02.01.2014 Views

Kalwa, J.: GREX - Coordination and control of ... - Grex Project

Kalwa, J.: GREX - Coordination and control of ... - Grex Project

Kalwa, J.: GREX - Coordination and control of ... - Grex Project

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

European <strong>Project</strong> IST 035223<br />

<strong>Coordination</strong> <strong>and</strong> <strong>control</strong> <strong>of</strong> cooperating heterogeneous<br />

unmanned systems in uncertain environments<br />

overview &<br />

selected results


The Task<br />

In the marine community there is a strong need to operate multiple systems to the same time.<br />

Scenario 1 – The quest for hydrothermal vents<br />

<br />

<br />

Need to detect<br />

intermediate depth vents<br />

Vents produce methane<br />

which allows for its<br />

detection by the<br />

measurement <strong>of</strong> the<br />

gradient <strong>of</strong> its<br />

concentration<br />

Scenario 2 – Fish Data Download<br />

Scenario 3 - Marine Habitat Mapping


The Task<br />

Scenario 3 - Marine Habitat Mapping<br />

<br />

<br />

<br />

classical tasks <strong>of</strong> marine<br />

scientists.<br />

automate the usual<br />

approach<br />

run “triggered” missions


System Overview<br />

Specific Console<br />

GPS<br />

Position Data<br />

WLAN<br />

Radio<br />

Datalink<br />

<strong>GREX</strong> Console<br />

Autonomous Surface Vehicle<br />

(ASV)<br />

Specific Console<br />

Autonomous Underwater Vehicle<br />

(AUV)<br />

Underwater<br />

Acoustic<br />

Modem<br />

Fiberoptic<br />

link<br />

Remotely Operated Vehicle<br />

(ROV)


The Technical Challenges<br />

Basic technologies for networked heterogeneous unmanned marine<br />

vehicles cooperate to achieve a given goal:<br />

<br />

<br />

<br />

<br />

<br />

A User-Interface with underlying middleware to plan, check <strong>and</strong> distribute a<br />

coordinated mission for heterogeneous objects – <strong>and</strong> for post mission analysis,<br />

A generic <strong>control</strong> system for coordinated <strong>control</strong> <strong>of</strong> multiple objects in an<br />

uncertain environment including aspects <strong>of</strong> mission alterations on the fly,<br />

A cooperative navigation solution which enables team members to estimate the<br />

position within the swarm as basis for coordinated <strong>control</strong> <strong>and</strong> communication<br />

network,<br />

A generic communication middleware, which enables heterogeneous vehicles to<br />

communicate with each other by LAN, radio <strong>and</strong> underwater acoustic<br />

communication,<br />

Life Sea Trials to validate performance <strong>of</strong> the result shall conclude the project.


The Consortium<br />

Participant name<br />

IMAR-DOP/University <strong>of</strong> the Azores<br />

Atlas Elektronik GmbH<br />

Ifremer<br />

Technical University <strong>of</strong> Lisbon – IST/ISR<br />

SeeByte Ltd.<br />

TU Ilmenau<br />

SCIANT<br />

Innova S.p.A<br />

MC Marketing Consulting<br />

Short name<br />

IMAR<br />

ATL<br />

IFR<br />

IST<br />

SB<br />

TUI<br />

SCI<br />

INN<br />

MC<br />

Country<br />

Portugal<br />

Germany<br />

France<br />

Portugal<br />

Great Britain<br />

Germany<br />

Bulgaria<br />

Italy<br />

Germany


<strong>GREX</strong> Unmanned Marine Vehicles<br />

Delfim (IST/ISR)<br />

ASTER x (IFR)<br />

Seawolf (ATL)<br />

Arquipélago (IMAR)<br />

Infante (IST/ISR)


<strong>Project</strong> Implementation Plan<br />

<strong>GREX</strong><br />

Duration: June 2006 – June 2009


Module Overview<br />

Vehicle specific<br />

console<br />

<strong>GREX</strong><br />

Offline<br />

Interface<br />

<strong>GREX</strong> Planning<br />

Console<br />

Generic s<strong>of</strong>tware<br />

Vehicle specific<br />

s<strong>of</strong>tware<br />

VEHICLE No. N<br />

Mission Plan<br />

H<strong>and</strong>ler<br />

Mission<br />

Monitoring<br />

Team H<strong>and</strong>ler<br />

Coordinated<br />

Control<br />

Module<br />

Communication<br />

Module<br />

<strong>GREX</strong><br />

Interface<br />

Module<br />

Team<br />

Navigation<br />

Proprietary<br />

Vehicle<br />

S<strong>of</strong>tware<br />

(unchanged)<br />

IF to<br />

<strong>GREX</strong><br />

sensors<br />

- Vehicle guidance<br />

- Navigation data<br />

- Payload data


Mission planning using a single main console


Generic Vehicle Primitives<br />

Multi Vehicle Primitives (MVP) Single Vehicle Primitives (SVP)<br />

M_Init<br />

MB_EverybodyOK?<br />

Init AND Report<br />

MB_InterVehicleCollisionAvoidance<br />

M_GoToInitFormation<br />

GoToPoint (X i ,Y i ,ε) OR PathFollowing (Path)<br />

Shape <strong>of</strong> Formation<br />

Position<br />

ε KeepPosition (X i ,Y i ,ε)<br />

MB_KeepFormation<br />

M_CoordinatedPathFollowing<br />

Shape <strong>of</strong> Formation<br />

Path PathFollowing (Path) AND UseSpeed (CurrentSpeed)<br />

Speed<br />

ε<br />

MB_EverybodyOK?<br />

MB_InterVehicleCollisionAvoidance<br />

M_Final<br />

Position GoToPoint (X i ,Y i ,ε) OR PathFollowing (Path)<br />

KeepPosition (X i ,Y i ,ε) AND Report


Mission planning using a single main console


Mission planning using a single main console


Cooperative Navigation <strong>of</strong> Multiple UUVs


Cooperative Navigation <strong>of</strong> Multiple UUVs<br />

Goals:<br />

<br />

<br />

Determine relative position <strong>of</strong> AUVs<br />

for keeping the formation stable<br />

Improve absolute position estimate <strong>of</strong><br />

each individual vehicle


Basic Idea: Synthetic Long Baseline<br />

Range<br />

measurements<br />

Vehicle<br />

trajectory<br />

Transponder<br />

(known position)<br />

Trilateration basis by<br />

dead reckoning<br />

• Nonmoving Transponder with known position<br />

• Determine basis from dead reckoning<br />

• Do „sequential trilateration“ in EKF (merge<br />

dead reckoning <strong>and</strong> range measurements)<br />

(e.g. Larsen, Oceans 2001)


Dynamic Extension <strong>of</strong> the principle<br />

Now: Moving transponder<br />

Vehicle B<br />

∆<br />

B<br />

12<br />

B<br />

AB<br />

AB<br />

r ∆<br />

1<br />

23<br />

r3<br />

B<br />

A<br />

Vehicle A<br />

A<br />

∆ 12<br />

AB<br />

r2<br />

A<br />

∆ 23<br />

Basics:<br />

• Determine ranges from time to time (by modem connection)<br />

• Transmit the ∆‘s (by modem connection) <strong>and</strong> use them as observations<br />

• Data fusion by an Extended Kalman Filter (EKF)


Communication: modem trials


Communication: modem trials<br />

3 4 5 7<br />

6<br />

Position 3:<br />

Tritech Mini Modem<br />

Position 4:<br />

DSPComm Transducer<br />

Position 5:<br />

Broadb<strong>and</strong> Transducer<br />

Position 6:<br />

RESON TC 4034 Hydrophone<br />

Position 7:<br />

RESON TC 4034 mod.<br />

- Evologics Modem<br />

- Link Quest 3000 H


Communication: modem trials


European <strong>Project</strong> IST 035223<br />

<strong>Coordination</strong> <strong>and</strong> <strong>control</strong> <strong>of</strong> cooperating heterogeneous<br />

unmanned systems in uncertain environments<br />

overview &<br />

selected results<br />

More information: www.grex-project.eu

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!