −sx (x)dx = e −sx ∞<br />

( ) ]<br />

xt dt<br />

0<br />

0 π sinh cos<br />

dx<br />

2 0 2π e t + 1<br />

= 2 ∫ ∞<br />

[∫ ∞<br />

( ) xt<br />

( x<br />

) ] dt<br />

e −sx cos sinh dx<br />

π 0 0<br />

2π 2 e t + 1<br />

∫<br />

2(2s − 1) ∞<br />

dt<br />

=<br />

π [(2s − 1) 2 + t 2 /π 2 ](e t + 1)<br />

−<br />

2(2s + 1)<br />

π<br />

0<br />

∫ ∞<br />

0<br />

dt<br />

[(2s + 1) 2 + t 2 /π 2 ](e t + 1) . (33)<br />

Several other <strong>integral</strong> <strong>representations</strong> <strong>of</strong> the Laplace type can be derived for the various Mathieu<br />

type series in a similar manner. The details involved in all such derivations are being left as an<br />

exercise for the interested reader.<br />

3. The Fourier <strong>transforms</strong><br />

I. In this section, we shall make use <strong>of</strong> the available tables <strong>of</strong> Fourier sine <strong>and</strong> cosine <strong>transforms</strong><br />

(see, for example, [6, Vol. I, p. 78, Entry 2.6 (1)] <strong>and</strong> [6, Vol. I, p. 18, Entry 1.6 (1)]). First <strong>of</strong> all,<br />

the Fourier sine transform <strong>of</strong> the Mathieu series S(r) is given by<br />

∫ ∞<br />

F s (S(r))(x) = sin(xr)S(r)dr<br />

0<br />

∫ ∞<br />

( ∫ 1 ∞<br />

)<br />

t sin(rt)<br />

= sin(xr)<br />

0 r 0 e t − 1 dt dr<br />

∫ ∞<br />

(∫<br />

t ∞<br />

)<br />

sin(rt) sin(xr)<br />

=<br />

dr dt<br />

0 e t − 1 0 r<br />

= 1 (∫ ∞<br />

∣ )<br />

2 · PV t ∣∣∣<br />

e t − 1 ln t + x<br />

t − x ∣ dt (x > 0), (34)<br />

where the Cauchy Principal Value (PV) <strong>of</strong> the last <strong>integral</strong> is assumed to exist.<br />

0


8 N. Elezović et al.<br />

351<br />

352<br />

353<br />

354<br />

355<br />

356<br />

357<br />

358<br />

359<br />

360<br />

361<br />

362<br />

363<br />

364<br />

365<br />

366<br />

367<br />

368<br />

369<br />

370<br />

371<br />

372<br />

373<br />

374<br />

375<br />

376<br />

377<br />

378<br />

379<br />

380<br />

381<br />

382<br />

383<br />

384<br />

385<br />

386<br />

387<br />

388<br />

389<br />

390<br />

391<br />

392<br />

393<br />

394<br />

395<br />

396<br />

397<br />

398<br />

399<br />

400<br />

For the Fourier cosine transform, we similarly find that<br />

F c (S(r))(x) =<br />

=<br />

=<br />

∫ ∞<br />

0<br />

∫ ∞<br />

0<br />

∫ ∞<br />

= π 4<br />

= π 2<br />

0<br />

∫ ∞<br />

cos(xr)S(r)dr<br />

( ∫ 1 ∞<br />

cos(xr)<br />

r 0<br />

(∫ ∞<br />

t<br />

e t − 1<br />

0<br />

∫ ∞<br />

x<br />

0<br />

)<br />

t sin(rt)<br />

e t − 1 dt dr<br />

sin(rt) cos(xr)<br />

dr<br />

r<br />

t<br />

[1 + sgn(t − x)]dt<br />

e t − 1<br />

)<br />

dt<br />

t<br />

dt<br />

e t − 1<br />

(x > 0). (35)<br />

II. In order to obtain the Fourier sine <strong>and</strong> the Fourier cosine <strong>transforms</strong> <strong>of</strong> S μ+1 (r), we first<br />

set ν = 1/2 <strong>and</strong> ν =−1/2 in the Sonine–Schafheitlin formula (see, for example, [18, p. 401,<br />

Equation 13.4 (2)]):<br />

∫ ∞<br />

0<br />

t −λ a μ Ɣ (μ + ν − λ + 1/2)<br />

J μ (at)J ν (bt)dt =<br />

2 λ b μ−λ+1 Ɣ(μ + 1)Ɣ (λ − μ + ν + 1/2)<br />

( μ + ν − λ + 1<br />

· 2F 1 , μ − ν − λ + 1 )<br />

; μ + 1; a2<br />

2<br />

2<br />

b 2<br />

( )<br />

R(μ + ν + 1) >R(λ) > −1; 0


<strong>Integral</strong> Transforms <strong>and</strong> Special Functions 9<br />

401<br />

402<br />

403<br />

404<br />

405<br />

406<br />

407<br />

408<br />

409<br />

410<br />

411<br />

412<br />

413<br />

414<br />

415<br />

416<br />

417<br />

418<br />

419<br />

420<br />

421<br />

422<br />

423<br />

424<br />

425<br />

426<br />

427<br />

428<br />

429<br />

430<br />

431<br />

432<br />

433<br />

434<br />

435<br />

436<br />

437<br />

438<br />

439<br />

440<br />

441<br />

442<br />

443<br />

444<br />

445<br />

446<br />

447<br />

448<br />

449<br />

450<br />

<strong>and</strong> [6, Vol. II, p. 37, Entry 8.7 (32)]<br />

∫ ∞<br />

√<br />

πb<br />

t −λ−1/2 J μ (at) cos(bt)dt =<br />

0<br />

2 · a μ Ɣ [1/2 (μ − λ + 1/2)]<br />

2 λ b μ−λ+1 Ɣ(μ + 1)Ɣ [1/2 (λ − μ + 1/2)]<br />

[ ( 1<br />

· 2F 1 μ − λ + 1 )<br />

, 1 (<br />

μ − λ + 3 ) ]<br />

; μ + 1; a2<br />

2 2 2 2 b 2<br />

( (<br />

R μ + 1 )<br />

)<br />

> R(λ) > −1; 0


10 N. Elezović et al.<br />

451<br />

452<br />

453<br />

454<br />

455<br />

456<br />

457<br />

458<br />

459<br />

460<br />

461<br />

462<br />

463<br />

464<br />

465<br />

466<br />

467<br />

468<br />

469<br />

470<br />

471<br />

472<br />

473<br />

474<br />

475<br />

476<br />

477<br />

478<br />

479<br />

480<br />

481<br />

482<br />

483<br />

484<br />

485<br />

486<br />

487<br />

488<br />

489<br />

490<br />

491<br />

492<br />

493<br />

494<br />

495<br />

496<br />

497<br />

498<br />

499<br />

500<br />

<strong>and</strong><br />

F c (S μ+1 (r))(x) =<br />

√ π · 2<br />

1/2−μ<br />

∫ ∞<br />

t μ+1/2<br />

cos(xr)S μ+1 (r)dr =<br />

0<br />

Ɣ(μ + 1) x e t − 1 c(μ; x,t)dt<br />

(x > 0; μ>0), (47)<br />

∫ ∞<br />

where (1)<br />

s (μ; x,t), (2)<br />

s (μ; x,t) <strong>and</strong> c (μ; x,t) are defined by (44), (45) <strong>and</strong> (46), respectively.<br />

In a similar manner, we find from the <strong>integral</strong> representation (11) that<br />

<strong>and</strong><br />

F s<br />

(<br />

S<br />

(α,0)<br />

μ (r;{k 2/α }) ) (x) =<br />

∫ ∞<br />

0<br />

sin(xr)S μ<br />

(α,0) (r;{k 2/α })dr<br />

∫ ∞<br />

t μ−1/2 (∫ ∞<br />

)<br />

r 1/2−μ J<br />

Ɣ(μ) 0 e t μ−1/2 (rt) sin(xr)dr dt<br />

− 1 0<br />

( ∫ x<br />

t μ−1/2<br />

Ɣ(μ) 0 e t − 1 (1) s (μ; x,t)dt<br />

t μ−1/2<br />

)<br />

(μ; x,t)dt<br />

√ π · 2<br />

3/2−μ<br />

=<br />

√ π · 2<br />

3/2−μ<br />

=<br />

+<br />

∫ ∞<br />

x<br />

e t − 1 (2) s<br />

)<br />

(<br />

x>0; μ> 1 2<br />

F c<br />

(<br />

S<br />

(α,0)<br />

μ (r;{k 2/α }) ) (x) =<br />

∫ ∞<br />

0<br />

cos(xr)S μ<br />

(α,0) (r;{k 2/α })dr<br />

√ π · 2<br />

3/2−μ<br />

=<br />

Ɣ(μ)<br />

∫ ∞<br />

t μ−1/2<br />

x<br />

(<br />

x>0; μ> 1 2<br />

(48)<br />

e t − 1 c(μ; x,t)dt<br />

)<br />

, (49)<br />

where (1)<br />

s (μ; x,t), (2)<br />

s (μ; x,t) <strong>and</strong> c (μ; x,t) are defined, as before, by (44), (45) <strong>and</strong> (46),<br />

respectively.<br />

III. In the evaluation <strong>of</strong> the Fourier sine <strong>and</strong> the Fourier cosine <strong>transforms</strong> <strong>of</strong> the general<br />

Mathieu Series S μ<br />

(α,β) (r;{k 2/α }), we shall make use <strong>of</strong> the following <strong>integral</strong> formulas proven<br />

earlier by Miller <strong>and</strong> Srivastava [9, pp. 225 <strong>and</strong> 226]:<br />

⎧<br />

∫ ∞<br />

⎨ (1)<br />

sin(2ax) 1 F 2 (α; β,γ;−b 2 x 2 s (α, β, γ ; a,b) (0


<strong>Integral</strong> Transforms <strong>and</strong> Special Functions 11<br />

501<br />

502<br />

503<br />

504<br />

505<br />

506<br />

507<br />

508<br />

509<br />

510<br />

511<br />

512<br />

513<br />

514<br />

515<br />

516<br />

517<br />

518<br />

519<br />

520<br />

521<br />

522<br />

523<br />

524<br />

525<br />

526<br />

527<br />

528<br />

529<br />

530<br />

531<br />

532<br />

533<br />

534<br />

535<br />

536<br />

537<br />

538<br />

539<br />

540<br />

541<br />

542<br />

543<br />

544<br />

545<br />

546<br />

547<br />

548<br />

549<br />

550<br />

where, <strong>and</strong> in what follows, (1)<br />

s (α, β, γ ; a,b), (2)<br />

s (α, β, γ ; a,b) <strong>and</strong> c (α, β, γ ; a,b) are<br />

given by<br />

(1)<br />

s (α, β, γ ; a,b) := 1 ( )<br />

1 b2<br />

2a 3 F 2 , 1,α; β,γ;<br />

2 a 2<br />

(<br />

0


12 N. Elezović et al.<br />

551<br />

552<br />

553<br />

554<br />

555<br />

556<br />

557<br />

558<br />

559<br />

560<br />

561<br />

562<br />

563<br />

564<br />

565<br />

566<br />

567<br />

568<br />

569<br />

570<br />

571<br />

572<br />

573<br />

574<br />

575<br />

576<br />

577<br />

578<br />

579<br />

580<br />

581<br />

582<br />

583<br />

584<br />

585<br />

586<br />

587<br />

588<br />

589<br />

590<br />

591<br />

592<br />

593<br />

594<br />

595<br />

596<br />

597<br />

598<br />

599<br />

600<br />

<strong>and</strong><br />

F c<br />

(<br />

S<br />

(α,β)<br />

μ (r;{k 2/α }) ) (x) =<br />

∫ ∞<br />

0<br />

cos(xr)S μ<br />

(α,β) (r;{k 2/α })dr<br />

√ π · 2<br />

3/2−μ<br />

=<br />

Ɣ(μ)<br />

(<br />

x>0; μ>max<br />

∫ ∞<br />

t μ−1/2<br />

x<br />

where the -functions are given by (53), (54) <strong>and</strong> (55) with, <strong>of</strong> course,<br />

a = x 2 ,b= t 2 ,α= μ, β = μ − β α<br />

(<br />

μ, μ − β α ,μ− β α + 1 2 ; x 2 , t )<br />

dt<br />

2<br />

e t − 1 c<br />

{ 2β<br />

α , β α + 1 })<br />

, (57)<br />

2<br />

<strong>and</strong> γ = μ − β α + 1 2 . (58)<br />

In their special case when β = 0, our last results (55) <strong>and</strong> (56) would reduce immediately to<br />

(49) <strong>and</strong> (50), respectively.<br />

4. The Mellin <strong>transforms</strong><br />

I. In order to evaluate the Mellin <strong>transforms</strong> <strong>of</strong> S(r) <strong>and</strong> ˜S(r), we apply the familiar <strong>integral</strong><br />

formula [6, Vol. I, p. 68, Entry 2.3 (1)]:<br />

We thus obtain<br />

<strong>and</strong><br />

∫ ∞<br />

0<br />

sin t<br />

t ν<br />

M(S(r))(s) =<br />

dt = Ɣ(1 − ν)cos<br />

∫ ∞<br />

0<br />

∫ ∞<br />

r s−1 S(r)dr =<br />

( πν<br />

) ( )<br />

0 < R(ν) < 2 . (59)<br />

2<br />

∫ ∞<br />

(∫<br />

t ∞<br />

sin(rt)<br />

e t − 1 0 r 2−s<br />

0<br />

( 1<br />

r s−1 r<br />

)<br />

dr dt<br />

∫ ∞<br />

=<br />

0<br />

( π<br />

) ∫ ∞<br />

= Ɣ(s − 1) cos<br />

2 (2 − s) t<br />

0 e t − 1 dt<br />

( πs<br />

)<br />

=−Ɣ(s − 1)Ɣ(2)ζ(2) cos<br />

2<br />

=<br />

π 3 ( πs<br />

)<br />

12Ɣ(2 − s) csc 2<br />

M( ˜S(r))(s) =−Ɣ(s − 1) cos<br />

0<br />

t sin(rt)<br />

e t − 1 dt )<br />

dr<br />

(0 < R(s) < 2) (60)<br />

( πs<br />

) ∫ ∞<br />

2<br />

=−Ɣ(2)η(2)Ɣ(s − 1) cos<br />

=<br />

π 3<br />

24Ɣ(2 − s)<br />

( πs<br />

)<br />

2<br />

0<br />

t<br />

e t + 1 dt<br />

)<br />

( πs<br />

2<br />

(0 < R(s) < 2), (61)


<strong>Integral</strong> Transforms <strong>and</strong> Special Functions 13<br />

601<br />

602<br />

603<br />

604<br />

605<br />

606<br />

607<br />

608<br />

609<br />

610<br />

611<br />

612<br />

613<br />

614<br />

615<br />

616<br />

617<br />

618<br />

619<br />

620<br />

621<br />

622<br />

623<br />

624<br />

625<br />

626<br />

627<br />

628<br />

629<br />

630<br />

631<br />

632<br />

633<br />

634<br />

635<br />

636<br />

637<br />

638<br />

639<br />

640<br />

641<br />

642<br />

643<br />

644<br />

645<br />

646<br />

647<br />

648<br />

649<br />

650<br />

where ζ(s)<strong>and</strong> η(s) denote the Riemann Zeta <strong>and</strong> the Dirichlet Eta functions, respectively, defined<br />

by (see, for example, [12, pp. 96 <strong>and</strong> 139])<br />

∞∑ 1 ( )<br />

ζ(s) := R(s) > 1 <strong>and</strong> η(s) := ( 1 − 2 1−s) ∞∑ (−1) n−1<br />

ζ(s) =<br />

(R(s) > 0).<br />

n s n s n=1<br />

n=1<br />

(62)<br />

II. Using the Weber–Sonine <strong>integral</strong> (see, for example, [18, p. 391, Equation 13.24 (1)]; see also<br />

[6, Vol. I, p. 326, Entry 6.8 (1)]):<br />

∫ ∞<br />

0<br />

we find that<br />

M(S μ+1 (r))(s) =<br />

t ρ−1 J μ (at)dt =<br />

∫ ∞<br />

0<br />

2ρ−1 Ɣ(μ + ρ/2)<br />

a ρ Ɣ(1 + μ − ρ/2)<br />

r s−1 S μ+1 (r)dr<br />

(<br />

a>0; −R(μ) < R(ρ) < 3 )<br />

, (63)<br />

2<br />

√ ∫ π<br />

∞<br />

t μ+1/2 (∫ ∞<br />

)<br />

=<br />

r s−μ−1/2 J<br />

2 μ−1/2 Ɣ(μ + 1) 0 e t μ−1/2 (rt)dr dt<br />

− 1 0<br />

√ ∫ π<br />

=<br />

2 μ−1/2 Ɣ(μ + 1) · 2s−μ−1/2 Ɣ(s/2) ∞<br />

t 2μ−s<br />

Ɣ(μ + 1 − s/2) 0 e t − 1 dt<br />

√ πƔ(s/2)<br />

=<br />

· Ɣ(2μ − s + 1) ζ(2μ − s + 1)<br />

2 2μ−s Ɣ(μ + 1)Ɣ(μ + 1 − s/2)<br />

( s<br />

= B<br />

2 ,μ− s )<br />

2 + 1 ( )<br />

ζ(2μ − s + 1) μ>0; 0 < R(s) 0<br />

)<br />

, (65)<br />

:= {0, −1, −2,...}). (66)<br />

III. Lastly, we recall that the Mellin transform <strong>of</strong> the Fox–Wright -function is given by (see,<br />

for example, [13, p. 15, Equation (2.4.1); p. 19, Equation (2.6.11)])<br />

∫ [ ]<br />

∞<br />

(a1 ,A<br />

t ρ−1 1 ),...,(a p ,A p )<br />

∏ p p q 0<br />

(b 1 ,B 1 ),...,(b q ,B q ) ∣ ztσ j=1<br />

dt =<br />

Ɣ(a j − A j ρ/σ)<br />

∏<br />

σz ρ q<br />

σ<br />

j=1 Ɣ(b (67)<br />

j − B j ρσ)<br />

(<br />

{ ( )}<br />

aj<br />

0 < R(ρ)


14 N. Elezović et al.<br />

651<br />

652<br />

653<br />

654<br />

655<br />

656<br />

657<br />

658<br />

659<br />

660<br />

661<br />

662<br />

663<br />

664<br />

665<br />

666<br />

667<br />

668<br />

669<br />

670<br />

671<br />

672<br />

673<br />

674<br />

675<br />

676<br />

677<br />

678<br />

679<br />

680<br />

681<br />

682<br />

683<br />

684<br />

685<br />

686<br />

687<br />

688<br />

689<br />

690<br />

691<br />

692<br />

693<br />

694<br />

695<br />

696<br />

697<br />

698<br />

699<br />

700<br />

By making use <strong>of</strong> the Mellin transform formula (66) in conjunction with the <strong>integral</strong><br />

representation (26), we obtain<br />

M ( S (α,β)<br />

μ (r;{k γ }) ) =<br />

∫ ∞<br />

= 2 ∫ ∞<br />

x γ (μα−β)−1<br />

Ɣ(μ) 0 e x − 1<br />

0<br />

r s−1 S μ<br />

(α,β) (r;{k γ })dr<br />

(∫ ∞<br />

0<br />

r s−1 [<br />

1 1 (μ, 1) ; (γ (μα − β) ,γα) ;−r 2 x γα] )<br />

dr dx<br />

Ɣ (s/2) Ɣ (μ − s/2)<br />

1<br />

x γ (μα−β)−γαs/2−1<br />

= ·<br />

dx<br />

Ɣ(μ) Ɣ (γ (μα − β) − γαs/2) 0 e x − 1<br />

( s<br />

= B<br />

2 ,μ− s ) (<br />

ζ γ (μα − β) − γαs ) (<br />

0 < R (s) < 2μ; γ ∈ R<br />

+ ) . (68)<br />

2 2<br />

Upon setting γ = q/α (q ∈ N) in (67), we readily get the following special case:<br />

M(S (α,β)<br />

μ (r;{k q/α })) =<br />

( s<br />

= B<br />

2 ,μ− s )<br />

ζ<br />

2<br />

∫ ∞<br />

0<br />

(<br />

q<br />

∫ ∞<br />

r s−1 S μ<br />

(α,β) ( {<br />

r; k<br />

q/α }) dr<br />

([<br />

μ − β α<br />

which, in the further special case when q = 2, yields<br />

M(S (α,β)<br />

μ (r;{k 2/α })) =<br />

( s<br />

= B<br />

2 ,μ− s )<br />

ζ<br />

2<br />

∫ ∞<br />

0<br />

(<br />

2<br />

]<br />

− s 2<br />

)) (0<br />

< R(s) < 2μ<br />

)<br />

, (69)<br />

r s−1 S μ<br />

(α,β) ( {<br />

r; k<br />

2/α }) dr<br />

[<br />

μ − β α<br />

]<br />

− s) (0<br />

< R(s) < 2μ<br />

)<br />

. (70)<br />

Alternatively, in view <strong>of</strong> the <strong>integral</strong> representation (68), the Mellin transform formula (68) can<br />

be proven directly by applying the relatively more familiar analogue <strong>of</strong> (66) for the generalized<br />

hypergeometric p F q -function <strong>and</strong> the Gauss–Legendre multiplication formula for the Gamma<br />

function [12, p. 8, Equation 1.1 (51)]:<br />

Acknowledgements<br />

Ɣ(mz) =<br />

mmz−1/2<br />

(2π) 1/2(m−1)<br />

m ∏<br />

j=1<br />

(<br />

Ɣ z + j − 1 )<br />

m<br />

(z ̸= 0, − 1 m , − 2 m , ··· ; m ∈ N )<br />

.<br />

The present investigation was supported, in part, by the Ministry <strong>of</strong> Education <strong>and</strong> Sciences <strong>of</strong> Macedonia <strong>and</strong> the Ministry<br />

<strong>of</strong> Education, Sciences <strong>and</strong> Sports <strong>of</strong> Croatia under Projects No. 05-437/1 <strong>and</strong> No. 13-272/1, <strong>and</strong> also, in part, by the<br />

Natural Sciences <strong>and</strong> Engineering Research Council <strong>of</strong> Canada under Grant OGP0007353.<br />

References<br />

[1] P.L. Butzer, S. Flocke, <strong>and</strong> M. Hauss, Euler functions E α (z) with complex α <strong>and</strong> applications, inApproximation,<br />

Probability <strong>and</strong> Related Fields (G.A.Anastassiou <strong>and</strong> S.T. Rachev, eds), Plenum Press, NewYork, 1994, pp. 127–150.<br />

[2] P.L. Butzer, T.K. Pogány, <strong>and</strong> H.M. Srivastava, A linear ODE for the Omega function associated with the Euler<br />

function E α (z) <strong>and</strong> the Bernoulli function B α (z), Appl. Math. Lett. 19 (2006), pp. 1073–1077.<br />

(71)


<strong>Integral</strong> Transforms <strong>and</strong> Special Functions 15<br />

1<br />

701<br />

702<br />

703<br />

704<br />

705<br />

706<br />

707<br />

708<br />

709<br />

710<br />

711<br />

712<br />

713<br />

714<br />

715<br />

716<br />

717<br />

718<br />

719<br />

720<br />

721<br />

722<br />

723<br />

724<br />

725<br />

726<br />

727<br />

728<br />

729<br />

730<br />

731<br />

732<br />

733<br />

734<br />

735<br />

736<br />

737<br />

738<br />

739<br />

740<br />

741<br />

742<br />

743<br />

744<br />

745<br />

746<br />

747<br />

748<br />

749<br />

750<br />

[3] P. Cerone <strong>and</strong> C.T. Lenard, On <strong>integral</strong> forms <strong>of</strong> generalised Mathieu series, J. Inequal. PureAppl. Math. 4(5) (2003),<br />

Article 100, pp. 1–11 (electronic).<br />

[4] P.H. Dian<strong>and</strong>a, Some inequalities related to an inequality <strong>of</strong> Mathieu, Math. Ann. 250 (1980), pp. 95–98.<br />

[5] O. Emersleben, Über die Reihe ∑ ∞<br />

k=1 k/(k 2 + c 2 ) 2 , Math. Ann. 125 (1952), pp. 165–171.<br />

[6] A. Erdélyi et al., Tables <strong>of</strong> <strong>Integral</strong> Transforms, Vols. I <strong>and</strong> II, McGraw-Hill Book Company, NewYork, Toronto <strong>and</strong><br />

London, 1954.<br />

[7] Y.L. Luke, The Special Functions <strong>and</strong> Their Approximations, Vol. I, Academic Press, New York <strong>and</strong> London, 1969.<br />

[8] E.L. Mathieu, Traité de Physique Mathématique. VI-VII: Theory de l’Elasticité des Corps Solides (Part 2), Gauthier-<br />

Villars, Paris, 1890.<br />

[9] A.R. Miller <strong>and</strong> H.M. Srivastava, On the Mellin transform <strong>of</strong> a product <strong>of</strong> hypergeometric functions, J. Austral. Math.<br />

Soc. Ser. B 40 (1998), pp. 222–237.<br />

[10] T.K. Pogány, H.M. Srivastava, <strong>and</strong> Ž. Tomovski, Some <strong>families</strong> <strong>of</strong> Mathieu a-series <strong>and</strong> alternating Mathieu a-series,<br />

Appl. Math. Comput. 173 (2006), pp. 69–108.<br />

[11] F. Qi, An <strong>integral</strong> expression <strong>and</strong> <strong>some</strong> inequalities <strong>of</strong> Mathieu type series, Rostock. Math. Kolloq. 58 (2004),<br />

pp. 37–46.<br />

[12] H.M. Srivastava <strong>and</strong> J. Choi, Series Associated with the Zeta <strong>and</strong> Related Functions, Kluwer Academic Publishers,<br />

Dordrecht, Boston <strong>and</strong> London, 2001.<br />

[13] H.M. Srivastava, K.C. Gupta, <strong>and</strong> S.P. Goyal, The H -Functions <strong>of</strong> One <strong>and</strong> Two Variables with Applications, South<br />

Asian Publishers, New Delhi <strong>and</strong> Madras, 1982.<br />

[14] H.M. Srivastava, R.K. Saxena, <strong>and</strong> C. Ram, A unified presentation <strong>of</strong> the Gamma-type functions occurring in<br />

diffraction theory <strong>and</strong> associated probability distributions, Appl. Math. Comput. 162 (2005), pp. 931–947.<br />

[15] H.M. Srivastava <strong>and</strong> Ž. Tomovski, Some problems <strong>and</strong> solutions involving Mathieu’s series <strong>and</strong> its generalizations,<br />

J. Inequal. Pure Appl. Math. 5(2) (2004), Article 45, pp. 1–13 (electronic).<br />

[16] Ž. Tomovski, New double inequality for Mathieu series, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. 15 (2004),<br />

pp. 79–83.<br />

[17] Ž. Tomovski, <strong>Integral</strong> <strong>representations</strong> <strong>of</strong> generalized Mathieu series via Mittag-Leffler type functions, Fract. Calc. Q1<br />

Appl. Anal. 10 (2007), pp. 127–138.<br />

[18] G.N. Watson, A Treatise on the Theory <strong>of</strong> Bessel Functions, 2nd edn. Cambridge University Press, Cambridge,<br />

London <strong>and</strong> New York, 1944.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!