24.12.2013 Views

Didactics of mathematics: more than mathematics and school! - CIMM

Didactics of mathematics: more than mathematics and school! - CIMM

Didactics of mathematics: more than mathematics and school! - CIMM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ZDM Mathematics Education (2007) 39:165–171<br />

DOI 10.1007/s11858-006-0016-x<br />

ORIGINAL ARTICLE<br />

<strong>Didactics</strong> <strong>of</strong> <strong>mathematics</strong>: <strong>more</strong> <strong>than</strong> <strong>mathematics</strong> <strong>and</strong> <strong>school</strong>!<br />

Rudolf Straesser<br />

Accepted: 22 December 2006 / Published online: 10 February 2007<br />

Ó FIZ Karlsruhe 2007<br />

Abstract In the discipline didactics <strong>of</strong> <strong>mathematics</strong>,<br />

the didactical triangle <strong>of</strong> subject–teacher–learner is<br />

sometimes too narrowly interpreted by shortening the<br />

human side <strong>of</strong> didactics <strong>of</strong> <strong>mathematics</strong> ( fi teacher–<br />

learner) to teaching <strong>and</strong> learning in institutionalised<br />

settings, especially <strong>school</strong>s. In his working group <strong>of</strong> the<br />

‘‘Institute for <strong>Didactics</strong> <strong>of</strong> Mathematics’’ (IDM) at Bielefeld<br />

University, Hans-Georg Steiner inserted good<br />

reasons <strong>and</strong> strong motivations to analyse technical <strong>and</strong><br />

vocational <strong>mathematics</strong> education as well as the vocational<br />

<strong>and</strong> everyday use <strong>of</strong> <strong>mathematics</strong>. In doing so, he<br />

helped developing research on teaching, learning <strong>and</strong><br />

use <strong>of</strong> <strong>mathematics</strong> outside <strong>school</strong>s. The text gives a<br />

short description <strong>of</strong> <strong>mathematics</strong> in technical <strong>and</strong><br />

vocational education <strong>and</strong> identifies major issues <strong>and</strong><br />

problems in this field <strong>of</strong> <strong>mathematics</strong> education: realistic<br />

modelling, situated <strong>mathematics</strong> <strong>and</strong> the hiding <strong>of</strong><br />

<strong>mathematics</strong> in black boxes as opposed to a utilitarian<br />

reduction <strong>of</strong> <strong>mathematics</strong> for the workplace. This implies<br />

widening the horizon <strong>of</strong> <strong>Didactics</strong> <strong>of</strong> Mathematic,<br />

opening a perspective on the concept <strong>of</strong> ‘‘Bildung’’<br />

much appreciated by Hans-Georg Steiner.<br />

1 A narrow definition <strong>of</strong> didactics <strong>of</strong> <strong>mathematics</strong>:<br />

the didactic triangle<br />

At least in the German or French speaking communities<br />

<strong>of</strong> didactics <strong>of</strong> <strong>mathematics</strong> (or: <strong>mathematics</strong><br />

education research—as it is <strong>more</strong> common in English<br />

speaking communities), the basic research questions<br />

are sometimes identified using the ‘‘didactical triangle’’<br />

<strong>of</strong> learner–teacher–subject matter, with <strong>mathematics</strong> as<br />

subject matter taught (for a prominent example see the<br />

introduction to Chevallard 1985/1991). This may look<br />

like Fig. 1.<br />

Such a description has the advantage <strong>of</strong> clearly<br />

showing that didactics <strong>of</strong> <strong>mathematics</strong> has to systematically<br />

take into account the human side <strong>of</strong> the processes<br />

to be analysed, didactics <strong>of</strong> <strong>mathematics</strong> comes<br />

out as a human science. This is in sharp contrast to<br />

<strong>mathematics</strong> as a scientific discipline, which—at least<br />

in its publications tries to purify the text from all personal<br />

remnants (for an excellent analysis <strong>of</strong> this see<br />

Heintz 2000). Defining didactics <strong>of</strong> <strong>mathematics</strong> as a<br />

human science also ‘‘explains’’ a development clearly<br />

<strong>and</strong> recently identified within this discipline. If we take<br />

the 1960s <strong>and</strong> 1970s as the ‘‘era <strong>of</strong> the curriculum’’ (see<br />

Sfard 2005, who in her report described the ‘‘last two<br />

decades <strong>of</strong> the twentieth century’’ as ‘‘almost exclusively<br />

the era <strong>of</strong> the learner’’ <strong>and</strong> ‘‘we may now be<br />

living in the era <strong>of</strong> the teacher as the almost uncontested<br />

focus <strong>of</strong> researcher’s attention’’), we can see the<br />

ongoing importance <strong>of</strong> the didactical triangle as<br />

structuring didactics <strong>of</strong> <strong>mathematics</strong>. We can also see<br />

that didactics <strong>of</strong> <strong>mathematics</strong> first somehow neglected<br />

R. Straesser (&)<br />

Institut für Didaktik der Mathematik,<br />

Justus-Liebig-Universität Giessen<br />

<strong>and</strong> Luleå University <strong>of</strong> Technology,<br />

Gießen, Germany<br />

e-mail: rudolf.straesser@uni-giessen.de<br />

Fig. 1 Didactic triangle<br />

123


166 R. Straesser<br />

the human parts <strong>of</strong> its discipline by concentrating on<br />

the subject matter side via the focus on the curriculum.<br />

The focus on subject matter, the focus on <strong>mathematics</strong><br />

had different faces in different countries. In France for<br />

instance, the IREM movement clearly defined itself as<br />

coming from an epistemological fundament. Some<br />

French colleagues even suggested to define the<br />

fundamental ‘‘Didactique des Mathématiques’’ as<br />

‘‘experimental epistemology’’ (according to Brousseau<br />

(1986, p. 103): ‘‘épistémologie expérimentale’’). For<br />

Germany, we can exemplify the focus on subject matter<br />

with the then widely accepted definition ‘‘didactics<br />

<strong>of</strong> <strong>mathematics</strong> is the scientific development <strong>of</strong> courses<br />

to be effectively used to learn in the area <strong>of</strong> <strong>mathematics</strong>.<br />

It is also made up <strong>of</strong> the practical teaching <strong>of</strong><br />

such courses <strong>and</strong> their empirical evaluation. This includes<br />

reflections on the aims <strong>and</strong> subject matter<br />

selection <strong>of</strong> such courses’’ (‘‘Didaktik der Mathematik<br />

ist die Wissenschaft von der Entwicklung praktikabler<br />

Kurse für das Lernen im Bereich Mathematik sowie<br />

der praktischen Durchführung und empirischen<br />

Überprüfung der Kurse einschliesslich der Überlegungen<br />

zur Zielsetzung der Kurse und der St<strong>of</strong>fauswahl’’,<br />

see Griesel (1971, p. 296), nearly identical in<br />

Griesel (1974); a <strong>more</strong> recent, internationally read text<br />

is Wittmann (1992, English version 1995). In the<br />

beginning <strong>of</strong> the 1970s, Hans-Georg Steiner also took<br />

didactics <strong>of</strong> <strong>mathematics</strong> as fundamentally defined by<br />

the knowledge to be taught, by <strong>mathematics</strong>—as can<br />

be seen from his publication on ‘‘Bildung’’ (see Steiner<br />

1972). He described didactics <strong>of</strong> <strong>mathematics</strong> as<br />

‘‘thinking through <strong>mathematics</strong> under the perspective<br />

<strong>of</strong> the elementary <strong>and</strong> the motivation for the learner’’<br />

(loc. cit., free translation from p. 326; ‘‘Das Durchdenken<br />

des Gebäudes der Mathematik unter dem<br />

Gesichtspunkt des Elementaren und im Hinblick auf<br />

die Motivation des Lernenden gibt dieser Wissenschaft<br />

ein lebensnahes Fundament ...’’). Until around the end<br />

<strong>of</strong> the 1970s, the so-called St<strong>of</strong>fdidaktik was the predominant<br />

approach to didactics <strong>of</strong> <strong>mathematics</strong> in<br />

Germany, sometimes even reducing didactics <strong>of</strong><br />

<strong>mathematics</strong> to a mere ‘‘elementarisation’’ <strong>of</strong> <strong>mathematics</strong><br />

for the purpose <strong>of</strong> its teaching.<br />

At the end <strong>of</strong> the 1970s, Steiner had a broader definition<br />

<strong>of</strong> didactics <strong>of</strong> <strong>mathematics</strong>. He stated that the<br />

constraints <strong>and</strong> factors, which determine the classroom<br />

<strong>of</strong> <strong>mathematics</strong> <strong>and</strong> its changeability, belong to didactics<br />

<strong>of</strong> <strong>mathematics</strong>. This includes the complex processes <strong>of</strong><br />

social interaction related to the teaching <strong>and</strong> learning <strong>of</strong><br />

content matter <strong>and</strong> ways <strong>of</strong> behaviour (free translation<br />

by RS <strong>of</strong> ‘‘Mathematikdidaktik wird dabei in einem<br />

erweiterten Sinne verst<strong>and</strong>en -als vorwiegend materialorientierte<br />

Entwicklungsarbeit, Einfügung RS, wonach<br />

sowohl die den mathematischen Unterricht und<br />

seine Veränderbarkeit bestimmenden Bedingungen<br />

und Faktoren als auch die komplexen sozialen Interaktionsprozesse<br />

im Unterricht in ihrem Zusammenhang<br />

mit der Vermittlung und dem Erwerb von Inhalten und<br />

Verhaltensweisen wesentliche Best<strong>and</strong>teile bzw. Dimensionen<br />

der Untersuchungsgegenstände sind’’; see<br />

Steiner 1978, p. XL). Obviously, <strong>and</strong> probably in relation<br />

with the creation <strong>of</strong> the national research institute<br />

for didactics <strong>of</strong> <strong>mathematics</strong> (Institut für Didaktik der<br />

Mathematik—IDM) in Bielefeld, Steiner looked further<br />

<strong>than</strong> the curriculum <strong>and</strong> course developers abundant<br />

at that time—at least in Germany. Nevertheless,<br />

this perspective was still concentrating on the process <strong>of</strong><br />

teaching <strong>and</strong> learning in <strong>school</strong>s, institutions to <strong>of</strong>fer (an<br />

underst<strong>and</strong>ing <strong>of</strong>) <strong>mathematics</strong> to everybody.<br />

2 An opening: <strong>mathematics</strong> in technical<br />

<strong>and</strong> vocational education<br />

About 10 years later <strong>and</strong> in France, we find a slightly<br />

broader definition: didactics <strong>of</strong> <strong>mathematics</strong> (is) the<br />

science <strong>of</strong> the specific conditions <strong>of</strong> the diffusion <strong>of</strong><br />

mathematical knowledge useful for the functioning <strong>of</strong><br />

the human institutions (‘‘La didactique des mathématiques<br />

se place ... dans le cadre des sciences cognitives<br />

comme la science des conditions spécifiques de la diffusion<br />

des connaissances mathématiques utiles au<br />

fonctionnement des institutions humaines’’, see<br />

Brousseau 1994, p. 52). Here, didactics <strong>of</strong> <strong>mathematics</strong><br />

has left the narrow area <strong>of</strong> <strong>school</strong>s <strong>and</strong> looks into the<br />

diffusion <strong>of</strong> <strong>mathematics</strong> in society at large.<br />

Even if nearly invisible in his list <strong>of</strong> publications,<br />

Steiner too had crossed this borderline <strong>of</strong> <strong>school</strong>s in his<br />

activities: Because <strong>of</strong> his interest in the pedagogical<br />

concept <strong>of</strong> ‘‘Bildung’’ (see the text entitled ‘‘Mathematik<br />

und Bildung’’; Steiner 1972) <strong>and</strong> an ongoing<br />

German debate on a reform <strong>of</strong> upper secondary<br />

teaching in general, Steiner had taken the job <strong>of</strong> a<br />

scientific counsellor <strong>of</strong> a major German reform project—the<br />

‘‘Kollegstufe’’ piloted by Herwig Blankertz.<br />

Kollegstufe aimed at <strong>of</strong>fering upper secondary education<br />

for virtually everybody in need <strong>of</strong> this—from the<br />

future unskilled worker to the young adult planning an<br />

academic career. This reform project especially fitted<br />

with the intentions <strong>of</strong> the Bielefeld institute IDM <strong>and</strong><br />

Hans-Georg Steiner, because Blankertz wanted to<br />

build his project on the joint efforts <strong>of</strong> the different<br />

subject matter didactics (‘‘Fachdidaktiken’’) available<br />

at that time. Steiner integrated a <strong>mathematics</strong> teacher<br />

from the ‘‘Kollegstufe’’-project in his working group<br />

in Bielefeld after having made upper secondary<br />

123


<strong>Didactics</strong> <strong>of</strong> <strong>mathematics</strong>: <strong>more</strong> <strong>than</strong> <strong>mathematics</strong> <strong>and</strong> <strong>school</strong>! 167<br />

<strong>mathematics</strong> teaching <strong>and</strong> learning the field <strong>of</strong> research<br />

<strong>of</strong> his working group in the mid 1970s. With a first<br />

academic training as a <strong>mathematics</strong> teacher for Gymnasium,<br />

Steiner at that time broadened his interests to<br />

all types <strong>of</strong> education <strong>and</strong> training at the upper secondary<br />

level. As a consequence <strong>and</strong> in the German<br />

organisation <strong>of</strong> the educational system, this implied<br />

that <strong>mathematics</strong> also in technical <strong>and</strong> vocational<br />

education had to be studied in his working group. In<br />

addition to this <strong>and</strong> with the apprenticeship system as a<br />

major part <strong>of</strong> technical <strong>and</strong> vocational education <strong>and</strong><br />

training, the German upper secondary educational<br />

system <strong>of</strong>fered an opportunity not to study only classroom<br />

environments, but also look into <strong>mathematics</strong> in<br />

commercial <strong>and</strong> industrial settings.<br />

2.1 Vocational <strong>mathematics</strong>: a description<br />

Contrary to the practice <strong>of</strong> defining <strong>mathematics</strong> education<br />

at upper secondary by <strong>mathematics</strong> to prepare<br />

for university studies, looking into <strong>mathematics</strong> in<br />

technical <strong>and</strong> vocational education implies a different<br />

approach. The book edited by Bessot <strong>and</strong> Ridgeway<br />

(2000) gives an excellent overview <strong>of</strong> research into this<br />

field, showing that—apart from university bound<br />

young adults—one has to also care for the vast<br />

majority <strong>of</strong> adolescents who <strong>more</strong> or less directly go<br />

into the labour market <strong>and</strong> everyday life. In most,<br />

especially industrialised countries, some sort <strong>of</strong> mathematical<br />

knowledge is part <strong>of</strong> the vocational training—if<br />

there is an institutionalised training for<br />

vocations at all.<br />

Once upon a time, UNESCO described this training<br />

<strong>and</strong>/or education as ‘‘the educational process ...<br />

(which) involves, in addition to general education, the<br />

study <strong>of</strong> technologies <strong>and</strong> related sciences <strong>and</strong> the<br />

acquisition <strong>of</strong> practical skills <strong>and</strong> knowledge relating<br />

occupations in various sectors <strong>of</strong> economic <strong>and</strong> social<br />

life’’ (UNESCO 1978, p. 17). Even if it is methodologically<br />

rather difficult to describe the mathematical<br />

needs <strong>of</strong> the workplace, the common core <strong>of</strong> this part<br />

<strong>of</strong> <strong>mathematics</strong> was <strong>of</strong>ten described as ‘‘basic arithmetic,<br />

percentages <strong>and</strong> proportion, ... for some vocations,<br />

these techniques already seem to be all the<br />

<strong>mathematics</strong>’ topics needed’’ (cf. Straesser <strong>and</strong><br />

Zevenbergen 1996, p. 653). Apart from this, it seems to<br />

be very difficult to discern the ‘real’ pr<strong>of</strong>essional use <strong>of</strong><br />

<strong>mathematics</strong>. Straesser <strong>and</strong> Zevenbergen (loc. cit.) cite<br />

from the 1985-Cockcr<strong>of</strong>t-report: ‘‘It is therefore not<br />

possible to produce definitive lists <strong>of</strong> the mathematical<br />

topics <strong>of</strong> which a knowledge will be needed in order to<br />

carry out jobs with a particular title’’. Additional<br />

algebraic techniques seem to be in use in technical <strong>and</strong><br />

economical vocations, Geometry use seems to be restricted<br />

to the technical <strong>and</strong> building sector (loc. cit.).<br />

Little is known about the <strong>mathematics</strong> ‘‘needed’’ for<br />

the upper part <strong>of</strong> the qualification spectrum, even if<br />

‘‘<strong>mathematics</strong> as a service subject’’ is part <strong>of</strong> a lot <strong>of</strong><br />

academic training for future engineers <strong>and</strong> management<br />

personnel (see the pertinent ICMI-study no. 3 on<br />

this issue with Howson et al. 1988 as its proceedings).<br />

If one looks into the list <strong>of</strong> publications <strong>of</strong> Hans-<br />

Georg Steiner, studies into this broader field <strong>of</strong> upper<br />

secondary (<strong>mathematics</strong>) education are nearly invisible—with<br />

one major exception: Steiner <strong>and</strong> Straesser<br />

(1982). Here, the vast range <strong>of</strong> technical <strong>and</strong> vocational<br />

education is narrowed down to that part <strong>of</strong> the training<br />

<strong>and</strong> education <strong>of</strong> young adults who try a direct entry to<br />

the world <strong>of</strong> work after compulsory <strong>school</strong>ing. At least<br />

in Germany, this is still <strong>more</strong> <strong>than</strong> half <strong>of</strong> the population<br />

<strong>and</strong> has a special organization called ‘Lehrlingsausbildung’,<br />

internationally known as ‘apprenticeship’,<br />

i.e. joint efforts <strong>of</strong> vocational colleges <strong>and</strong> companies<br />

to train a skilled workforce. From this short description,<br />

a major tension may already be obvious: How to<br />

cope with the specific, but ‘‘needs’’ <strong>of</strong> a whole variety<br />

<strong>of</strong> different vocations from hairdressing to the building<br />

sector <strong>and</strong> business administration or electrical <strong>and</strong><br />

even computer based information technology? What<br />

about the mathematical ‘‘needs’’ <strong>of</strong> this diverse occupational<br />

fields <strong>and</strong> (in Germany: <strong>more</strong> <strong>than</strong> 400)<br />

vocations? What has didactics <strong>of</strong> <strong>mathematics</strong> to <strong>of</strong>fer<br />

to this training/education linking classrooms <strong>of</strong> vocational<br />

colleges to workplaces in the different occupational<br />

fields?<br />

2.2 Realistic modelling<br />

Looking into vocational <strong>mathematics</strong>—in the narrow<br />

sense <strong>of</strong> a direct move or preparation for workplaces—<strong>of</strong>fers<br />

a chance, which <strong>mathematics</strong> in compulsory<br />

<strong>school</strong>s <strong>of</strong>ten do not have: with the workplace <strong>and</strong><br />

vocation to be trained for clearly identified, there is an<br />

obvious field <strong>of</strong> application for <strong>mathematics</strong> in this<br />

type <strong>of</strong> training/education. To put it in a different<br />

wording: vocational <strong>mathematics</strong> in principle immediately<br />

<strong>of</strong>fers a field outside <strong>mathematics</strong>, to which<br />

<strong>mathematics</strong> can be applied, it does not have to look in<br />

the vague ‘‘rest <strong>of</strong> the world’’ <strong>of</strong>ten mentioned when<br />

applications <strong>of</strong> <strong>mathematics</strong> are discussed. If the<br />

vocational field ‘‘asks’’ for <strong>mathematics</strong> to be used<br />

(<strong>and</strong> this is not always obvious, see the next subsection),<br />

the vocational field <strong>of</strong>fers a vast array <strong>of</strong> applications<br />

for <strong>mathematics</strong>.<br />

If we take the example <strong>of</strong> technical vocations related<br />

to metalwork, Schilling (1984, p. 116; in a text for a<br />

123


168 R. Straesser<br />

developmental project piloted by Steiner <strong>and</strong> Straesser)<br />

stressed the importance <strong>of</strong> <strong>mathematics</strong> for this<br />

vocational area, but also pointed to the fact that<br />

<strong>mathematics</strong> is used as a ‘strategic’ tool to model the<br />

workplace situation, to fulfil the quantification needs <strong>of</strong><br />

the vocational situation in order to have easy predictions<br />

<strong>of</strong> the application <strong>of</strong> machines <strong>and</strong> procedures.<br />

Mathematics is not needed as such, it <strong>of</strong>fers a (very<br />

versatile) tool to model the workplace situation. Consequently,<br />

the vocational theory is not interested in a<br />

deep underst<strong>and</strong>ing <strong>of</strong> mathematical concepts or procedures,<br />

but in an effective <strong>and</strong> fast prediction <strong>of</strong> the<br />

vocational situation (loc. cit., p. 118).<br />

A comparable description can be found for the<br />

workplaces related to (traditional, not computer related)<br />

electricity: Rauner (1984, p. 151) denies <strong>mathematics</strong><br />

an independent role in the training <strong>of</strong> future<br />

qualified worker in electricity surroundings, but mentions<br />

the role <strong>of</strong> <strong>mathematics</strong> as a help to underst<strong>and</strong><br />

vocational situations—with trigonometric functions as<br />

the prototypic example helping to underst<strong>and</strong> alternating<br />

current. He even goes as far as saying that<br />

underst<strong>and</strong>ing electro technical devices is simply<br />

impossible without <strong>mathematics</strong>—but wants these<br />

mathematical models preferably presented in diagrams<br />

<strong>and</strong> graphs, not in numbers or equations (loc. cit., p.<br />

152f; for examples see the end <strong>of</strong> his paper).<br />

2.3 The utilitarian reduction<br />

Looking into <strong>mathematics</strong> in vocational training <strong>and</strong><br />

education is one efficient way to walk out <strong>of</strong> the<br />

classroom to study <strong>mathematics</strong> <strong>and</strong> its use out <strong>of</strong><br />

<strong>school</strong>. This nevertheless implies a temptation, which<br />

Hans-Georg Steiner always resisted, but should nevertheless<br />

be mentioned: Studying workplace use <strong>of</strong><br />

<strong>mathematics</strong> <strong>of</strong>ten tends to reduce the purpose <strong>of</strong><br />

<strong>mathematics</strong> to its importance for aims outside <strong>mathematics</strong>.<br />

Falling into this trap implies the idea, that<br />

teaching <strong>and</strong> learning <strong>of</strong> <strong>mathematics</strong> is (mainly, if not<br />

only) done for utilitarian reasons, for the sake <strong>of</strong> the<br />

role <strong>of</strong> <strong>mathematics</strong>’ in its applications. From the<br />

description <strong>of</strong> the developmental project mentioned<br />

above, one can see that Steiner (<strong>and</strong> his team) did not<br />

reduce vocational training to utilitarian purposes.<br />

Apart from three other problems <strong>of</strong> teaching <strong>mathematics</strong><br />

in this type <strong>of</strong> vocational training, the project<br />

wanted to take into account the tension between<br />

vocational <strong>and</strong> general education (in German: ‘‘beruflicher<br />

und allgemeiner Bildung’’, see Steiner <strong>and</strong><br />

Straesser 1982, p.16).<br />

The modelling approach <strong>of</strong> Sect. 2.2, especially the<br />

comments from the metalwork <strong>and</strong> electricity area,<br />

already show that a simplistic utilitarian approach to<br />

<strong>mathematics</strong> is inappropriate for vocational training—last<br />

not least because the sheer practice <strong>of</strong> the<br />

workplace is not interested in the workers underst<strong>and</strong>ing<br />

the processes <strong>of</strong> production <strong>and</strong> distribution,<br />

but will only look into a continuous functioning <strong>of</strong><br />

machines <strong>and</strong> the labour force. Research into <strong>mathematics</strong><br />

at the workplace has shown the limitations <strong>of</strong><br />

such an approach in <strong>more</strong> detail: as long as the production/distribution<br />

process goes uninterrupted by<br />

unexpected events, goes without (unforeseen) problems,<br />

underst<strong>and</strong>ing the process (maybe with the help<br />

<strong>of</strong> <strong>mathematics</strong>) is not necessary, sometimes even disturbing.<br />

The worker may even override the information<br />

produced by a mathematical model.<br />

A nice confirmation <strong>of</strong> this statement from the<br />

banking sector may be the comment <strong>of</strong> a person ‘‘in<br />

charge <strong>of</strong> support <strong>and</strong> maintenance <strong>of</strong> computer<br />

equipment’’ in an investment bank (see Noss <strong>and</strong><br />

Hoyles 1996, p. 7f). He commented his evaluation <strong>of</strong> a<br />

piece <strong>of</strong> equipment by using a pre-programmed<br />

spreadsheet by ‘‘I press the button <strong>and</strong> see what it says.<br />

.... I look at the answer. If it seems to indicate what I<br />

think we should do, I use the number to justify my<br />

decision. If not, I ignore it, or put in figures which will<br />

support my hunch.’’ It its all too obvious that <strong>mathematics</strong><br />

cannot be used as an unquestioned, simple<br />

model <strong>of</strong> the vocational situation.<br />

A quote from an experienced teacher trainer in the<br />

metalworking area shows a different limitation <strong>of</strong> a too<br />

simplistic utilitarian reduction <strong>of</strong> the use <strong>of</strong> <strong>mathematics</strong><br />

in vocational situations: ‘‘Mathematics in<br />

vocational education is serving <strong>more</strong> as a background<br />

knowledge for explaining <strong>and</strong> avoiding mistakes, recognising<br />

safety risks, judicious measurement <strong>and</strong> various<br />

forms <strong>of</strong> estimation. ... Not practice at the<br />

workplace but deepening <strong>of</strong> the pr<strong>of</strong>essional knowledge,<br />

education to a responsible use <strong>of</strong> tools <strong>and</strong> machines<br />

<strong>and</strong> the underst<strong>and</strong>ing <strong>of</strong> <strong>and</strong> coping with<br />

everyday mathematical problems legitimise <strong>mathematics</strong><br />

in vocational education’’ (quoted from Appelrath<br />

1985, pp. 133–139; translation R.S.). In the<br />

statement from metalwork, <strong>mathematics</strong> takes a specific<br />

role to further an underst<strong>and</strong>ing <strong>of</strong> the workplace<br />

situation. It is not directly operative in the situation on<br />

the shop floor.<br />

2.4 Black boxes<br />

As a consequence, <strong>mathematics</strong> is far from obvious in<br />

vocational situations—somehow confirming the difficulties<br />

to identify vocational <strong>mathematics</strong> already<br />

mentioned in Sect. 2.1. Difficulties to find <strong>mathematics</strong><br />

123


<strong>Didactics</strong> <strong>of</strong> <strong>mathematics</strong>: <strong>more</strong> <strong>than</strong> <strong>mathematics</strong> <strong>and</strong> <strong>school</strong>! 169<br />

in the workplace seem to even grow with the increasing<br />

use <strong>of</strong> (modern) technology. Some people even speak<br />

<strong>of</strong> the ,,disappearance <strong>of</strong> <strong>mathematics</strong> from society’s<br />

perception’’ (title <strong>of</strong> Straesser 2002). The use <strong>of</strong><br />

<strong>mathematics</strong> (in a simple utilitarian sense) as backbone<br />

<strong>of</strong> models <strong>of</strong> a vocational situation is <strong>of</strong>ten implemented<br />

in graphs <strong>and</strong> algorithms, maybe even machines,<br />

hides the inherent mathematical procedures<br />

<strong>and</strong> concepts from the direct perception <strong>of</strong> the user.<br />

S/he may see the situation as not containing any<br />

<strong>mathematics</strong>, because the <strong>mathematics</strong> parts is ‘‘crystallised’’<br />

in artefacts like graphs, tables or machines<br />

like automatic wages, control devices <strong>and</strong> protocols.<br />

The user might only be confronted with some pointer,<br />

which has to be kept within a given interval (in a<br />

steering/control situation) or answered by a certain<br />

activity (for instance in a buying situation with the<br />

price automatically given by a digital balance; for details<br />

<strong>of</strong> the development <strong>of</strong> weighing, see Straesser<br />

2002). The highly integrated automatic control systems<br />

<strong>of</strong> the flow <strong>of</strong> cash <strong>and</strong> goods are another illustration <strong>of</strong><br />

this tendency to hide <strong>mathematics</strong> from being noticed.<br />

The whole development can be described as the<br />

gradual, but steady introduction <strong>of</strong> ‘‘black boxes’’ into<br />

the production <strong>and</strong> distribution <strong>of</strong> goods <strong>and</strong> services<br />

in a modern economy.<br />

Consequences for the teaching <strong>and</strong> learning <strong>of</strong><br />

<strong>mathematics</strong> are far from obvious. In accordance with<br />

the proclaimed habit <strong>of</strong> mathematicians to always go<br />

back to the source <strong>of</strong> knowledge <strong>and</strong> leave no statement<br />

unproved, some educators explicitly opt for an<br />

opening <strong>of</strong> these boxes, which should go as far as<br />

possible—even avoiding the use <strong>of</strong> such algorithms <strong>and</strong><br />

automatisms as long as they have not been explained<br />

<strong>and</strong> understood (for an example see Buchberger 1989).<br />

In sharp contrast, Peschek for instance clearly stated<br />

the impossibility <strong>of</strong> such a procedure, advocating an<br />

intelligent <strong>and</strong> efficient use <strong>of</strong> black boxes (see Peschek<br />

1999, p. 270).<br />

Straesser (2002) even goes further in pointing to the<br />

fact that the role <strong>of</strong> technology in itself can be quite<br />

ambivalent. On the one h<strong>and</strong>, (modern computer)<br />

technology may be a very effective way to hide the use<br />

<strong>of</strong> <strong>mathematics</strong> from societal perception. ‘‘On the<br />

other h<strong>and</strong>, ... the same technology can be used to<br />

demystify the black boxes, to show the mathematical<br />

relations <strong>and</strong> <strong>of</strong>fer an opportunity to explore the<br />

inherent, implemented relations in a way workplace<br />

reality would never allow because <strong>of</strong> the risk <strong>of</strong><br />

material, financial <strong>and</strong> time losses. The practice <strong>of</strong><br />

using sophisticated <strong>mathematics</strong> can be brought to the<br />

foreground <strong>and</strong> hence to the consciousness <strong>of</strong> the user<br />

by appropriate s<strong>of</strong>tware <strong>and</strong> vocational training/education.<br />

It is modern computer technology <strong>and</strong> appropriate<br />

s<strong>of</strong>tware which can be successfully used to really<br />

explore <strong>and</strong> underst<strong>and</strong> the underlying ... <strong>mathematics</strong>’’<br />

(Straesser 2002, p. 130).<br />

2.5 Situated <strong>mathematics</strong><br />

What was reported about <strong>mathematics</strong> at the workplace<br />

<strong>and</strong> vocational training/education related to this<br />

all starts from a common, normally not contested<br />

assumption: <strong>mathematics</strong> is a special type <strong>of</strong> knowledge<br />

with a specific structure, special ways <strong>of</strong> proving<br />

<strong>and</strong> a clear borderline to separate <strong>mathematics</strong> from<br />

the ‘rest <strong>of</strong> the world’ (as Pollak described it at ICME<br />

3, see Pollak 1979). A modelling approach to applications<br />

<strong>of</strong> <strong>mathematics</strong> as well as the idea <strong>of</strong> black boxes<br />

hiding <strong>mathematics</strong> heavily rely on this separation <strong>of</strong><br />

<strong>mathematics</strong> from the rest <strong>of</strong> the world.<br />

Workplace <strong>mathematics</strong> somehow questions this<br />

idea—last not least because the difficulties <strong>of</strong> identifying<br />

<strong>mathematics</strong> used in the workplace. Inspired by<br />

research into the use <strong>of</strong> mathematical ideas in workplace<br />

situations like banking, nursing, piloting an airplane<br />

<strong>and</strong> engineering, Hoyles <strong>and</strong> Noss (2004)<br />

detailed the concept <strong>of</strong> ‘situated abstractions’ in<br />

<strong>mathematics</strong> they had already brought forward earlier.<br />

• ‘‘mathematical meanings that emerge through webbing<br />

with tools that ‘embed’ <strong>mathematics</strong><br />

• in use or communication display ‘correct’ mathematical<br />

invariants<br />

• are expressed with the language <strong>of</strong> the tools <strong>and</strong><br />

community<br />

• are abstracted within, not away from (the workplace,<br />

insert RS) community’’.<br />

It is obvious that these situated abstractions related<br />

to <strong>mathematics</strong> are no longer part <strong>of</strong> <strong>mathematics</strong> or<br />

‘the rest <strong>of</strong> the world’ alone, but are a new type <strong>of</strong><br />

knowledge bridging the divide between <strong>mathematics</strong><br />

<strong>and</strong> the rest <strong>of</strong> the world.<br />

To make this idea functional for teaching <strong>and</strong><br />

learning, Hoyles added the concept <strong>of</strong> ‘techno-mathematical<br />

literacies’ (see Hoyles <strong>and</strong> Noss 2004). Even if<br />

these concepts are developed from research into<br />

<strong>mathematics</strong> in the workplace, these concepts can<br />

obviously be used in a <strong>more</strong> general sense, in the<br />

general scientific debate about teaching <strong>and</strong> learning<br />

<strong>mathematics</strong>—not isolating workplace <strong>mathematics</strong><br />

from the vast majority <strong>of</strong> a didactics <strong>of</strong> <strong>mathematics</strong><br />

research community not necessarily interested in<br />

workplace <strong>mathematics</strong>.<br />

123


170 R. Straesser<br />

3 Utilitarian <strong>mathematics</strong> <strong>and</strong> ‘‘Bildung’’<br />

In Sect. 2, the consequences <strong>of</strong> looking into vocational<br />

<strong>mathematics</strong> education <strong>and</strong> some results <strong>of</strong> research<br />

into this type <strong>of</strong> teaching <strong>and</strong> learning <strong>and</strong> on research<br />

into <strong>mathematics</strong> at the workplace have been described.<br />

One could see how this field <strong>of</strong> research throws<br />

a new light onto the human struggle with <strong>mathematics</strong>,<br />

how this breaking out <strong>of</strong> the narrow confines <strong>of</strong> the<br />

institution classroom/<strong>school</strong> can add to didactics <strong>of</strong><br />

<strong>mathematics</strong>. Looking into <strong>mathematics</strong> in the workplace<br />

<strong>and</strong> in vocational education obviously has<br />

something to <strong>of</strong>fer to didactics <strong>of</strong> <strong>mathematics</strong> as a<br />

scientific discipline. One could also see that current<br />

research in this field is still mainly concerned with the<br />

subject matter <strong>mathematics</strong> <strong>and</strong> its role in the workplace<br />

<strong>and</strong> vocational education. The role <strong>and</strong> problems<br />

<strong>of</strong> the human learner are still somehow neglected in<br />

<strong>mathematics</strong> in vocational education.<br />

The typical German concept <strong>of</strong> ‘‘Bildung’’ may be<br />

an appropriate way to overcome this limitation. Even if<br />

the German word cannot be easily translated into<br />

English without loosing its distinct meaning, it may be<br />

a way to conceptually bridge the divide between the<br />

subject matter (to be) taught <strong>and</strong> the human being<br />

struggling with this subject matter. Steiner simply cited<br />

the well-known formula defining ‘‘Bildung’’ as what is<br />

left when everything that has been learned is forgotten<br />

(‘‘Wenn Bildung ... das ist, was übrig bleibt, wenn man<br />

vergessen hat, was man gelernt hat’’; Steiner 1972, p.<br />

334f). The afore-mentioned German educationalist<br />

Herwig Blankertz especially looked into Bildung from<br />

the perspective <strong>of</strong> vocational education (see Blankertz<br />

1969). In this paper, it is simply impossible to present<br />

the long-st<strong>and</strong>ing debate on ‘‘Bildung’’ <strong>and</strong> its implications<br />

for <strong>mathematics</strong> education in general. But it<br />

was the concept <strong>of</strong> ‘‘Bildung’’, which made Steiner<br />

aware <strong>of</strong> the fundamental role <strong>of</strong> the learner (see the<br />

citation in Sect. 1) <strong>and</strong> opened the way to his activities<br />

in vocational education, implying that Steiner inserted<br />

the question <strong>of</strong> ‘‘Bildung’’ into the vocational project<br />

he took part in. Mathematics education in <strong>and</strong> for the<br />

workplace can pr<strong>of</strong>it from taking into account the human<br />

side <strong>of</strong> the teaching/learning process—possibly<br />

with the help <strong>of</strong> the concept <strong>of</strong> ‘‘Bildung’’.<br />

There is also a lesson to be learnt for general<br />

<strong>mathematics</strong> education. Some ten years later in the<br />

1980s, the human part <strong>of</strong> didactics <strong>of</strong> <strong>mathematics</strong> is so<br />

evident, that Steiner makes ‘‘Bildung’’ a point <strong>of</strong> defence<br />

<strong>of</strong> the reform <strong>of</strong> the upper secondary <strong>mathematics</strong><br />

education bound for academic studies (the<br />

‘‘neugestaltete gymnasiale Oberstufe’’). According to<br />

Steiner, the pre-defined curriculum for everybody<br />

(with academic aspirations) should be substituted by an<br />

individually defined ‘‘diet’’ <strong>of</strong> learning objects <strong>and</strong><br />

experiences in order to have an adequate upper secondary<br />

education including <strong>mathematics</strong> (‘‘... die Beratungen<br />

und ... Betreuungen der Schüler ... unter dem<br />

Aspekt der Wahl eines individuellen Bildungsganges<br />

und damit unter bestimmte mit dem Bildungsgang<br />

verbundene Kompetenzentwicklungen zu stellen’’, see<br />

Steiner 1984, p. 21—explicitly referring to Blankertz<br />

<strong>and</strong> his reform work). Here again—<strong>and</strong> for general<br />

education, ‘‘Bildung’’ is the keyword to fight a utilitarian<br />

reduction <strong>of</strong> teaching <strong>and</strong> learning <strong>mathematics</strong><br />

in favour <strong>of</strong> a <strong>mathematics</strong> created for the individual<br />

learner.<br />

References<br />

Appelrath, K.-H. (1985). Zur Verwendung von Mathematik und<br />

zur Situation des Fachrechnens im Berufsfeld Metalltechnik<br />

(dargestellt an zwei Unterrichtsbeispielen). In P. Bardy, W.<br />

Blum, & H. G. Braun (Eds.), Mathematik in der Berufsschule<br />

- Analysen und Vorschläge zum Fachrechenunterricht.<br />

(pp. 127–139). Essen: Girardet.<br />

Bessot, A., & Ridgway, J. (2000). Education for <strong>mathematics</strong> in<br />

the workplace (Vol. 24). Dordrecht: Kluwer.<br />

Blankertz, H. (1969). Bildung im Zeitalter der grossen Industrie.<br />

Pädagogik, Schule und Berufsbildung im 19. Jahrhundert.<br />

Berlin: Hermann Schroedel.<br />

Blum, W., & Straesser, R. (1992). Mathematikunterricht in<br />

beruflichen Schulen zwischen Berufskunde und Allgemeinbildung.<br />

Zentralblatt für Didaktik der Mathematik 24(7),<br />

242–247.<br />

Brousseau, G. (1986). Forschungstendenzen der Mathematikdidaktik<br />

in Frankreich. Journal für Mathematikdidaktik 7(2/3),<br />

95–120.<br />

Brousseau, G. (1994). Perspectives pour la didactique des<br />

mathématiques. In M. Artigue (Eds.), Vingt Ans de Didactique<br />

des Mathématiques en France - Hommage à Guy<br />

Brousseau et Gerard Vergnaud (pp. 51–66). Grenoble: La<br />

Pensée Sauvage.<br />

Buchberger, B. (1989). Should students learn integration rules?<br />

(RISC-Linz-Series No. 89-07.0). Linz: RISC.<br />

Chevallard, Y. (1985/1991). La transposition didactique. Grenoble:<br />

Pensées sauvages.<br />

Griesel, H. (1971). Die Neue Mathematik für Lehrer und<br />

Studenten - B<strong>and</strong> 1: Mengen, Zahlen, Relationen, Topologie<br />

(Vol. 1). Hannover: Schroedel.<br />

Griesel, H. (1974). Überlegungen zur Didaktik der Mathematik<br />

als Wissenschaft. Zentralblatt für Didaktik der Mathematik<br />

6(3), 115–119.<br />

Heintz, B. (2000). Die Innenwelt der Mathematik. Zur Kultur<br />

und Praxis einer beweisenden Disziplin. Heidelberg: Springer.<br />

Howson, A. G., Kahane, J. P., Lauginie, P. & Turckheim, E.<br />

(Eds.). (1988). Mathematics as a service subject. Cambridge:<br />

Cambridge University Press (additional selected papers<br />

published by Springer (1988): Clements, R. B., Lauginie, P.<br />

& Turckheim, E. (Eds.) as CISM Courses <strong>and</strong> Lectures No.<br />

305).<br />

Hoyles, C. & Noss, R. (2004). Abstraction in workplace expertise.<br />

Copenhagen: ICME 10 conference website (paper from<br />

TSG 7 at www.ICME10.dk).<br />

123


<strong>Didactics</strong> <strong>of</strong> <strong>mathematics</strong>: <strong>more</strong> <strong>than</strong> <strong>mathematics</strong> <strong>and</strong> <strong>school</strong>! 171<br />

Noss, R., & Hoyles, C. (1996). The visibility <strong>of</strong> meanings:<br />

modelling the <strong>mathematics</strong> <strong>of</strong> banking. International Journal<br />

<strong>of</strong> Computers for Mathematical Learning 1(1), 3–31.<br />

Peschek, W. (1999). Mathematische Bildung meint auch Verzicht<br />

auf Wissen. In G. Kadunz, G. Ossimitz, W. Peschek, E.<br />

Schneider, &B. Winkelmann (Eds.), Mathematische Bildung<br />

und neue Technologien (pp. 263–270). Stuttgart: Teubner.<br />

Pollak, H. O. (1979). The interaction between <strong>mathematics</strong> <strong>and</strong><br />

other <strong>school</strong> subjects. In I. C. o. M. I. (ICMI) (Ed.), New<br />

trends in <strong>mathematics</strong> teaching (Vol. 4, pp. 232–248). Paris:<br />

United Nations Educational, Scientific <strong>and</strong> Cultural Organisation<br />

(UNESCO).<br />

Rauner, F. (1984). Die Lehre von der Elektrotechnik in der<br />

Berufsschule. In R. Straesser (Ed.), Bausteine zu einer<br />

Didaktik des mathematischen Unterrichts an Berufsschulen<br />

(Vol. 34, pp. 129–160). Bielefeld: Institut für Didaktik der<br />

Mathematik (IDM).<br />

Schilling, E.-G. (1984). Didaktischer Bezugsrahmen für die<br />

Beurteilung von Funktion und Rolle der Mathematik im<br />

Unterricht der Berufsschule (Berufsfeld Metalltechnik). In<br />

R. Straesser (Ed.), Bausteine zu einer Didaktik des mathematischen<br />

Unterrichts an Berufsschulen (Vol. 34, pp. 97–<br />

128). Bielefeld: Institut für Didaktik der Mathematik<br />

(IDM).<br />

Sfard, A. (2005). What could be <strong>more</strong> practical <strong>than</strong> a good<br />

research? On mutual relations between research <strong>and</strong><br />

practice <strong>of</strong> <strong>mathematics</strong> eduaction (Survey Team 1 Report<br />

on Relations between research <strong>and</strong> Practice <strong>of</strong> Mathematics<br />

Education). Educational Studies in Mathematics 58, 393–413.<br />

Steiner, H.-G. (1972). Mathematik und Bildung. In H. Meschkowski<br />

(Ed.), Grundlagen der modernen Mathematik (pp.<br />

310–340). Darmstadt: Wissenschaftliche Buchgesellschaft.<br />

Steiner, H.-G. (1978). Didaktik der Mathematik – Einleitung. In<br />

H.-G. Steiner (Ed.), Didaktik der Mathematik (Vol.<br />

CCCLXI, pp. IX–XLVIII). Darmstadt: Wissenschaftliche<br />

Buchgesellschaft.<br />

Steiner, H.-G. (1984). Mathematisch-naturwissenschaftliche Bildung.<br />

Kritisch-konstruktive Fragen und Bemerkungen zum<br />

Aufruf einiger Fachverbände. In M. Reiss & H.-G. Steiner<br />

(Eds.), Mathematikkenntnisse – Leistungsmessung – Studierfähigkeit<br />

(Vol. 9, pp. 5–59). Köln: Aulis Verlag Deubner.<br />

Steiner, H.-G., & Straesser, R. (1982). Mathematik in der<br />

Berufsschule – gegenwärtiger St<strong>and</strong>, Entwicklungstendenzen,<br />

drängende Probleme. In R. Straesser (Ed.), Mathematik<br />

in der Berufsschule (Vol. 28, pp. 9–51). Bielefeld: Institut für<br />

Didaktik der Mathematik (IDM).<br />

Straesser, R. (2002). On the disappearance <strong>of</strong> <strong>mathematics</strong> from<br />

society’s perception. In H.-G. Weig<strong>and</strong> (Eds.), Developments<br />

in <strong>mathematics</strong> education in German-speaking countries.<br />

selected papers from the annual conference on<br />

didactics <strong>of</strong> <strong>mathematics</strong>, Bern, 1999 (pp. 124–133). Hildesheim:<br />

Franzbecker.<br />

Straesser, R., & Zevenbergen, R. (1996). Further <strong>mathematics</strong><br />

mducation. In A. Bishop (Eds.), International H<strong>and</strong>book on<br />

Mathematics Education (Vol. 1, pp. 647–674). Dordrecht:<br />

Kluwer.<br />

UNESCO. (1978). Terminology <strong>of</strong> technical <strong>and</strong> vocational<br />

education – Terminologie de l’enseignement technique et<br />

pr<strong>of</strong>essionnel. Paris: UNESCO.<br />

Wittmann, E. C. (1992). Mathematikdidaktik als ‘‘design science’’.<br />

Journal für Mathematikdidaktik, 13(1), 55–70. English<br />

version (1995): Mathematics Education as a ‘‘Design<br />

Science’’. Educational Studies in Mathematics (29), 355–374.<br />

123

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!