04.01.2014 Views

Chapter Solutions

Chapter Solutions

Chapter Solutions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 4<br />

Trigonometric Functions<br />

Section 4.1 Radian and Degree Measure . . . . . . . . . . . . . . . . 272<br />

Section 4.2 Trigonometric Functions: The Unit Circle . . . . . . . . 281<br />

Section 4.3 Right Triangle Trigonometry . . . . . . . . . . . . . . . . 289<br />

Section 4.4 Trigonometric Functions of Any Angle . . . . . . . . . . 300<br />

Section 4.5 Graphs of Sine and Cosine Functions . . . . . . . . . . . 317<br />

Section 4.6 Graphs of Other Trigonometric Functions . . . . . . . . . 329<br />

Section 4.7 Inverse Trigonometric Functions . . . . . . . . . . . . . . 339<br />

Section 4.8 Applications and Models . . . . . . . . . . . . . . . . . . 350<br />

Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360<br />

Practice Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377<br />

© Houghton Mifflin Company. All rights reserved.


CHAPTER 4<br />

Trigonometric Functions<br />

Section 4.1<br />

Radian and Degree Measure<br />

You should know the following basic facts about angles, their measurement, and their applications.<br />

■ Types of Angles:<br />

(a) Acute: Measure between 0 and 90.<br />

(b) Right: Measure 90.<br />

(c) Obtuse: Measure between 90 and 180.<br />

(d) Straight: Measure 180.<br />

<br />

■ and are complementary if They are supplementary if<br />

■ Two angles in standard position that have the same terminal side are called coterminal angles.<br />

■ To convert degrees to radians, use 1 180 radians.<br />

■ To convert radians to degrees, use 1 radian 180.<br />

1 <br />

■ one minute 160 of 1<br />

1 <br />

<br />

■ one second 160 of 1 13600 of 1<br />

■ The length of a circular arc is s r where is measured in radians.<br />

■ Speed distancetime<br />

■ Angular speed t srt<br />

90.<br />

<br />

180.<br />

Vocabulary Check<br />

1. Trigonometry 2. angle 3. standard position 4. coterminal<br />

5. radian 6. complementary 7. supplementary 8. degree<br />

9. linear 10. angular<br />

1. The angle shown is<br />

approximately 2 radians.<br />

3<br />

3. (a) Since lies in Quadrant IV.<br />

2 < 7<br />

4 < 2, 4<br />

5<br />

(b) Since<br />

2 < 11 < 3,<br />

4<br />

Quadrant II.<br />

7<br />

11<br />

4<br />

lies in<br />

2. The angle shown is<br />

approximately 4 radians.<br />

<br />

5<br />

4. (a) Since <br />

lies in<br />

2 < 5<br />

12 < 0, 2<br />

Quadrant IV.<br />

(b) Since 3<br />

2 < 13 < ,<br />

9<br />

Quadrant II.<br />

13<br />

9<br />

lies in<br />

© Houghton Mifflin Company. All rights reserved.<br />

272


Section 4.1 Radian and Degree Measure 273<br />

<br />

5. (a) Since < 1 < 0; 1 lies in Quadrant IV. 6. (a) Since < 3.5 < 3 3.5 lies in Quadrant III.<br />

2 2 ,<br />

<br />

(b) Since < 2 < lies in<br />

2 ; 2<br />

Quadrant III.<br />

<br />

<br />

<br />

(b) Since<br />

2.25 lies in Quadrant II.<br />

2 < 2.25 < ,<br />

7. (a)<br />

13<br />

4<br />

y<br />

8. (a)<br />

7<br />

4<br />

y<br />

3π<br />

4<br />

x<br />

x<br />

−<br />

7 π<br />

4<br />

(b)<br />

4<br />

3<br />

y<br />

(b)<br />

5<br />

2<br />

y<br />

4π<br />

3<br />

x<br />

−<br />

5π<br />

2<br />

x<br />

9. (a)<br />

11<br />

6<br />

y<br />

11π<br />

6<br />

10. (a) 4<br />

y<br />

4<br />

x<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

(b)<br />

2<br />

3<br />

<br />

6 2 13<br />

6<br />

<br />

6 2 11<br />

6<br />

y<br />

2π<br />

3<br />

<br />

x<br />

11. (a) Coterminal angles for : (b) Coterminal angles for<br />

6 3 :<br />

2<br />

3 2 8<br />

3<br />

2<br />

(b)<br />

3 2 4<br />

3<br />

3<br />

2<br />

y<br />

−3<br />

x


274 <strong>Chapter</strong> 4 Trigonometric Functions<br />

12. (a) Coterminal angles for<br />

7<br />

6 2 19<br />

6<br />

7<br />

6 2 5<br />

6<br />

(b) Coterminal angles for<br />

5<br />

4 2 13<br />

4<br />

5<br />

4 2 3<br />

4<br />

7<br />

: 13. (a) Coterminal angles for<br />

6<br />

5<br />

4 :<br />

<br />

9<br />

4 2 <br />

4<br />

9<br />

4 4 7<br />

4<br />

(b) Coterminal angles for<br />

2<br />

15 2 28<br />

15<br />

2<br />

15 2 32<br />

15<br />

9 : 14. (a) Coterminal angles for<br />

4<br />

2<br />

15 :<br />

7<br />

8 2 23<br />

8<br />

7<br />

8 2 9<br />

8<br />

(b) Coterminal angles for<br />

45 :<br />

8<br />

45 2 98<br />

45<br />

8<br />

45 2 82<br />

45<br />

7<br />

8 :<br />

8<br />

15. Complement:<br />

Supplement:<br />

17. Complement:<br />

Supplement:<br />

<br />

<br />

2 3 6<br />

<br />

<br />

<br />

<br />

<br />

<br />

3 2<br />

3<br />

<br />

<br />

2 6 3<br />

6 5<br />

6<br />

16. Complement: Not possible; is greater than<br />

4<br />

2 .<br />

(a)Supplement:<br />

3<br />

<br />

4 4<br />

3<br />

18. Complement: Not possible; is greater than<br />

3<br />

2 .<br />

Supplement:<br />

2<br />

<br />

3 3<br />

2<br />

<br />

<br />

19. Complement:<br />

Supplement:<br />

<br />

2 1 0.57 20. Complement: None 2 ><br />

1 2.14<br />

Supplement:<br />

<br />

2 1.14<br />

2<br />

21.<br />

22.<br />

The angle shown is approximately 210.<br />

23. (a) Since 90 < 150 < 180, 150 lies in<br />

Quadrant II.<br />

(b) Since 270 < 282 < 360, 282 lies in<br />

Quadrant IV.<br />

25. (a) Since 180 < 132 50 < 90,<br />

132 50 lies in Quadrant III.<br />

(b) Since 360 < 336 30 < 270,<br />

336 30 lies in Quadrant I.<br />

The angle shown is approximately 45.<br />

24. (a) Since 0 < 87.9 < 90, 87.9 lies in<br />

Quadrant I.<br />

(b) Since 0 < 8.5 < 90, 8.5 lies in Quadrant I.<br />

26. (a) Since 270 < 245.25 < 180, 245.25<br />

lies in Quadrant II.<br />

(b) Since 90 < 12.35 < 0, 12.35 lies<br />

in Quadrant IV.<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.1 Radian and Degree Measure 275<br />

27. (a)<br />

30<br />

y<br />

(b)<br />

150<br />

y<br />

150°<br />

30<br />

x<br />

x<br />

28. (a)<br />

270<br />

29. (a)<br />

405<br />

30. (a)<br />

450<br />

y<br />

y<br />

y<br />

405°<br />

− 450°<br />

x<br />

x<br />

x<br />

−270°<br />

(b)<br />

120<br />

(b)<br />

780<br />

(b)<br />

600<br />

y<br />

y<br />

y<br />

x<br />

780°<br />

x<br />

−600<br />

x<br />

−120°<br />

© Houghton Mifflin Company. All rights reserved.<br />

31. (a) Coterminal angles for 52: 32. (a) Coterminal angles for 114: 33. (a) Coterminal angles for 300:<br />

52 360 412<br />

114 360 474<br />

300 360 660<br />

52 360 308<br />

114 360 246<br />

300 360 60<br />

(b) Coterminal angles for 230:<br />

(b) Coterminal angles for 36: (b) Coterminal angles for 390:<br />

230 360 590<br />

36 360 324<br />

390 720 330<br />

230 360 130<br />

36 360 396<br />

390 360 30<br />

34. (a) Coterminal angles for 445: 35. Complement: 90 24 66 36. Complement: Not possible<br />

445 720 275<br />

Supplement: 180 24 156 Supplement: 180 129 51<br />

445 360 85<br />

(b) Coterminal angles for 740:<br />

740 1080 340<br />

740 720 20<br />

37. Complement: 90 87 3 38. Complement: Not possible 39. (a) 30 30 180 6<br />

Supplement: 180 87 93 Supplement: 180 167 13<br />

(b) 150 150 180 5<br />

6


276 <strong>Chapter</strong> 4 Trigonometric Functions<br />

40. (a)<br />

<br />

315 315 180 7<br />

4<br />

<br />

(b) 120 120 180 2<br />

3<br />

41. (a)<br />

(b) 240 240 180 4<br />

3<br />

<br />

<br />

<br />

20 20 180 9<br />

<br />

42. (a) 270 270 <br />

(b) 144 144<br />

180 3 180 4<br />

2<br />

5<br />

<br />

43. (a)<br />

2 3<br />

2 180<br />

270<br />

3<br />

<br />

(b) 7 7<br />

6 6 180<br />

210<br />

<br />

44. (a) 720<br />

(b) 3 3 180<br />

540<br />

4 4 180<br />

<br />

<br />

45. (a)<br />

3 7<br />

3 180<br />

420<br />

7<br />

<br />

(b) 13 13<br />

60 60 180<br />

39<br />

<br />

46. (a) 15 15<br />

6 6 180<br />

450<br />

(b) 28<br />

15 28<br />

15 180<br />

336<br />

<br />

<br />

<br />

47. 115 115 <br />

2.007 radians 48. radians<br />

180 83.7 83.7 180 1.461<br />

<br />

49. 216.35 216.35 <br />

3.776 radians<br />

180<br />

51. 0.78 0.78 0.014 radians<br />

180<br />

<br />

<br />

50. 46.52 46.52 <br />

radians<br />

180 0.812<br />

<br />

52. 395 395 <br />

radians<br />

180 6.894<br />

<br />

53.<br />

7 7 180<br />

25.714 54.<br />

55. 6.5 6.5 180<br />

13 13 8 180<br />

110.769<br />

1170<br />

<br />

<br />

<br />

8<br />

<br />

<br />

56. 4.2 4.2 180<br />

756<br />

58. 0.48 0.48 <br />

180<br />

27.502<br />

<br />

<br />

60. 124 30 124.5<br />

62. 408 16 25 408.274<br />

64. 330 25 330.007<br />

66. 115.8 115 48<br />

67. 345.12 345 7 12<br />

180<br />

57. 2 2 114.592<br />

<br />

59. 64 45 64 <br />

45<br />

60 64.75<br />

61. 85 18 30 85 18<br />

60 3600 30 85.308<br />

63. 125 36 125 3600 125.01<br />

65. 280.6 280 0.660 280 36<br />

68. 310.75 310 45<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.1 Radian and Degree Measure 277<br />

69.<br />

0.355 0.355 <br />

180<br />

70.<br />

<br />

20.34 20 20 24<br />

0.7865 0.7865 <br />

180<br />

<br />

45.0631<br />

45 0.063160<br />

45 3 0.78660<br />

45 3 47<br />

<br />

71.<br />

s r<br />

72.<br />

s r<br />

73.<br />

3s r<br />

6 5<br />

6 5<br />

radians<br />

31 12<br />

31<br />

12 2 7 12 radians<br />

32 7<br />

3 32 7 44 7<br />

radians<br />

74.<br />

s r<br />

60 75<br />

60<br />

75 4 5 radians<br />

Because the angle represented is clockwise, this angle is<br />

4 5<br />

radians.<br />

75. The angles in radians are:<br />

0 0<br />

<br />

30 <br />

6<br />

<br />

45 <br />

4<br />

<br />

60 <br />

3<br />

<br />

90 <br />

2<br />

135 3<br />

4<br />

180 <br />

210 7<br />

6<br />

270 3<br />

2<br />

330 11<br />

6<br />

76. The angles in degrees are:<br />

<br />

6 30<br />

<br />

4 45<br />

<br />

3 60<br />

2<br />

3 120<br />

5<br />

6 150<br />

5<br />

4 225<br />

4<br />

3 240<br />

5<br />

3 300<br />

7<br />

4 315<br />

180<br />

© Houghton Mifflin Company. All rights reserved.<br />

77. s r<br />

8 15<br />

8 15<br />

radians<br />

s r 160<br />

82. r 9 feet,<br />

80 2 radians<br />

<br />

60 <br />

<br />

s r 9 3 3 feet<br />

3<br />

s r 10<br />

78. radian<br />

22 5 11<br />

80. r 80 kilometers, s 160 kilometers<br />

81. s r, in radians<br />

<br />

79. s r<br />

35 14.5<br />

70<br />

radians<br />

29 2.414<br />

s 14180 <br />

inches<br />

180 14 43.982<br />

83. s r, in radians<br />

s 27 <br />

2<br />

meters 56.55 meters<br />

3 18


278 <strong>Chapter</strong> 4 Trigonometric Functions<br />

86. r s<br />

<br />

3<br />

43 9<br />

4<br />

3<br />

84. r 12 centimeters,<br />

4<br />

s r 12 <br />

3<br />

centimeters 28.27 cm<br />

4 9<br />

meters 0.72 meter<br />

85. r s<br />

<br />

<br />

36<br />

2 72<br />

<br />

feet 22.92 feet<br />

87. r s 82<br />

<br />

135180 328 miles 34.80 miles<br />

3<br />

88. r s 8<br />

<br />

330180 48<br />

<br />

11<br />

inches 1.39 inches<br />

89.<br />

42 7 33 25 46 32<br />

16 21 1 0.28537 radian<br />

s r 40000.28537 1141.48 miles<br />

90.<br />

r 4000 miles<br />

31 46 26 8 57 54 1.0105 rad<br />

s r 40001.0105 4042.0 miles<br />

91.<br />

s r 450<br />

0.07056 radian 4.04<br />

6378<br />

4 2 33.02<br />

92.<br />

r 6378, s 400<br />

s r 400<br />

0.0627 rad 3.59<br />

6378<br />

s r 2.5<br />

93. 23.87<br />

6 25<br />

60 5 12 radian<br />

94.<br />

s r 24<br />

5<br />

4.8 rad 275.02<br />

95. (a) single axel:<br />

(b) double axel:<br />

1 1 2<br />

2 1 2<br />

revolutions 360 180 540<br />

2 3 radians<br />

revolutions 720 180 900<br />

4 5 radians<br />

(c) triple axel: 3 1 2 revolutions 1260 7 radians<br />

96. Linear speed s t r <br />

t<br />

97. (a)<br />

6400 12502<br />

436.967 kmmin<br />

110<br />

Revolutions<br />

2400<br />

Second 60 40 revsec 98. (a) Revolutions<br />

4800 80 revsec<br />

Second 60<br />

Angular speed 240 80 radsec<br />

Angular speed 280 160 radsec<br />

(b) Radius of saw blade<br />

Radius in feet<br />

3.75<br />

12<br />

7.5<br />

2<br />

Speed s t r r rangular speed<br />

t t<br />

0.312580 78.54 ftsec<br />

<br />

3.75 in.<br />

0.3125 ft<br />

(b) Radius of saw blade<br />

Radius in feet<br />

3.625<br />

12<br />

7.25<br />

2<br />

Speed s t r r rangular speed<br />

t t<br />

0.3021160 151.84 ftsec<br />

<br />

3.625 in.<br />

0.3021 ft<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.1 Radian and Degree Measure 279<br />

99. (a)<br />

Revolutions<br />

Hour<br />

Angular speed 228,800 57,600 radhr<br />

252<br />

Radius of wheel <br />

12 in.ft5280 ftmi 5<br />

25,344 miles<br />

Speed<br />

480 28,800 revhr<br />

160<br />

s t r r<br />

t<br />

5<br />

25,344 57,600 125 35.70 mileshr<br />

11<br />

(b) Let x spin balance machine rate.<br />

70 rangular speed r 2 <br />

<br />

rangular speed<br />

t<br />

x<br />

160 5<br />

25,344 120x ⇒ x 941.18 revmin<br />

100. (a)<br />

400 radmin ≤ angular speed ≤ 1000 radmin<br />

(b) Speed<br />

200 ≤ revolutions<br />

minute<br />

2 200 ≤ angular speed ≤ 2500<br />

s t r r<br />

t<br />

6400 ≤ linear speed ≤ 61000<br />

For the outermost track, 6000 cmmin<br />

<br />

≤ 500<br />

rangular speed 6angular speed<br />

t<br />

180<br />

101. False, 1 radian 57.3, so one radian<br />

<br />

is much larger than one degree.<br />

102. No, 1260 is coterminal with 180.<br />

103. True: 2<br />

3 <br />

<br />

<br />

4 12 8 3 <br />

180<br />

12<br />

© Houghton Mifflin Company. All rights reserved.<br />

104. (a) An angle is in standard position when the origin is the vertex and the initial side<br />

coincides with the positive x-axis.<br />

(b) A negative angle is generated by a clockwise rotation.<br />

(c) Angles that have the same initial and terminal sides are coterminal angles.<br />

(d) An obtuse angle is between 90 and 180.<br />

<br />

105. If is constant, the length of the arc is<br />

proportional to the radius s r, and<br />

hence increasing.<br />

107. A 1 square meters<br />

2 r 2 1 2 102 <br />

3 50<br />

3<br />

<br />

<br />

106. Let A be the area of a circular sector of radius r<br />

and central angle . Then<br />

A<br />

r 2 <br />

108. Because<br />

<br />

2<br />

⇒ 1 2 r 2.<br />

s r, 12<br />

15 .<br />

Hence, A 1 2 r 2 1 2 12<br />

15 152 90 ft2 .


280 <strong>Chapter</strong> 4 Trigonometric Functions<br />

109.<br />

A 1 2 r2, s r<br />

(a)<br />

0.8<br />

Domain:<br />

r > 0<br />

8<br />

A<br />

s<br />

⇒ 2 s r r0.8 Domain: r > 0<br />

A 1 2 r 2 0.8 0.4r<br />

0<br />

The area function changes more rapidly for r > 1 because<br />

it is quadratic and the arc length function is linear.<br />

0<br />

12<br />

(b)<br />

r 10<br />

⇒<br />

A 1 210 2 50<br />

s r 10<br />

Domain: 0 <<br />

Domain: 0 <<br />

<br />

<br />

< 2<br />

< 2<br />

320<br />

A<br />

s<br />

0<br />

0<br />

2<br />

110. If a fan of greater diameter is installed, the angular speed does not change.<br />

111. Answers will vary. 112. Answers will vary.<br />

113.<br />

y<br />

4<br />

3<br />

2<br />

1<br />

−2 2 3 4 5 6<br />

−2<br />

x<br />

114.<br />

y<br />

2<br />

1<br />

−4 −3 −2 1 2 3 4<br />

−2<br />

−3<br />

x<br />

−3<br />

−4<br />

−6<br />

115.<br />

y<br />

116.<br />

y<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

1<br />

1<br />

−4 −3 −2 1 2 3 4<br />

x<br />

−5 −4 −3<br />

1 2 3<br />

−2<br />

x<br />

−3<br />

−3<br />

−4<br />

117.<br />

y<br />

3<br />

2<br />

1<br />

−4 −3 −2 1 2 3 4<br />

−2<br />

−4<br />

−5<br />

x<br />

118.<br />

y<br />

4<br />

3<br />

2<br />

1<br />

−2 1 2 3 5 6<br />

−2<br />

−3<br />

−4<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.2 Trigonometric Functions: The Unit Circle 281<br />

Section 4.2<br />

Trigonometric Functions: The Unit Circle<br />

■<br />

■<br />

■<br />

■<br />

You should know how to evaluate trigonometric functions using the unit circle.<br />

You should know the definition of a periodic function.<br />

You should be able to recognize even and odd trigonometric functions.<br />

You should be able to evaluate trigonometric functions with a calculator in both radian and degree mode.<br />

Vocabulary Check<br />

1. unit circle 2. periodic 3. odd, even<br />

1.<br />

sin y 15<br />

17<br />

2.<br />

x, y <br />

12<br />

13 , 5 13<br />

cos x 8<br />

17<br />

sin y 5 13<br />

tan y x 15 8<br />

cos x 12<br />

13<br />

cot x y 8 15<br />

tan y x 513<br />

1213 5 12<br />

sec 1 x 17 8<br />

csc 1 y 17<br />

15<br />

csc 1 y 1<br />

513 13 5<br />

sec 1 x 1<br />

1213 13<br />

12<br />

cot x y 1213<br />

513 12 5<br />

3.<br />

sin y 5<br />

13<br />

4.<br />

x, y 4 5 , 3 5<br />

© Houghton Mifflin Company. All rights reserved.<br />

cos x 12<br />

13<br />

tan y x 5 12<br />

cot x y 12 5<br />

sec 1 x 13<br />

12<br />

csc 1 y 13 5<br />

sin y 3 5<br />

cos x 4 5<br />

tan y x 35<br />

45 3 4<br />

csc 1 y 1<br />

35 5 3<br />

sec 1 x 1<br />

45 5 4<br />

cot x y 45<br />

35 4 3<br />

<br />

5. t 2<br />

corresponds to <br />

2 , 2<br />

4<br />

2<br />

.<br />

<br />

6. t <br />

3 ⇒ 1 2 , 3<br />

2


282 <strong>Chapter</strong> 4 Trigonometric Functions<br />

7. t 7 corresponds to 3<br />

6<br />

2 , 1 2 .<br />

9. t 2 corresponds to 1 2 , 3<br />

3<br />

2 .<br />

8. t 5<br />

4 ⇒ 2 2 , 2 2 <br />

10. t 5 corresponds to <br />

1<br />

3<br />

2 , 3 2 .<br />

11. t 3 corresponds to 0, 1.<br />

2<br />

12. t ⇒ 1, 0<br />

13. t 7 corresponds to <br />

2<br />

2 , 2<br />

4<br />

2 .<br />

14. t 4 corresponds to 1 2 , 3<br />

3<br />

2 .<br />

15. t 3 corresponds to 0, 1.<br />

2<br />

16. t 2 corresponds to 1, 0.<br />

<br />

17. t corresponds to<br />

4<br />

sin t y 2<br />

2<br />

cos t x 2<br />

2<br />

tan t y x 1<br />

19. t 7 corresponds to<br />

6<br />

sin t y 1 2<br />

cos t x 3<br />

2<br />

tan t y x <br />

1 3 3<br />

3<br />

21. t 2 corresponds to<br />

3<br />

sin t y 3<br />

2<br />

cos t x 1 2<br />

tan t y x 3<br />

2<br />

2 , 2<br />

2 .<br />

3 2 , 1 2 .<br />

1 2 , 3<br />

2 .<br />

<br />

18. t corresponds to<br />

3<br />

<br />

sin<br />

3 y 3<br />

2<br />

<br />

cos<br />

3 x 1 2<br />

<br />

1 2 , 3<br />

2 .<br />

tan<br />

3 y x 32<br />

12<br />

3<br />

20. t 5 corresponds to<br />

4<br />

sin t y 2<br />

2<br />

cos t x 2<br />

2<br />

tan t y x 1<br />

22. t 5 corresponds to<br />

3<br />

sin t y 3<br />

2<br />

cos t x 1 2<br />

tan t y x 3<br />

2 2 , 2<br />

2 .<br />

1 2 , 3 2 .<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.2 Trigonometric Functions: The Unit Circle 283<br />

23. t 5 corresponds to<br />

3<br />

sin t y 3<br />

2<br />

cos t x 1 2<br />

tan t y x 3<br />

1 2 , 3<br />

2 .<br />

24. t 11 corresponds to<br />

6<br />

sin t y 1 2<br />

cos t x 3<br />

2<br />

tan t y x 3 3<br />

3<br />

2 , 1 2 .<br />

<br />

25. t corresponds to<br />

6<br />

sin t y 1 2<br />

cos t x 3<br />

2<br />

tan t y x 3 3<br />

27. t 7 corresponds to<br />

4<br />

sin t y 2<br />

2<br />

cos t x 2<br />

2<br />

tan t y x 1<br />

3<br />

2 , 1 2 .<br />

2<br />

2 , 2<br />

2 .<br />

26. t 3 corresponds to<br />

4<br />

sin 3<br />

4 y 2 2<br />

cos 3<br />

4 x 2 2<br />

tan 3<br />

4 y x 1<br />

28. t 4 corresponds to<br />

3<br />

sin t y 3<br />

2<br />

cos t x 1 2<br />

tan t y x 3<br />

2 2 , 2 2 .<br />

1 2 , 3<br />

2 .<br />

© Houghton Mifflin Company. All rights reserved.<br />

29. t 3 corresponds to 0, 1.<br />

2<br />

sin t y 1<br />

cos t x 0<br />

tan t y is undefined.<br />

x<br />

31. t 3 corresponds to<br />

4<br />

2<br />

sin t y <br />

2<br />

cos t x 2<br />

2<br />

2 2 , 2<br />

2 .<br />

csc t 1 y 2<br />

sec t 1 x 2<br />

30. t 2 corresponds to 1, 0.<br />

sin2 y 0<br />

cos2 x 1<br />

tan2 y x 0 1 0<br />

tan t <br />

y<br />

x 1<br />

cot t x y 1


284 <strong>Chapter</strong> 4 Trigonometric Functions<br />

32. t 5 corresponds to<br />

6<br />

sin t y 1 2<br />

3 2 , 1 2 .<br />

<br />

33. t corresponds to 0, 1.<br />

2<br />

sin t y 1<br />

csc t 1 y 1<br />

cos t x 3<br />

2<br />

cos t x 0<br />

sec t 1 is undefined.<br />

x<br />

tan t y x 1 3 3 3<br />

tan t y is undefined. cot t x x<br />

y 0<br />

csc t 1 y 2<br />

sec t 1 x 2 3 23 3<br />

cot t x y 3<br />

34. t 3 corresponds to 0, 1.<br />

2<br />

sin 3<br />

2 y 1<br />

cos 3<br />

2 x 0<br />

tan 3<br />

2 y x 1<br />

0 ⇒<br />

csc 3<br />

2 1 y 1<br />

1 1<br />

sec 3<br />

2 1 x 1 0 ⇒<br />

cot 3<br />

2 x y 0<br />

1 0<br />

36. t 7 corresponds to<br />

4<br />

sin 7<br />

4 y 2<br />

2<br />

cos 7<br />

4 x 2<br />

2<br />

tan 7<br />

4 y x 1<br />

undefined<br />

undefined<br />

2<br />

2 , 2<br />

2 .<br />

sec 7<br />

4 1 x 2<br />

cot 7<br />

4 x y 1<br />

35. t 2 corresponds to<br />

3<br />

sin t y 3<br />

2<br />

1 2 , 3 2 .<br />

csc t 23<br />

3<br />

cos t x 1 sec 2<br />

2<br />

tan t y x 3<br />

37. sin 5 sin 0<br />

csc 7<br />

4 1 y 2<br />

cot 3<br />

3<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.2 Trigonometric Functions: The Unit Circle 285<br />

38. Because<br />

40. Because<br />

42. Because<br />

7 6 :<br />

cos 7 cos6 cos 1<br />

9<br />

<br />

4 2 <br />

4 :<br />

sin 9<br />

4 sin 2 <br />

sin <br />

5<br />

6 1 2<br />

<br />

19<br />

6 4 5<br />

6 :<br />

<br />

4 sin 4 2<br />

2<br />

sin 19<br />

6 sin 4 5<br />

6 <br />

39. cos 8 2<br />

cos<br />

3 3 1 2<br />

41. cos 13<br />

43. sin 9<br />

<br />

6 cos 6 cos 11<br />

4 sin <br />

<br />

4 2 2<br />

6 3<br />

2<br />

44. Because 8<br />

:<br />

3 4 4<br />

3<br />

cos 8<br />

3 cos 4 4<br />

3 <br />

cos 4<br />

3 1 2<br />

45.<br />

sin t 1 3<br />

(a) sint sin t 1 3<br />

(b) csct csc t 3<br />

46. cos t 3 4<br />

47.<br />

cost 1 5<br />

(a)<br />

cost cos t 3 4<br />

(a)<br />

cos t cost 1 5<br />

(b) sect 1<br />

cost 1<br />

cos t 4 3<br />

(b) sect 1<br />

cost 5<br />

© Houghton Mifflin Company. All rights reserved.<br />

48.<br />

50.<br />

sint 3 8<br />

(a)<br />

sin t sint 3 8<br />

(b) csc t 1<br />

sint 1<br />

sint 8 3<br />

cos t 4 5<br />

(a)<br />

cos t cos t 4 5<br />

49.<br />

sin t 4 5<br />

(a)<br />

sin t sin t 4 5<br />

(b) sint sin t 4 5<br />

51. sin 7<br />

9 0.6428<br />

(b) cost cos t 4 5


286 <strong>Chapter</strong> 4 Trigonometric Functions<br />

52. tan 2<br />

5<br />

11<br />

11<br />

3.0777 53. cos 0.8090 54. sin<br />

5 9 0.6428<br />

55. csc 1.3 1.0378 56. cot 3.7 1<br />

tan 3.7 1.6007 57. cos1.7 0.1288<br />

58. cos2.5 0.8011 59. csc 0.8 1<br />

sin 0.8 1.3940 60. sec 1.8 1<br />

cos 1.8 4.4014<br />

61. sec 22.8 <br />

1<br />

cos 22.8 1.4486<br />

62. sin13.4 0.7404<br />

63. cot 2.5 1<br />

tan 2.5 1.3386<br />

64. tan 1.75 5.5204 65. csc1.5 <br />

1<br />

sin1.5 1.0025<br />

66. tan2.25 1.2386 67. sec4.5 <br />

1<br />

cos4.5 4.7439<br />

68. csc5.2 <br />

1<br />

sin5.2 1.1319<br />

69. (a)<br />

sin 5 1<br />

(b) cos 2 0.4<br />

70. (a)<br />

sin 0.75 y 0.7<br />

(b) cos 2.5 x 0.8<br />

71. (a)<br />

(b)<br />

sin t 0.25<br />

t 0.25 or 2.89<br />

72. (a) sin t 0.75<br />

t 4.0 or t 5.4<br />

73.<br />

cos t 0.25<br />

t 1.82 or 4.46<br />

(b) cos t 0.75<br />

t 0.72 or t 5.56<br />

I 5e 2t sin t<br />

I0.7 5e 1.4 sin 0.7<br />

0.79 amperes<br />

74. At t 1.4, 75. yt 1 4 cos 6t<br />

I 5e 21.4 sin 1.4 0.30 amperes.<br />

(a) y0 1 4 cos 0 0.2500 ft<br />

(b)<br />

0.0177 ft<br />

76.<br />

yt 1 4 et cos 6t<br />

(a)<br />

(b)<br />

y0 1 4 e0 cos0 1 4 foot<br />

t<br />

y<br />

0.50 1.02 1.54 2.07 2.59<br />

0.15 0.09 0.05 0.03 0.02<br />

y 1 4 1 4 cos 3 2<br />

(c) y 1 2 1 4 cos 3 0.2475 ft<br />

(c) The maximum displacements are decreasing<br />

because of friction, which is modeled by the<br />

e t term.<br />

(d)<br />

1<br />

4 et cos 6t 0<br />

cos 6t 0<br />

<br />

6t <br />

2 , 3<br />

2<br />

<br />

<br />

t <br />

12 , 4<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.2 Trigonometric Functions: The Unit Circle 287<br />

77. False. sin <br />

4<br />

3 3<br />

2 > 0<br />

78. True<br />

79. False. 0 corresponds to 1, 0.<br />

81. (a) The points have y-axis symmetry.<br />

(b) sin t 1 sin t 1 since they have the same<br />

y-value.<br />

(c) cos t 1 cos t 1 since the x-values have<br />

opposite signs.<br />

80. True<br />

82. (a) The points x 1 , y 1 and x 2 , y 2 are symmetric<br />

about the origin.<br />

(b) Because of the symmetry of the points, you can<br />

make the conjecture that sint 1 sin t 1 .<br />

(c) Because of the symmetry of the points, you can<br />

make the conjecture that cost 1 cos t 1 .<br />

83.<br />

cos 1.5 0.0707, 2 cos 0.75 1.4634<br />

84.<br />

sin0.25 sin0.75 0.2474 0.6816 0.9290<br />

Thus, cos 2t 2 cos t.<br />

sin 1 0.8415<br />

Therefore, sin t 1 sin t 2 sint 1 t 2 .<br />

85.<br />

cos x cos<br />

86.<br />

sin y sin<br />

sec 1 1<br />

<br />

cos cos sec<br />

csc 1 y csc<br />

y<br />

tan y x tan<br />

(x, y)<br />

θ<br />

−θ<br />

x<br />

cot x y cot<br />

(x, −y)<br />

© Houghton Mifflin Company. All rights reserved.<br />

87. ht f tgt is odd.<br />

88. ft sin t and gt tan t<br />

ht f tgt f tgt ht<br />

Both f and g are odd functions.<br />

ht ftgt sin t tan t<br />

ht sint tant<br />

sin ttan t<br />

sin t tan t ht<br />

The function ht ftgt is even.


288 <strong>Chapter</strong> 4 Trigonometric Functions<br />

89.<br />

f x 1 23x 2<br />

y 1 23x 2<br />

−9 9<br />

x 1 23y 2<br />

6<br />

f<br />

f −1<br />

90.<br />

fx 1 4 x3 1<br />

y 1 4 x3 1<br />

x 1 4 y3 1<br />

6<br />

f<br />

f −1<br />

−9 9<br />

2x 3y 2<br />

−6<br />

x 1 1 4 y3<br />

−6<br />

2x 2 3y<br />

4x 1 y 3<br />

2<br />

3x 1 y<br />

f 1 x 2 3x 1<br />

y 4x 3 1<br />

f 1 x 4x 3 1<br />

91. f x x 2 4, x ≥ 2, y ≥ 0<br />

7<br />

y x 2 4<br />

x y 2 4<br />

x 2 y 2 4<br />

x 2 4 y 2<br />

−1<br />

x 2 4 y, x ≥ 0<br />

f 1 x x 2 4, x ≥ 0<br />

f −1<br />

−2 10<br />

f<br />

92.<br />

fx <br />

y <br />

x <br />

xy x 2y<br />

2x<br />

x 1 , x > 1<br />

2x<br />

−3 9<br />

x 1 , x > 1<br />

2y<br />

y 1<br />

4<br />

−4<br />

x 2y xy<br />

x y2 x<br />

x<br />

2 x y, x < 2<br />

f 1 x <br />

x<br />

2 x , x < 2<br />

93.<br />

f x <br />

2x<br />

x 3<br />

94.<br />

f x <br />

5x<br />

x 2 x 6 5x<br />

x 3x 2<br />

Asymptotes: x 3, y 2<br />

Asymptotes:<br />

x 3, x 2, y 0<br />

95.<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

1<br />

−4 −3 −2 −1<br />

−2<br />

−3<br />

−4<br />

y<br />

2 4 5 6 7 8<br />

f x x2 3x 10<br />

2x 2 8<br />

x 5<br />

2x 2 ,<br />

Asymptotes: x 2, y 1 2<br />

x<br />

<br />

x 2<br />

x 2x 5<br />

2x 2x 2<br />

y<br />

10<br />

8<br />

6<br />

4<br />

−6<br />

−8<br />

−7 −6 −5 −2 −1<br />

−1<br />

1<br />

−2<br />

4<br />

3<br />

2<br />

1<br />

y<br />

x<br />

4<br />

6<br />

8 10<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

−3<br />

−4


Section 4.3 Right Triangle Trigonometry 289<br />

96.<br />

f x x3 6x 2 x 1<br />

2x 2 5x 8<br />

x 2 7 4 <br />

Slant asymptote: y x 2 7 4<br />

Vertical asymptotes: x 3.608, x 1.108<br />

15x 4<br />

42x 2 5x 8<br />

10<br />

8<br />

6<br />

4<br />

2<br />

y<br />

−8 −6 −4 −2<br />

6 8 10<br />

x<br />

−8<br />

−10<br />

97.<br />

y x 2 3x 4 98.<br />

Domain: all real numbers<br />

0 x 2 3x 4 x 4x 1 ⇒ x 1, 4<br />

Intercepts: 0, 4, 1, 0, 4, 0<br />

No asymptotes<br />

y ln x 4<br />

Domain: all x 0<br />

ln x 4 0 ⇒ x 4 1 ⇒ x ±1<br />

Intercepts: 1, 0, 1, 0<br />

Asymptote: x 0<br />

99.<br />

fx 3 x1 2 100.<br />

Domain: all real numbers<br />

Intercept: 0, 5<br />

Asymptote: y 2<br />

x 7<br />

fx <br />

x 2 4x 4 x 7<br />

x 2 2<br />

Domain: all real numbers x 2<br />

Intercepts:<br />

7, 0, 0, 7 4<br />

Asymptotes: x 2, y 0<br />

Section 4.3<br />

Right Triangle Trigonometry<br />

© Houghton Mifflin Company. All rights reserved.<br />

■ You should know the right triangle definition of trigonometric functions.<br />

(a) sin opp<br />

(b) cos adj<br />

(c) tan opp<br />

hyp<br />

hyp<br />

adj<br />

(d) csc hyp<br />

(e) sec hyp<br />

(f) cot adj<br />

opp<br />

adj<br />

opp<br />

■ You should know the following identities.<br />

θ<br />

Adjacent side<br />

(a) sin 1<br />

(b) csc 1<br />

(c) cos 1<br />

csc <br />

sin <br />

sec <br />

(d) sec 1<br />

(e) tan 1<br />

(f) cot 1<br />

cos <br />

cot <br />

tan <br />

(g) (h) cot cos <br />

tan sin <br />

cos <br />

sin <br />

(i) sin 2 cos 2 1<br />

(j) 1 tan 2 sec 2 (k) 1 cot 2 csc 2 <br />

■ You should know that two acute angles are complementary if and cofunctions of<br />

complementary angles are equal.<br />

■ You should know the trigonometric function values of 30, 45, and 60, or be able to construct triangles from<br />

which you can determine them.<br />

and <br />

90,<br />

Hypotenuse<br />

Opposite side


290 <strong>Chapter</strong> 4 Trigonometric Functions<br />

Vocabulary Check<br />

1. (a) iii (b) vi (c) ii (d) v (e) i (f) iv<br />

2. hypotenuse, opposite, adjacent 3. elevation, depression<br />

1.<br />

5<br />

3<br />

2.<br />

θ<br />

13<br />

b<br />

5<br />

θ<br />

b 13 2 5 2 169 25 12<br />

adj 5 2 3 2 16 4<br />

sin opp<br />

hyp 3 5<br />

cos adj<br />

hyp 4 5<br />

tan opp<br />

adj 3 4<br />

csc hyp<br />

opp 5 3<br />

sec hyp<br />

adj 5 4<br />

cot adj<br />

opp 4 3<br />

sin<br />

cos<br />

tan<br />

csc<br />

sec<br />

opp<br />

adj<br />

opp<br />

hyp<br />

hyp<br />

hyp 5 13<br />

hyp 12<br />

13<br />

adj 5 12<br />

opp 13 5<br />

adj 13<br />

12<br />

cot adj<br />

opp 12<br />

5<br />

3.<br />

4.<br />

8<br />

18 c<br />

θ<br />

15<br />

θ<br />

12<br />

hyp 8 2 15 2 17<br />

sin opp<br />

hyp 8 17<br />

cos adj<br />

hyp 15<br />

17<br />

tan opp<br />

adj 8<br />

15<br />

csc hyp<br />

opp 17<br />

8<br />

sec hyp<br />

adj 17<br />

15<br />

C 18 2 12 2 468 613<br />

sin<br />

cos<br />

tan<br />

csc<br />

sec<br />

18<br />

12<br />

18<br />

613 313<br />

13<br />

613 213<br />

13<br />

12 3 2<br />

13<br />

3<br />

13<br />

2<br />

© Houghton Mifflin Company. All rights reserved.<br />

cot adj<br />

opp 15<br />

8<br />

cot 2 3


Section 4.3 Right Triangle Trigonometry 291<br />

5.<br />

opp 10 2 8 2 6<br />

sin opp<br />

hyp 6 10 3 5<br />

10<br />

opp 2.5 2 2 2 1.5<br />

sin opp<br />

hyp 1.5<br />

2.5 3 5<br />

2.5<br />

θ<br />

2<br />

cos adj<br />

hyp 8 10 4 5<br />

θ<br />

8<br />

cos adj<br />

hyp 2<br />

2.5 4 5<br />

tan opp<br />

adj 6 8 3 4<br />

tan opp<br />

adj 1.5<br />

2 3 4<br />

csc hyp<br />

opp 10 6 5 3<br />

csc hyp<br />

opp 2.5<br />

1.5 5 3<br />

sec hyp<br />

adj 10 8 5 4<br />

sec hyp<br />

adj 2.5<br />

2 5 4<br />

cot adj<br />

opp 8 6 4 3<br />

cot adj<br />

opp 2<br />

1.5 4 3<br />

The function values are the same since the triangles are similar and the corresponding sides are proportional.<br />

© Houghton Mifflin Company. All rights reserved.<br />

6.<br />

adj 15 2 8 2 161<br />

sin<br />

cos<br />

tan<br />

csc<br />

sec<br />

opp<br />

adj<br />

opp<br />

hyp<br />

hyp<br />

hyp 8 15<br />

hyp 161<br />

15<br />

adj 8<br />

161 8161<br />

161<br />

opp 15 8<br />

adj 15<br />

161 15161<br />

161<br />

cot adj<br />

opp 161<br />

8<br />

θ<br />

15<br />

8<br />

adj 7.5 2 4 2 161<br />

2<br />

sin<br />

cos<br />

tan<br />

csc<br />

sec<br />

opp<br />

hyp 4<br />

7.5 8 15<br />

adj<br />

opp<br />

hyp<br />

hyp<br />

hyp 161<br />

2 7.5 161<br />

15<br />

adj 4<br />

1612 8<br />

161 8161<br />

161<br />

opp 7.5<br />

4 15 8<br />

adj 7.5<br />

1612 15<br />

161 15161<br />

161<br />

cot adj<br />

opp 161<br />

2 4 161<br />

8<br />

The function values are the same because the triangles are similar, and corresponding sides are proportional.<br />

7.5<br />

θ<br />

4


292 <strong>Chapter</strong> 4 Trigonometric Functions<br />

7.<br />

adj 3 2 1 2 8 22<br />

adj 6 2 2 2 32 42<br />

sin opp<br />

hyp 1 3<br />

cos adj<br />

hyp 22<br />

3<br />

θ<br />

3<br />

1<br />

sin opp<br />

hyp 2 6 1 3<br />

cos adj<br />

hyp 42 22<br />

6 3<br />

θ<br />

6<br />

2<br />

tan opp<br />

adj 1<br />

22 2<br />

4<br />

tan opp<br />

adj 2<br />

42 1<br />

22 2<br />

4<br />

csc hyp<br />

opp 3<br />

csc hyp<br />

opp 6 2 3<br />

sec hyp<br />

adj 3<br />

22 32<br />

4<br />

sec hyp<br />

adj 6<br />

42 3<br />

22 32<br />

4<br />

cot adj<br />

opp 22<br />

cot adj<br />

opp 42 22<br />

2<br />

The function values are the same since the triangles are similar and the corresponding sides are proportional.<br />

8.<br />

hyp 1 2 2 2 5<br />

sin<br />

cos<br />

opp<br />

hyp <br />

adj<br />

hyp <br />

1 5 5<br />

5<br />

2<br />

5 25<br />

5<br />

θ<br />

2<br />

1<br />

hyp 3 2 6 2 35<br />

sin<br />

cos<br />

3<br />

6<br />

35 <br />

35 <br />

1 5 5<br />

5<br />

2<br />

5 25<br />

5<br />

θ<br />

6<br />

3<br />

tan<br />

csc<br />

sec<br />

opp<br />

hyp<br />

hyp<br />

adj 1 2<br />

opp 5<br />

1 5<br />

adj 5<br />

2<br />

tan<br />

csc<br />

sec<br />

3 6 1 2<br />

35<br />

3<br />

35<br />

6<br />

5<br />

5<br />

2<br />

cot adj<br />

opp 2 1 2<br />

cot 6 3 2<br />

The function values are the same because the triangles are similar, and corresponding sides are proportional.<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.3 Right Triangle Trigonometry 293<br />

9. Given:<br />

sin 5 6 opp<br />

hyp<br />

5 2 adj 2 6 2 6<br />

5<br />

adj 11<br />

cos adj<br />

hyp 11<br />

6<br />

tan opp<br />

adj 5<br />

11 511<br />

11<br />

cot adj<br />

opp 11<br />

5<br />

sec hyp<br />

adj 6<br />

11 611<br />

11<br />

θ<br />

11<br />

10.<br />

hyp 5 2 1 2 26<br />

sin<br />

cos<br />

tan<br />

csc<br />

opp<br />

hyp 1<br />

26 26<br />

26<br />

adj<br />

opp<br />

hyp<br />

hyp 5<br />

26 526<br />

26<br />

adj 1 5<br />

opp 26 26<br />

1<br />

sec hyp<br />

adj 26<br />

5<br />

θ<br />

26<br />

5<br />

1<br />

csc hyp<br />

opp 6 5<br />

11. Given:<br />

sin 15<br />

4<br />

cos 1 4<br />

sec 4 4 1 hyp<br />

adj<br />

opp 2 1 2 4 2 4<br />

opp 15<br />

15<br />

θ<br />

1<br />

12.<br />

opp 7 2 3 2 40 210<br />

sin<br />

tan<br />

csc<br />

210<br />

7<br />

210<br />

3<br />

7<br />

210 710<br />

20<br />

7<br />

θ<br />

3<br />

2<br />

10<br />

tan 15<br />

sec<br />

7 3<br />

cot 1<br />

15 15<br />

15<br />

csc 4<br />

15 415<br />

15<br />

cot 3<br />

210 310<br />

20<br />

© Houghton Mifflin Company. All rights reserved.<br />

13. Given:<br />

sin 310<br />

10<br />

cos 10<br />

10<br />

sec 10<br />

cot 1 3<br />

csc 10<br />

3<br />

tan 3 3 1 opp<br />

adj<br />

3 2 1 2 hyp 2 10<br />

3<br />

hyp 10<br />

θ<br />

1<br />

14.<br />

adj 17 2 4 2 273<br />

sin<br />

cos<br />

tan<br />

sec<br />

opp<br />

adj<br />

opp<br />

1<br />

hyp 4 17<br />

hyp 273<br />

17<br />

adj 4<br />

273 4273<br />

273<br />

cos <br />

cot 1 273<br />

tan 4<br />

17<br />

273 17273<br />

273<br />

θ<br />

17<br />

273<br />

4


294 <strong>Chapter</strong> 4 Trigonometric Functions<br />

15. Given: cot 9 4 adj<br />

opp<br />

97<br />

4 2 9 2 hyp 2<br />

hyp 97<br />

sin 4<br />

97 497<br />

97<br />

cos 9<br />

97 997<br />

97<br />

θ<br />

9<br />

4<br />

16.<br />

sin 3 8<br />

adj 8 2 3 2 55<br />

cos<br />

tan<br />

csc<br />

adj<br />

opp<br />

1<br />

hyp 55<br />

8<br />

adj 3<br />

55 355<br />

55<br />

sin <br />

8 3<br />

θ<br />

8<br />

55<br />

3<br />

tan 4 9<br />

sec 97<br />

9<br />

csc 97<br />

4<br />

sec<br />

1<br />

cos <br />

cot 1 55<br />

tan 3<br />

8<br />

55 855<br />

55<br />

17. sin<br />

19. tan<br />

21. cot<br />

23. cos<br />

<br />

Function (deg) (rad) Function Value<br />

30<br />

60<br />

60<br />

30<br />

25. cot 45<br />

1<br />

4<br />

<br />

<br />

6<br />

<br />

3<br />

<br />

3<br />

<br />

6<br />

<br />

1<br />

2<br />

3<br />

3<br />

3<br />

3<br />

2<br />

18. cos<br />

24. sin<br />

26. tan<br />

<br />

<br />

Function (deg) (rad) Function Value<br />

45<br />

20. sec 45 2<br />

4<br />

22. csc 45 2<br />

4<br />

45<br />

30<br />

<br />

4<br />

<br />

<br />

<br />

4<br />

<br />

6<br />

2<br />

2<br />

2<br />

2<br />

1<br />

3<br />

27. sin 1<br />

csc <br />

28. cos 1<br />

sec <br />

29. tan 1<br />

cot <br />

30. csc 1<br />

sin <br />

31. sec 1<br />

cos <br />

32. cot 1<br />

tan <br />

35. sin 2 cos 2 1 36. 1 tan 2 sec 2 <br />

39. tan90 cot <br />

43.<br />

sin 60 3<br />

2 , cos 60 1 2<br />

(a)<br />

tan 60 <br />

sin 60<br />

cos 60 3<br />

(c) cos 30 sin 60 3<br />

2<br />

40. cot90 tan <br />

(b)<br />

33. tan sin <br />

cos <br />

37. sin90 cos <br />

41. sec90 csc <br />

sin 30 cos 60 1 2<br />

(d) cot 60 <br />

cos 60<br />

sin 60 <br />

1 3 3<br />

3<br />

34. cot cos <br />

sin <br />

38. cos90 sin <br />

42. csc90 sec <br />

© Houghton Mifflin Company. All rights reserved.


Section 4.3 Right Triangle Trigonometry 295<br />

44.<br />

sin 30 1 , tan 30 3<br />

2 3<br />

45.<br />

csc 3, sec 32<br />

4<br />

(a)<br />

csc 30 1<br />

sin 30 2<br />

(a)<br />

sin 1<br />

csc <br />

1 3<br />

(b)<br />

(c)<br />

cot 60 tan90 60 tan 30 3<br />

3<br />

cos 30 <br />

(d) cot 30 1<br />

tan 30 <br />

sin 30<br />

tan 30 12<br />

33 3<br />

23 3<br />

2<br />

3<br />

3 33<br />

3<br />

3<br />

(b)<br />

(c)<br />

cos 1 22<br />

sec 3<br />

tan sin <br />

<br />

13<br />

cos 223 2<br />

4<br />

(d) sec90º csc 3<br />

46.<br />

sec 5, tan 26<br />

(a)<br />

cos 1<br />

sec <br />

1 5<br />

(b) cot 1 1<br />

tan 26 6<br />

12<br />

(c)<br />

cot90 tan 26<br />

(d) sin tan cos 26 1 5 26<br />

5<br />

47.<br />

cos 1 4<br />

(a)<br />

sec 1 4<br />

cos <br />

(c)<br />

cot cos <br />

sin <br />

(b)<br />

sin 2 cos 2 1<br />

sin 2 <br />

1<br />

4 2 1<br />

sin 2 15<br />

16<br />

sin 15<br />

4<br />

<br />

14<br />

154<br />

1<br />

15<br />

15<br />

15<br />

(d) sin90 cos 1 4<br />

© Houghton Mifflin Company. All rights reserved.<br />

48.<br />

tan 5<br />

(a)<br />

(b)<br />

(c)<br />

cot 1<br />

tan <br />

1 5<br />

lies in Quadrant I or III.<br />

sec 2 1 tan 2 ⇒ cos <br />

tan90 cot 1 5<br />

1<br />

<br />

1 tan 2 <br />

(d) csc 1 cot 2 1 1 25 26<br />

5<br />

49. tan cot tan 1<br />

tan 1<br />

1<br />

1 25 1<br />

26 26<br />

26<br />

50. csc tan 1 sin <br />

1 sec <br />

sin cos cos <br />

51. tan cos <br />

sin <br />

cos cos sin <br />

52. cot sin cos <br />

sin cos <br />

sin


296 <strong>Chapter</strong> 4 Trigonometric Functions<br />

53.<br />

1 cos 1 cos 1 cos 2 <br />

54.<br />

csc cot csc cot csc 2 cot 2 <br />

sin 2 cos 2 cos 2 <br />

1<br />

sin 2 <br />

55.<br />

sin <br />

cos <br />

sin2 cos 2 <br />

cos sin sin cos <br />

<br />

1<br />

sin cos <br />

1 1<br />

csc sec <br />

sin cos <br />

56.<br />

tan cot <br />

tan <br />

tan <br />

cot <br />

tan tan <br />

1 cot <br />

1cot <br />

1 cot 2 csc 2 <br />

57. (a)<br />

sin 41 0.6561<br />

(b) cos 87 0.0523<br />

58. (a)<br />

tan 18.5 0.3346<br />

(b) cot 71.5 <br />

1<br />

tan 71.5 0.3346<br />

59. (a)<br />

sec 42 12 sec 42.2 <br />

(b) csc 48º 7 <br />

1<br />

cos 42.2 1.3499<br />

1<br />

sin48 7 60º 1.3432<br />

60. (a)<br />

cos8 50 25 cos 8 50<br />

60 25<br />

3600<br />

(b) sec8 50 25 <br />

cos8.840278 0.9881<br />

1<br />

cos8 50 25 1.0120<br />

61. Make sure that your calculator is in radian mode.<br />

<br />

(a) cot<br />

16 1<br />

tan16 5.0273<br />

<br />

(b) tan<br />

8 0.4142<br />

1<br />

62. (a) sec1.54 <br />

cos1.54 32.4765<br />

(b) cos1.25 0.3153<br />

63. (a)<br />

65. (a)<br />

67. (a)<br />

sin 1 2 ⇒<br />

(b) csc 2 ⇒<br />

sec 2 ⇒<br />

(b) cot 1 ⇒<br />

csc 23<br />

3<br />

(b) sin 2<br />

2<br />

<br />

30 <br />

6<br />

<br />

30 <br />

6<br />

<br />

60 <br />

3<br />

<br />

45 <br />

⇒<br />

⇒<br />

4<br />

<br />

60 <br />

<br />

45 <br />

4<br />

3<br />

64. (a)<br />

66. (a)<br />

68. (a)<br />

cos 2<br />

2<br />

(b) tan 1 ⇒<br />

(b) cos 1 2 ⇒<br />

(b)<br />

⇒<br />

tan 3 ⇒<br />

cot 3<br />

3<br />

<br />

45 <br />

<br />

45 <br />

4<br />

<br />

60 <br />

tan 3 3 3 ⇒<br />

sec 2<br />

cos 1 2 2<br />

2<br />

3<br />

4<br />

<br />

60 <br />

⇒<br />

3<br />

<br />

60 <br />

3<br />

<br />

45 <br />

4<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.3 Right Triangle Trigonometry 297<br />

69.<br />

tan 30 <br />

y<br />

105<br />

cos 30 105<br />

r<br />

⇒ y 105 tan 30 105 <br />

3<br />

3 353<br />

⇒ r 105<br />

cos 30 105<br />

32 210<br />

3 703<br />

70.<br />

71.<br />

cos 30 x<br />

15<br />

3<br />

⇒ x 15 cos 30 15 <br />

2 153<br />

2<br />

sin 30 y<br />

15 ⇒ y 15 sin 30 15 1 2 15 2<br />

cos 60 x<br />

16 ⇒ x 16 cos 60 16 1 2 8<br />

sin 60 y<br />

16 ⇒ y 16 sin 60 16 3<br />

2 83<br />

72.<br />

cot 60 x<br />

38 ⇒ x 38 cot 60 38 1 3 383<br />

3<br />

sin 60 38 r<br />

⇒ r 38<br />

sin 60 38<br />

32 763<br />

3<br />

73.<br />

tan 45 20 ⇒ 1 20 ⇒ x 20 74.<br />

x<br />

x<br />

r 2 20 2 20 2 ⇒ r 202<br />

tan 45 y<br />

10 ⇒ 1 y<br />

10 ⇒ y 10<br />

r 2 10 2 10 2 ⇒ r 102<br />

75.<br />

tan 45 25<br />

x<br />

⇒ 1 25<br />

x<br />

⇒ x 25<br />

r 2 25 2 25 2 20 20 40 ⇒ r 210<br />

© Houghton Mifflin Company. All rights reserved.<br />

76.<br />

77. (a)<br />

tan 45 <br />

y<br />

46 ⇒ 1 y<br />

46<br />

⇒ y 46<br />

r 2 46 2 46 2 96 96 192 ⇒ r 83<br />

6<br />

(b) tan 6 and tan h Thus,<br />

5 h 5<br />

21 21 .<br />

(c)<br />

h<br />

16<br />

h 621<br />

5<br />

6<br />

θ<br />

5<br />

25.2 feet<br />

78. (a)<br />

30<br />

75°<br />

x<br />

(b) sin 75 x<br />

30<br />

(c) x 30 sin 75 28.98 meters


298 <strong>Chapter</strong> 4 Trigonometric Functions<br />

79.<br />

tan opp<br />

adj<br />

tan 58 w<br />

100<br />

80.<br />

cot 9 c h<br />

cot 3.5 13 c<br />

h<br />

3.5° 9°<br />

13 c<br />

h<br />

w 100 tan 58 160 feet<br />

not drawn to scale<br />

Subtracting,<br />

13<br />

h<br />

cot 3.5 cot 9<br />

h <br />

13<br />

cot 3.5 cot 9<br />

<br />

13<br />

16.3499 6.3138<br />

1.295 1.3 miles.<br />

81. (a)<br />

(b)<br />

(c)<br />

tan 50<br />

50 1 ⇒ 4582. (a)<br />

L 2 50 2 50 2 2 50 2 ⇒ L 502 feet<br />

502<br />

6<br />

252<br />

3<br />

50<br />

6 25 3 ftsec<br />

ftsec<br />

rate down the zip line<br />

vertical rate<br />

(b)<br />

(c)<br />

sin 35.4 <br />

1693.5 519.3 1174.2 feet above sea level<br />

896.5<br />

300<br />

Vertical rate<br />

x<br />

896.5<br />

x 896.5 sin 35.4 519.3 feet<br />

minutes to reach top<br />

519.3<br />

896.5300<br />

173.8 feet per minute<br />

83.<br />

( x1, y1)<br />

( x2, y2)<br />

56<br />

30°<br />

56<br />

sin 30 y 1<br />

56<br />

1<br />

y 1 sin 3056 56 28<br />

2<br />

cos 30 x 1<br />

56<br />

x 1 cos 3056 3 56 283<br />

2<br />

x 1 , y 1 283, 28<br />

60°<br />

sin 60º y 2<br />

56<br />

3<br />

y 2 sin 6056 2 56 283<br />

cos 60 x 2<br />

56<br />

1<br />

x 2 cos 6056 56 28<br />

2<br />

x 2 , y 2 28, 283<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.3 Right Triangle Trigonometry 299<br />

84.<br />

x 9.397, y 3.420<br />

y<br />

sin 20 <br />

10 0.34<br />

cos 20 x<br />

10 0.94<br />

85. True<br />

sin 60 csc 60 sin 60<br />

1<br />

sin 60 1<br />

tan 20 y cot 20 x x 0.36<br />

y 2.75<br />

sec 20 10 x 1.06<br />

csc 20 10 y 2.92<br />

86. False<br />

sin 45cos 45 2<br />

2 2<br />

2<br />

2 1<br />

87. True<br />

1 cot 2 csc 2 for all<br />

<br />

88. No. tan 2 1 sec 2 , so you can find ± sec .<br />

89. (a)<br />

<br />

sin <br />

cos <br />

0 20 40 60 80<br />

0 0.3420 0.6428 0.8660 0.9848<br />

1 0.9397 0.7660 0.5000 0.1736<br />

(b) Sine and tangent are increasing, cosine is<br />

decreasing.<br />

(c) In each case, tan sin <br />

.<br />

cos <br />

tan <br />

0 0.3640 0.8391 1.7321 5.6713<br />

90.<br />

<br />

cos <br />

0 20 40 60 80<br />

1 0.9397 0.7660 0.5000 0.1736<br />

cos sin90 <br />

and 90 <br />

are complementary angles.<br />

sin90 <br />

1 0.9397 0.7660 0.5000 0.1736<br />

91.<br />

7 92.<br />

1 93.<br />

7<br />

94.<br />

−3 3<br />

−6 6<br />

2<br />

−6 6<br />

−6 6<br />

© Houghton Mifflin Company. All rights reserved.<br />

95.<br />

−1<br />

−3<br />

−1<br />

4 96. 4 97.<br />

4<br />

98.<br />

−2 10<br />

−2 10<br />

−2 10<br />

−4<br />

−4<br />

−4<br />

−6<br />

4<br />

−2 10<br />

−4


300 <strong>Chapter</strong> 4 Trigonometric Functions<br />

Section 4.4<br />

Trigonometric Functions of Any Angle<br />

■<br />

Know the Definitions of Trigonometric Functions of Any Angle.<br />

<br />

If is in standard position, x, y a point on the terminal side and r x 2 y 2 0, then:<br />

sin y r<br />

csc r y , y 0<br />

cos x sec r r<br />

x , x 0<br />

tan y cot x x , x 0 y , y 0<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

You should know the signs of the trigonometric functions in each quadrant.<br />

You should know the trigonometric function values of the quadrant angles 0,<br />

You should be able to find reference angles.<br />

You should be able to evaluate trigonometric functions of any angle. (Use reference angles.)<br />

You should know that the period of sine and cosine is 2.<br />

You should know which trigonometric functions are odd and even.<br />

Even: cos x and sec x<br />

Odd: sin x, tan x, cot x, csc x<br />

<br />

2 , , and 3<br />

2 .<br />

Vocabulary Check<br />

y<br />

y<br />

1. 2. csc <br />

3. 4.<br />

r<br />

x<br />

5. cos <br />

6. cot <br />

7. reference<br />

r<br />

x<br />

1. (a)<br />

x, y 4, 3<br />

(b)<br />

x, y 8, 15<br />

r 16 9 5<br />

r 64 225 17<br />

sin y r 3 5<br />

cos x r 4 5<br />

tan y x 3 4<br />

csc r y 5 3<br />

sec r x 5 4<br />

cot x y 4 3<br />

sin y r 15 17<br />

cos x r 8 17<br />

tan y x 15 8<br />

csc r y 17 15<br />

sec r x 17 8<br />

cot x y 8 15<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.4 Trigonometric Functions of Any Angle 301<br />

2. (a)<br />

x 12, y 5<br />

(b)<br />

x 1, y 1<br />

r 12 2 5 2 13<br />

r 1 2 1 2 2<br />

sin y r 5<br />

13 5 13<br />

sin y r 1 2 2<br />

2<br />

cos x r 12<br />

13<br />

cos x r 1<br />

2 2 2<br />

tan y x 5<br />

12 5 12<br />

tan y x 1<br />

1 1<br />

csc r y 13<br />

5 13 5<br />

csc r y 2<br />

1 2<br />

sec r x 13<br />

12<br />

sec r x 2<br />

1 2<br />

cot x y 12<br />

5 12 5<br />

cot x y 1<br />

1 1<br />

3. (a)<br />

x, y 3, 1<br />

(b)<br />

x, y 2, 2<br />

r 3 1 2<br />

r 4 4 22<br />

sin y r 1 2<br />

csc r y 2<br />

sin y r 2<br />

2<br />

csc r y 2<br />

cos x r 3<br />

2<br />

tan y x 3<br />

3<br />

sec r x 23<br />

3<br />

cot x y 3<br />

cos x sec r r 2 2<br />

x 2<br />

tan y cot x x 1 y 1<br />

4. (a)<br />

x 3, y 1<br />

(b)<br />

x 2, y 4<br />

r 3 2 1 2 10<br />

r 2 2 4 2 25<br />

sin y r 1<br />

10 10<br />

10<br />

sin y r 4<br />

25 25 5<br />

© Houghton Mifflin Company. All rights reserved.<br />

cos x r 3<br />

10 310<br />

10<br />

tan y x 1 3<br />

csc r y 10<br />

1<br />

sec r x 10<br />

3<br />

cot x y 3 1 3<br />

10<br />

cos x r 2<br />

25 5<br />

5<br />

tan y x 4<br />

2 2<br />

csc r y 25<br />

4 5 2<br />

sec r x 25<br />

2<br />

5<br />

cot x y 2<br />

4 1 2


302 <strong>Chapter</strong> 4 Trigonometric Functions<br />

5.<br />

x, y 7, 24<br />

6.<br />

x 8, y 15,<br />

r 49 576 25<br />

r 8 2 15 2 17<br />

sin y r 24<br />

25<br />

csc r y 25<br />

24<br />

sin<br />

y r 15<br />

17<br />

cos<br />

x r 8 17<br />

cos x r 7 25<br />

sec r x 25 7<br />

tan<br />

y x 15 8<br />

csc<br />

r y 17<br />

15<br />

tan y x 24 7<br />

cot x y 7 24<br />

r x 17 8<br />

sec cot x y 8 15<br />

7.<br />

x, y 5, 12<br />

8.<br />

x 24, y 10<br />

r 5 2 12 2 25 144 169 13<br />

r 24 2 10 2 26<br />

sin y r 12 13<br />

sin<br />

y r 10<br />

26 5 13<br />

cos x r 5 13<br />

cos<br />

x r 24<br />

26 12<br />

13<br />

tan y x 12 5<br />

tan<br />

y x 10<br />

24 5 12<br />

csc r y 13 12<br />

csc<br />

r y 13 5<br />

sec r x 13 5<br />

sec<br />

r x 13<br />

12<br />

cot x y 5 12<br />

cot x y 12 5<br />

9.<br />

x, y 4, 10 10.<br />

x 5, y 6<br />

r 16 100 229<br />

r 5 2 6 2 61<br />

sin y r 529<br />

29<br />

sin<br />

y r 6<br />

61 661<br />

61<br />

cos x r 229 29<br />

tan y x 5 2<br />

csc r y 29<br />

5<br />

sec r x 29 2<br />

cot x y 2 5<br />

cos<br />

tan<br />

csc<br />

sec<br />

x r 5<br />

y x 6<br />

r y 61<br />

r x 61<br />

cot x y 5 6<br />

61 561<br />

61<br />

5 6 5<br />

6<br />

5<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.4 Trigonometric Functions of Any Angle 303<br />

11.<br />

x, y 10, 8 12.<br />

r 10 2 8 2 164 241<br />

sin y r 8<br />

241 441<br />

41<br />

cos x r 10<br />

241 541 41<br />

tan y x 8<br />

10 4 5<br />

csc r y 41<br />

4<br />

sec r x 41 5<br />

x 3, y 9<br />

r 3 2 9 2 90 310<br />

sin<br />

cos<br />

tan<br />

csc<br />

sec<br />

y r 9<br />

x r 3<br />

y x 9<br />

r y 10<br />

3<br />

r x 10<br />

310 310<br />

10<br />

310 10<br />

10<br />

3 3<br />

cot x y 5 4<br />

cot x y 1 3<br />

13. sin < 0 ⇒ lies in Quadrant III or Quadrant IV.<br />

cos < 0 ⇒ lies in Quadrant II or Quadrant III.<br />

sin < 0<br />

and<br />

<br />

<br />

cos < 0 ⇒<br />

<br />

lies in Quadrant III.<br />

14. sec > 0 and cot < 0<br />

r x<br />

and<br />

x > 0 y < 0<br />

Quadrant IV<br />

<br />

15. cot > 0 ⇒<br />

cos > 0 ⇒<br />

lies in Quadrant I or Quadrant III.<br />

lies in Quadrant I or Quadrant IV.<br />

cot > 0 and cos > 0 ⇒ lies in Quadrant I.<br />

<br />

<br />

16. tan > 0 and csc < 0<br />

y r<br />

and<br />

x > 0 y < 0<br />

Quadrant III<br />

17.<br />

sin y r 3 5 ⇒ x2 25 9 16<br />

18.<br />

cos x r 4<br />

5<br />

⇒ y 3<br />

<br />

in Quadrant II<br />

⇒ x 4<br />

<br />

in Quadrant III<br />

⇒ y 3<br />

© Houghton Mifflin Company. All rights reserved.<br />

sin y r 3 5<br />

cos x r 4 5<br />

tan y x 3 4<br />

csc r y 5 3<br />

sec r x 5 4<br />

cot x y 4 3<br />

sin<br />

cos<br />

y r 3 5<br />

x r 4 5<br />

y x 3 4<br />

csc<br />

sec<br />

5 3<br />

5 4<br />

tan cot 4 3


304 <strong>Chapter</strong> 4 Trigonometric Functions<br />

19.<br />

sin < 0 ⇒ y < 0 20. csc<br />

tan y x 15<br />

8<br />

sin y r 15 17<br />

cos x r 8 17<br />

⇒ r 17<br />

csc r y 17 15<br />

sec r x 17 8<br />

cot<br />

sin<br />

cos<br />

r y 4 1 ⇒ x ±15<br />

<br />

< 0 ⇒ x 15<br />

y r 1 4<br />

x r 15<br />

4<br />

csc<br />

sec<br />

4<br />

415<br />

15<br />

cot x y 8 15<br />

y x 15<br />

tan cot 15<br />

15<br />

21.<br />

sec r x 2<br />

1 ⇒ y2 4 1 3<br />

sin ≥ 0 ⇒ y 3<br />

sin y r 3<br />

2<br />

csc r y 23<br />

3<br />

cos x sec r r 1 2<br />

x 2<br />

tan y x 3<br />

cot x y 3 3<br />

22. sin 0 and<br />

2 ≤<br />

cos cos 1<br />

tan sin <br />

0<br />

cos <br />

csc is undefined.<br />

sec 1<br />

<br />

cot is undefined.<br />

<br />

≤ 3<br />

2 ⇒ <br />

23. cot is undefined ⇒<br />

<br />

2 ≤<br />

<br />

≤ 3<br />

2 ⇒<br />

n.<br />

, y 0, x r<br />

sin y csc r is undefined.<br />

r 0<br />

y<br />

cos x sec r r r<br />

r 1 x 1<br />

tan y x 0 x 0<br />

cot is undefined.<br />

24. tan is undefined and<br />

sin 1<br />

cos 0<br />

tan is undefined.<br />

csc 1<br />

sec is undefined.<br />

cot 0<br />

25. To find a point on the terminal side of , use any point on the line y x that lies in<br />

Quadrant II. 1, 1 is one such point.<br />

x 1, y 1, r 2<br />

sin 1 2 2<br />

2<br />

cos 1 2 2 2<br />

tan 1<br />

csc 2<br />

sec 2<br />

cot 1<br />

<br />

≤<br />

<br />

≤ 2 ⇒<br />

3<br />

2 .<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.4 Trigonometric Functions of Any Angle 305<br />

x, 1 3 x <br />

26. Quadrant III, x > 0<br />

r x 2 1 9 x 2 10x<br />

3<br />

sin<br />

cos<br />

tan<br />

csc<br />

sec<br />

y r x3<br />

x r x<br />

10x3 10 10<br />

y x 13x<br />

10x3 310 10<br />

x<br />

r y 10x3<br />

r x 10x3<br />

13x 10<br />

x<br />

1 3<br />

cot x y x<br />

13 x 3<br />

10<br />

3<br />

27. To find a point on the terminal side of , use any<br />

point on the line y 2x that lies in Quadrant III.<br />

1, 2 is one such point.<br />

x 1, y 2, r 5<br />

sin 2 5 25 5<br />

cos 1 5 5 5<br />

tan 2<br />

1 2<br />

csc 5<br />

2 5 2<br />

sec 5<br />

1 5<br />

cot 1<br />

2 1 2<br />

28.<br />

4x 3y 0 ⇒ y 4 3 x<br />

x, 4 3 x <br />

Quadrant IV, x > 0<br />

r x 2 16 9 x2 5 3 x<br />

© Houghton Mifflin Company. All rights reserved.<br />

sin<br />

cos<br />

y r 43x<br />

x r x<br />

53 x 4 5<br />

53x 3 5<br />

y x 43 x<br />

csc<br />

sec<br />

5 4<br />

5 3<br />

tan 4 cot 3 x 3<br />

4<br />

29. x, y 1, 0 30. tan<br />

undefined 31. x, y 0, 1<br />

2 y x 1 0 ⇒<br />

sec r x 1<br />

1 1<br />

cot 3 0<br />

2 x since corresponds to 0, 1.<br />

y 1 0<br />

2<br />

35.<br />

x, y 1, 0<br />

cot x y 1 0 ⇒<br />

undefined<br />

<br />

<br />

32. csc 0 r undefined 33. x, y 1, 0<br />

y 1 3<br />

⇒ 34. csc<br />

0 2 1<br />

sec 0 r x 1 sin 3 1<br />

1 1<br />

1 1<br />

2<br />

36. csc<br />

<br />

2 1<br />

sin<br />

<br />

2<br />

1 1 1


306 <strong>Chapter</strong> 4 Trigonometric Functions<br />

37.<br />

120<br />

180 120 60<br />

y<br />

38.<br />

225 180 45<br />

y<br />

θ ′ = 60<br />

θ =120<br />

θ = 225<br />

x<br />

x<br />

θ ′ = 45<br />

135<br />

39. is coterminal with 225.<br />

225 180 45<br />

y<br />

40.<br />

330 360 30<br />

y<br />

θ ′ = 55<br />

θ = −330<br />

θ ′= 30<br />

x<br />

x<br />

θ = −235<br />

41.<br />

5<br />

<br />

3 , 2 5<br />

3 3<br />

42.<br />

3<br />

<br />

4 4<br />

y<br />

y<br />

θ =<br />

5π<br />

3<br />

π<br />

θ ′ = 3<br />

x<br />

θ ′ =<br />

4<br />

π<br />

θ =<br />

3 π 4<br />

x<br />

5<br />

7<br />

43. is coterminal with<br />

6<br />

6 .<br />

44.<br />

2<br />

3<br />

<br />

<br />

3<br />

45.<br />

7<br />

<br />

6 <br />

6<br />

208 180 28<br />

y<br />

x<br />

π<br />

θ ′ =<br />

6<br />

θ = −<br />

5π<br />

6<br />

20846.<br />

y<br />

θ = 208°<br />

θ ′ = 28°<br />

x<br />

θ ′ =<br />

3<br />

π<br />

322<br />

y<br />

θ =<br />

−<br />

2π<br />

3<br />

360 322 38<br />

x<br />

θ = 322°<br />

y<br />

θ ′ = 38°<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.4 Trigonometric Functions of Any Angle 307<br />

47.<br />

<br />

29248. 165 lies in<br />

360 292 68<br />

θ = −292°<br />

y<br />

θ ′ = 68°<br />

x<br />

Quadrant III.<br />

Reference angle:<br />

180 165 15<br />

θ ′ = 15<br />

y<br />

x<br />

θ = −165<br />

11<br />

<br />

49. is coterminal with<br />

5<br />

5 .<br />

50.<br />

17<br />

7 14<br />

7 3<br />

7<br />

y<br />

<br />

<br />

5<br />

y<br />

θ ′ =<br />

3π<br />

7<br />

θ ′ =<br />

π<br />

5<br />

x<br />

θ =<br />

17π<br />

7<br />

x<br />

θ =<br />

11π<br />

5<br />

1.8<br />

51. lies in Quadrant III.<br />

Reference angle:<br />

y<br />

1.8 1.342<br />

<br />

52. lies in Quadrant IV.<br />

Reference angle: 4.5 1.358<br />

y<br />

θ ′ = 1.342<br />

θ = −1.8<br />

x<br />

θ′= 1.358<br />

θ = 4.5<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

45,<br />

53. Quadrant III<br />

sin 225 sin 45 2<br />

2<br />

cos 225 cos 45 2<br />

2<br />

tan 225 tan 45 1<br />

750<br />

55. is coterminal with 330, Quadrant IV.<br />

360 330 30<br />

sin750 sin 30 1 2<br />

cos750 cos 30 3<br />

2<br />

tan750 tan 30 3<br />

3<br />

300, 360 300 60,<br />

54. Quadrant IV<br />

sin<br />

300 sin 60 3<br />

2<br />

cos 300 cos 60 1 2<br />

tan 300 tan 60 3<br />

495, 45,<br />

56. Quadrant III<br />

sin495 sin 45 2<br />

2<br />

cos495 cos 45 2<br />

2<br />

tan495 tan 45 1


308 <strong>Chapter</strong> 4 Trigonometric Functions<br />

5<br />

57. Quadrant IV<br />

3 , 58. 4 , 3<br />

4 4<br />

3 <br />

sin<br />

3<br />

4 2<br />

2<br />

2 5<br />

sin <br />

5<br />

cos <br />

5<br />

tan <br />

5<br />

3 sin <br />

3 cos <br />

<br />

3 tan <br />

<br />

<br />

3 3 2<br />

3 1 2<br />

<br />

3 3<br />

3<br />

cos<br />

3<br />

3<br />

4 2 2<br />

tan 3<br />

4 1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

sin 11<br />

4 sin<br />

<br />

cos 11<br />

4 cos<br />

tan 11<br />

4 tan<br />

<br />

<br />

<br />

<br />

<br />

4 2<br />

2<br />

4 2 2<br />

4 1<br />

<br />

4 <br />

59. Quadrant IV<br />

6 ,<br />

60.<br />

3<br />

,<br />

3<br />

61. Quadrant II<br />

4 , 62.<br />

3<br />

is coterminal with<br />

3 .<br />

sin <br />

6 sin 6 1 sin<br />

2<br />

4<br />

3 3<br />

2<br />

cos <br />

6 cos 6 3<br />

cos<br />

2<br />

4<br />

3 1<br />

2<br />

tan <br />

6 tan 6 3<br />

4<br />

tan<br />

3<br />

3 3<br />

17<br />

7<br />

63. is coterminal with<br />

6<br />

6 .<br />

Quadrant III<br />

6 <br />

6 ,<br />

7<br />

sin 17<br />

cos 17<br />

tan 17<br />

<br />

6 sin <br />

6 cos <br />

6 tan <br />

<br />

<br />

6 1 2<br />

<br />

6 3 2<br />

6 3<br />

3<br />

64.<br />

10<br />

4<br />

sin<br />

cos<br />

10<br />

in Quadrant III.<br />

3 <br />

3<br />

3 sin 3 3 2<br />

10<br />

3 cos 3 1 2<br />

tan 10<br />

3 tan<br />

20<br />

3<br />

<br />

<br />

<br />

<br />

3 3<br />

<br />

, <br />

3<br />

sin 20<br />

3 3<br />

2<br />

cos 20<br />

3 1<br />

2<br />

tan <br />

20<br />

3 3<br />

4<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.4 Trigonometric Functions of Any Angle 309<br />

65.<br />

sin 3 5<br />

66.<br />

cot 3<br />

sin 2 cos 2 1<br />

cos 2 1 sin 2 <br />

cos 2 1 3 5 2<br />

1 cot 2 csc 2 <br />

1 3 2 csc 2 <br />

10 csc 2 <br />

csc > 0 in Quadrant II.<br />

10 csc <br />

cos > 0<br />

cos 2 1 9 25<br />

cos 2 16<br />

25<br />

in Quadrant IV.<br />

csc 1<br />

sin <br />

sin 1 1<br />

csc 10 10<br />

10<br />

cos 4 5<br />

67.<br />

csc 2<br />

68.<br />

cos 5 8<br />

1 cot 2 csc 2 <br />

cot 2 csc 2 1<br />

cot 2 2 2 1<br />

cot 2 3<br />

cos 1 ⇒ sec 1<br />

sec <br />

cos <br />

sec 1<br />

58 8 5<br />

cot < 0 in Quadrant IV.<br />

cot 3<br />

69.<br />

sec 9 4<br />

70.<br />

tan 5 4 ⇒ cot 4 5<br />

© Houghton Mifflin Company. All rights reserved.<br />

1 tan 2 sec 2 <br />

tan 2 sec 2 1<br />

tan 2 9 4 2 1<br />

tan 2 65<br />

16<br />

tan > 0 in Quadrant III.<br />

tan 65<br />

4<br />

1 cot 2 csc 2 <br />

1 16<br />

25 csc2 <br />

csc ± 41<br />

5<br />

Quadrant IV ⇒ csc 41<br />

5


310 <strong>Chapter</strong> 4 Trigonometric Functions<br />

71. sin 2 is in Quadrant II.<br />

5 and cos < 0 ⇒ <br />

cos 1 sin 2 1 4<br />

25 21 5<br />

tan sin <br />

<br />

25<br />

cs 215 2<br />

21 221<br />

21<br />

csc 1<br />

sin <br />

5 2<br />

sec 1 5<br />

cos 21 521<br />

21<br />

cot 1 21<br />

tan 2<br />

72. cos 3 is in Quadrant III.<br />

7 and sin < 0 ⇒ <br />

sin 1 cos 2 1 9 49 40<br />

7<br />

tan sin <br />

2107 210<br />

cs 37 3<br />

cot 1 3<br />

tan 210 310<br />

20<br />

csc 1 <br />

7<br />

sin 210 710<br />

20<br />

sec 1<br />

cos <br />

7 3<br />

210<br />

7<br />

73. tan 4 and cos < 0 ⇒ is in Quadrant II.<br />

sec 1 tan 2 1 16 17<br />

cos 1 1<br />

sec 17 17<br />

17<br />

sin tan cos 4 17<br />

17 417<br />

17<br />

csc 1 17<br />

sin 417 17<br />

4<br />

cot 1<br />

tan <br />

1 4<br />

74. cot 5 and sin > 0 ⇒ is in Quadrant II.<br />

tan 1 1<br />

cot 5<br />

sec 1 tan 2 1 1 25 26<br />

5<br />

cos 1 5<br />

sec 26 526<br />

26<br />

sin tan cos 1 5 526<br />

26 26<br />

26<br />

csc 1 26<br />

sin 26 26<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.4 Trigonometric Functions of Any Angle 311<br />

75. csc 3 is in Quadrant IV.<br />

2 and tan < 0 ⇒ <br />

sin 1<br />

csc <br />

2 3<br />

cos 1 sin 2 1 4 9 5<br />

3<br />

sec 1 <br />

cos <br />

tan sin <br />

23<br />

cos 53 2<br />

5 25<br />

5<br />

cot 1 5<br />

tan 2<br />

3<br />

5 35<br />

5<br />

76. sec 4 is in Quadrant III.<br />

3 and cot > 0 ⇒ <br />

cos 1<br />

sec <br />

3 4<br />

sin 1 cos 2 1 9<br />

16 7 4<br />

csc 1 4 sin 7 47<br />

7<br />

tan sin <br />

74<br />

cos 34<br />

7<br />

3<br />

cot 1 <br />

tan <br />

3 7 37<br />

7<br />

1<br />

77. sin 10 0.1736 78. sec 235 <br />

cos 235 1.7434 79. tan 245 2.1445<br />

1<br />

80. csc 320 <br />

81. cos110 0.3420<br />

sin 320 1.5557 82.<br />

cot220 <br />

1<br />

tan220<br />

1.1918<br />

83.<br />

sec280 <br />

1<br />

cos280<br />

84. csc 0.33 1<br />

sin 0.33 3.0860<br />

85. tan <br />

2<br />

9 0.8391<br />

5.7588<br />

86. tan 11<br />

9 0.8391 87. csc 8<br />

88. cos 15<br />

9 1<br />

14 0.9749<br />

sin 8<br />

9 <br />

2.9238<br />

© Houghton Mifflin Company. All rights reserved.<br />

89. (a) sin 1 reference angle is 30 or<br />

2 ⇒ 90. (a) cos ⇒ reference angle is 45º or<br />

2<br />

<br />

and is in Quadrant I or Quadrant II.<br />

6<br />

Values in degrees: 30, 150<br />

Values in radian:<br />

(b) sin 1 reference angle is 30 or<br />

2 ⇒<br />

<br />

<br />

<br />

<br />

6 , 5<br />

6<br />

and is in Quadrant III or Quadrant IV.<br />

6<br />

Values in degrees: 210, 330<br />

Values in radians: 7<br />

6 , 11<br />

6<br />

<br />

and is in Quadrant I or IV.<br />

4<br />

Values in degrees: 45, 315<br />

Values in radians:<br />

(b) cos ⇒ reference angle is 45 or<br />

2<br />

<br />

2<br />

<br />

2<br />

<br />

<br />

4 , 7<br />

4<br />

and is in Quadrant II or III.<br />

4<br />

Values in degrees: 135, 225<br />

Values in radians: 3<br />

4 , 5<br />

4


312 <strong>Chapter</strong> 4 Trigonometric Functions<br />

91. (a) csc 23 ⇒ reference angle is 60 or<br />

3<br />

<br />

and<br />

3<br />

is in Quadrant I or Quadrant II.<br />

Values in degrees:<br />

Values in radians:<br />

60, 120<br />

3 , 2<br />

3<br />

(b) cot 1 ⇒ reference angle is 45 or<br />

<br />

<br />

<br />

<br />

and is in Quadrant II or Quadrant IV.<br />

4<br />

Values in degrees: 135, 315<br />

Values in radians: 3<br />

4 , 7<br />

4<br />

92. (a) csc<br />

Reference angle is 45 or<br />

4 .<br />

Values in degrees: 225, 315<br />

(b) csc<br />

2 ⇒<br />

Values in radians:<br />

2 ⇒<br />

Reference angle is or 30.<br />

6<br />

Values in degrees: 30, 150<br />

Values in radians:<br />

5<br />

4 , 7<br />

4<br />

sin 1 2<br />

<br />

<br />

sin 1<br />

2<br />

6 , 5<br />

6<br />

<br />

93. (a) sec 23 reference angle is or<br />

3<br />

6<br />

30, and is in Quadrant II or Quadrant III.<br />

Values in degrees: 150, 210<br />

5<br />

Values in radians:<br />

6 , 7<br />

6<br />

(b) cos 1 reference angle is or 60,<br />

2 ⇒ 3<br />

and is in Quadrant II or Quadrant III.<br />

<br />

<br />

Values in degrees: 120, 240<br />

Values in radians: 2<br />

3 , 4<br />

3<br />

⇒ 94. (a)<br />

<br />

<br />

cot 3 ⇒ cos <br />

3<br />

sin <br />

<br />

Reference angle is or 30.<br />

6<br />

Values in degrees: 150, 330<br />

Values in radians:<br />

6 , 11<br />

6<br />

(b) Values in degrees: 45 or 315<br />

5<br />

<br />

Values in radians:<br />

4<br />

or<br />

7<br />

4<br />

95. (a)<br />

(b)<br />

96. (a)<br />

f g sin 30 cos 30 1 2 3<br />

2 1 3<br />

2<br />

cos 30 sin 30 3 1<br />

2<br />

(c) cos 30 2 <br />

3<br />

2 2 3 4<br />

(b)<br />

f g sin 60 cos 60 3<br />

2 1 2 3 1<br />

2<br />

cos 60 sin 60 1 2 3<br />

2 1 3<br />

2<br />

(c) cos 60 2 <br />

1<br />

2 2 1 4<br />

(d)<br />

(e)<br />

sin 30 cos 30 <br />

1<br />

2 3<br />

2 3<br />

4<br />

2 sin 30 2 <br />

1<br />

2 1<br />

(f) cos30 cos 30 3<br />

2<br />

(d)<br />

(e)<br />

sin 60 cos 60 <br />

3<br />

2 1 2 3<br />

4<br />

2 sin 60 2 3<br />

2 3<br />

(f) cos60 cos 60 1 2<br />

© Houghton Mifflin Company. All rights reserved.


97. (a)<br />

(b)<br />

98. (a)<br />

f g sin 315 cos 315 2<br />

2 2<br />

2 0<br />

cos 315 sin 315 2<br />

2 2<br />

2 2<br />

(c) cos 315 2 <br />

2<br />

2 2 1 2<br />

(b)<br />

(c)<br />

99. (a)<br />

f g sin 225 cos 225 2<br />

2 2<br />

cos 225 sin 225 2<br />

2<br />

cos 225 2 <br />

2<br />

2 2 1 2<br />

<br />

2<br />

2 0<br />

(d) sin 225 cos 225 <br />

2<br />

2 2<br />

2 1 2<br />

(b)<br />

(c)<br />

f g sin 150 cos 150 1 2 3<br />

2<br />

cos 150 sin 150 3<br />

2<br />

cos 150 2 <br />

3<br />

2 2 3 4<br />

(d) sin 150 cos 150 1 2 3<br />

2<br />

1 2<br />

<br />

1 3<br />

2<br />

3<br />

4<br />

Section 4.4 Trigonometric Functions of Any Angle 313<br />

2 2 (d)<br />

(e)<br />

1 3<br />

2<br />

sin 315 cos 315 <br />

2<br />

2 2<br />

2 1 2<br />

2 sin 315 2 <br />

2<br />

2 2<br />

(f) cos315 cos315 2<br />

2<br />

(e)<br />

2 sin 225 2 <br />

2<br />

2 2<br />

(f) cos225 cos225 2<br />

2<br />

(e)<br />

2 sin 150 2 <br />

1<br />

2 1<br />

(f ) cos150 cos150 3<br />

2<br />

© Houghton Mifflin Company. All rights reserved.<br />

100. (a)<br />

(b)<br />

(c)<br />

101. (a)<br />

f g sin 300 cos 300 3<br />

2<br />

cos 300 sin 300 1 2 3<br />

2 1 3<br />

2<br />

cos 300 2 <br />

1<br />

2 2 1 4<br />

(d) sin 300 cos 300 <br />

3<br />

2 1 2 3<br />

4<br />

(b)<br />

(c)<br />

1 2 1 3<br />

2<br />

f g sin 7 7<br />

cos<br />

6 6 1 2 3 1 3<br />

<br />

2 2<br />

cos 7 7<br />

sin<br />

6 6 3 <br />

2 1 2 1 3<br />

2<br />

7<br />

cos 6 2 <br />

3<br />

2 2 3 4<br />

(d) sin 7 7<br />

cos<br />

6 6 1 2 3 2 3<br />

4<br />

(e)<br />

2 sin 300 2 <br />

3<br />

2 3<br />

(f) cos300 cos300 1 2<br />

(e)<br />

2 sin 7<br />

6 2 1 2 1<br />

(f) cos <br />

7<br />

6 cos 7<br />

6 3<br />

2


314 <strong>Chapter</strong> 4 Trigonometric Functions<br />

102. (a)<br />

(b)<br />

(c)<br />

f g sin 5 5<br />

cos<br />

6 6 1 2 3 1 3<br />

2 2<br />

cos 5 5<br />

sin<br />

6 6 3 1 1 3<br />

<br />

2 2 2<br />

5<br />

cos 6 2 <br />

3<br />

2 2 3 4<br />

(d) sin 5 5<br />

cos<br />

6 6 1 2 3<br />

2 3<br />

4<br />

(e)<br />

2 sin 5<br />

6 2 1 2 1<br />

(f) cos <br />

5<br />

6 cos 5<br />

6 3<br />

2<br />

103. (a)<br />

(b)<br />

(c)<br />

f g sin 4 4<br />

cos<br />

3 3 3 1 1 3<br />

<br />

2 2 2<br />

cos 4 4<br />

sin<br />

3 3 1 2 3<br />

2 3 1<br />

2<br />

4<br />

cos 3 2 1 2 2 1 4<br />

(d) sin 4 4<br />

cos<br />

3 3 3<br />

2 1 2 3<br />

4<br />

(e)<br />

2 sin 4<br />

3 2 3<br />

2 3<br />

(f) cos <br />

4<br />

3 cos 4<br />

3 1 2<br />

104. (a)<br />

(b)<br />

(c)<br />

f g sin 5 5<br />

cos<br />

3 3 3 1 2 2 1 3<br />

2<br />

cos 5 5<br />

sin<br />

3 3 1 2 3<br />

2 1 3<br />

2<br />

5<br />

cos 3 2 <br />

1<br />

2 2 1 4<br />

(d) sin 5 5<br />

cos<br />

3 3 3<br />

2 1 2 3<br />

4<br />

(e)<br />

2 sin 5<br />

3 2 3<br />

2 3<br />

(f) cos <br />

5<br />

3 cos 5<br />

3 1 2<br />

105. (a)<br />

(b)<br />

106. (a)<br />

f g sin 270 cos 270 1 0 1(d)<br />

cos 270 sin 270 0 1 1<br />

(c) cos 270 2 0 2 0<br />

(b)<br />

107. (a)<br />

(c) cos 180 2 1 2 1<br />

(b)<br />

f g sin 180 cos 180 0 1 1(d)<br />

cos 180 sin 180 1 0 1<br />

f g sin 7<br />

2<br />

cos 7 7<br />

sin<br />

2 2 0 1 1<br />

(c) cos 7<br />

2 2 0 2 0<br />

(e)<br />

sin 270 cos 270 10 0<br />

2 sin 270 21 2<br />

(f) cos270 cos270 0<br />

(e)<br />

7<br />

cos 1 0 1 (d)<br />

2<br />

sin 180 cos 180 01 0<br />

2 sin 180 20 0<br />

(f) cos180 cos180 1<br />

(e)<br />

sin 7 7<br />

cos<br />

2 2 10 0<br />

2 sin 7 21 2<br />

2<br />

(f) cos <br />

7<br />

2 cos 7<br />

2 0<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.4 Trigonometric Functions of Any Angle 315<br />

108. (a)<br />

(b)<br />

f g sin 5 5<br />

cos<br />

2 2 1 0 1 (d)<br />

cos 5 5<br />

sin<br />

2 2 0 1 1<br />

(c) cos 5<br />

2 2 0 2 0<br />

(e)<br />

sin 5 5<br />

cos<br />

2 2 10 0<br />

2 sin 5<br />

2 21 2<br />

(f) cos <br />

5<br />

2 cos 5<br />

2 0<br />

109.<br />

110.<br />

T 49.5 20.5 cos <br />

t<br />

6 7<br />

6 <br />

(a) January:<br />

(b) July:<br />

t 1 ⇒ T 49.5 20.5 cos <br />

1<br />

7<br />

6 6 29<br />

t 7 ⇒ T 70<br />

(c) December: t 12 ⇒ T 31.75<br />

S 23.1 0.442t 4.3 sin <br />

t<br />

6 , t 1 ↔ Jan. 2004<br />

(a) S1 23.1 0.4421 4.3 sin thousand<br />

6 25.7<br />

(b) S14 33.0 thousand<br />

(c) S5 27.5 thousand<br />

(d) S6 25.8 thousand<br />

Answers will vary.<br />

<br />

© Houghton Mifflin Company. All rights reserved.<br />

111. sin<br />

(a)<br />

(b)<br />

(c)<br />

6 d ⇒ d 6<br />

30<br />

d 6<br />

sin 30 6<br />

12 12<br />

90<br />

d 6<br />

sin 90 6 1 6<br />

120<br />

d <br />

sin <br />

6<br />

sin 120 6.9<br />

miles<br />

miles<br />

miles<br />

113. True. The reference angle for is<br />

and sine is positive<br />

in Quadrants I and II.<br />

180 151 29,<br />

151<br />

<br />

112. As increases from 0 to 90, x decreases from<br />

12 cm to 0 cm and y increases from 0 cm to<br />

12 cm. Therefore, sin y12 increases from 0<br />

to 1, and cos x12 decreases from 1 to 0.<br />

Thus, tan yx begins at 0 and increases<br />

without bound. When the tangent<br />

is undefined.<br />

90,<br />

114. False. cot <br />

3<br />

and<br />

4 1 1<br />

<br />

cot <br />

4 1


316 <strong>Chapter</strong> 4 Trigonometric Functions<br />

115. (a)<br />

<br />

sin <br />

sin180 <br />

0 20 40 60 80<br />

0 0.3420 0.6428 0.8660 0.9848<br />

0 0.3420 0.6428 0.8660 0.9848<br />

(b) It appears that sin sin180 .<br />

116.<br />

Function<br />

Domain<br />

Range<br />

Evenness No Yes No<br />

Oddness Yes No Yes<br />

Period<br />

sin x cos x tan x<br />

, , <br />

1, 1 1, 1<br />

2 2 <br />

n<br />

<br />

Zeros n<br />

2 n<br />

<br />

All reals except<br />

2 n<br />

, <br />

Function csc x<br />

sec x<br />

cot x<br />

Domain All reals except All reals except All reals except<br />

2 n<br />

Range , 1 1, , 1 1, , <br />

Evenness No Yes No<br />

Oddness Yes No Yes<br />

Period<br />

2<br />

n<br />

Zeros None None<br />

Patterns and conclusions may vary.<br />

<br />

2<br />

<br />

<br />

2 n<br />

n<br />

117.<br />

119.<br />

3x 7 14<br />

3x 21<br />

x 7<br />

x 2 2x 5 0<br />

x <br />

2 ±4 20<br />

2<br />

1 ±6<br />

x 3.449, x 1.449<br />

118.<br />

120.<br />

44 9x 61<br />

x <br />

9x 17<br />

x 17<br />

9 1.889<br />

2x 2 x 4 0<br />

1 ±1 442<br />

4<br />

x 1.186, 1.686<br />

<br />

1 ±33<br />

4<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.5 Graphs of Sine and Cosine Functions 317<br />

121.<br />

3<br />

x 1 x 2<br />

9<br />

122.<br />

5<br />

x x 4<br />

2x<br />

27 x 1x 2<br />

10x x 2 4x<br />

x 2 x 29 0<br />

x 2 6x 0<br />

x <br />

1 ±1 429<br />

2<br />

x 5.908, 4.908<br />

<br />

1 ±117<br />

2<br />

xx 6 0<br />

x 6<br />

( x 0 extraneous)<br />

123.<br />

4 3x 726<br />

3 x log 4 726<br />

x 3 log 4 726 3 <br />

ln 726<br />

ln 4 1.752<br />

124.<br />

4500<br />

4 e2x 50<br />

90 4 e 2x<br />

86 e 2x<br />

2x ln 86<br />

x 1 ln 86 2.227<br />

2<br />

125.<br />

ln x 6<br />

x e 6 0.002479 0.002<br />

126. ln x 10 1 2 lnx 10 1 ⇒ lnx 10 2 ⇒ x 10 e 2 ⇒ x e 2 10 2.611<br />

Section 4.5<br />

Graphs of Sine and Cosine Functions<br />

© Houghton Mifflin Company. All rights reserved.<br />

■ You should be able to graph y a sinbx c and y a cosbx c.<br />

■ Amplitude:<br />

■<br />

Period:<br />

2<br />

b <br />

a <br />

■ Shift: Solve bx c 0 and bx c 2.<br />

1<br />

■ Key increments: (period)<br />

4<br />

Vocabulary Check<br />

1. amplitude 2. one cycle 3. 4. phase shift<br />

b<br />

2


318 <strong>Chapter</strong> 4 Trigonometric Functions<br />

1.<br />

2.<br />

fx sin x<br />

(a)<br />

(b)<br />

x-intercepts:<br />

2, 0, , 0, 0, 0, , 0, 2, 0<br />

y-intercept:<br />

0, 0<br />

(c) Increasing on: 2, 3<br />

Decreasing on: 3<br />

2 , <br />

(d) Relative maxima: 3<br />

(a)<br />

(b)<br />

Relative minima: <br />

fx cos x<br />

x-intercepts:<br />

3<br />

y-intercept:<br />

0, 1<br />

<br />

2 , <br />

<br />

2 , <br />

2 , 1 , <br />

<br />

<br />

2 , 1 <br />

2 , 1 , 3<br />

<br />

2 ,<br />

<br />

2 , 3<br />

2 <br />

2 , 1 <br />

(c) Increasing on: , 0, , 2<br />

Decreasing on: 2, , 0, <br />

(d) Relative maxima: 2, 1, 0, 1, 2, 1<br />

Relative minima: , 1, , 1<br />

<br />

2 , 3<br />

2 , 2<br />

<br />

2 , 0 , 2 , 0 , 2 , 0 , 3<br />

2 , 0 <br />

3.<br />

y 3 sin 2x<br />

Period:<br />

2<br />

2 <br />

Amplitude: 3 3<br />

<br />

<br />

Xmin = -2<br />

Xmax = 2<br />

Xscl = 2<br />

Ymin = -4<br />

Ymax = 4<br />

Yscl = 1<br />

4.<br />

y 2 cos 3x<br />

Period:<br />

2<br />

b 2<br />

3<br />

Amplitude: a 2<br />

<br />

<br />

Xmin = -<br />

Xmax =<br />

Xscl = 4<br />

Ymin = -3<br />

Ymax = 3<br />

Yscl = 1<br />

5.<br />

7.<br />

y 5 2 cos x 2<br />

Period:<br />

Amplitude:<br />

5 2 5 2<br />

y 2 3 sin x<br />

Period:<br />

2<br />

12 4<br />

2<br />

<br />

2<br />

<br />

<br />

<br />

Xmin = -4<br />

Xmax = 4<br />

Xscl =<br />

Ymin = -3<br />

Ymax = 3<br />

Yscl = 1<br />

6.<br />

8.<br />

y 3 sin x 3<br />

Period:<br />

2<br />

b 2<br />

13 6<br />

Amplitude: a 3 3<br />

y 3 2 cos<br />

Period:<br />

2<br />

x<br />

2<br />

b 2<br />

2 4<br />

6<br />

6<br />

<br />

Xmin = -<br />

Xmax =<br />

Xscl =<br />

Ymin = -4<br />

Ymax = 4<br />

Yscl = 1<br />

© Houghton Mifflin Company. All rights reserved.<br />

Amplitude:<br />

2 3 2 3<br />

Amplitude: a 3 2


Section 4.5 Graphs of Sine and Cosine Functions 319<br />

9.<br />

y 2 sin x 10.<br />

Period:<br />

2<br />

1 2<br />

Amplitude: 2 2<br />

y cos 2x<br />

5<br />

2<br />

Period:<br />

b 2<br />

25 5<br />

Amplitude: a 1 1<br />

11.<br />

y 1 4<br />

Period:<br />

cos<br />

2x<br />

3<br />

2<br />

23 3<br />

Amplitude:<br />

1 4 1 4<br />

12.<br />

y 5 2 cos x 4<br />

13.<br />

y 1 sin 4x<br />

3<br />

14.<br />

y 3 4 cos<br />

x<br />

12<br />

Period:<br />

2<br />

b 2<br />

14 8<br />

Period:<br />

2<br />

4<br />

1 2<br />

Period: 2<br />

b 2<br />

12 24<br />

Amplitude: a 5 2<br />

Amplitude:<br />

1 3 1 3<br />

Amplitude: a 3 4<br />

15.<br />

f x sin x<br />

gx sinx <br />

The graph of g is a horizontal shift to the right<br />

units of the graph of f (a phase shift).<br />

<br />

16.<br />

fx cos x, gx cosx <br />

g is a horizontal shift of f<br />

<br />

units to the left.<br />

17.<br />

f x cos 2x<br />

gx cos 2x<br />

The graph of g is a reflection in the x-axis of the<br />

graph of f.<br />

18. fx sin 3x, gx sin3x<br />

g is a reflection of f about the y-axis.<br />

(or, about the x-axis)<br />

19.<br />

fx cos x<br />

gx 5 cos x<br />

The graph of g has five times the amplitude of f,<br />

and reflected in the x-axis.<br />

20. fx sin x, gx 1 2 sin x<br />

The amplitude of g is one-half that of f. g is a<br />

reflection of f in the x-axis.<br />

© Houghton Mifflin Company. All rights reserved.<br />

21. f x sin 2x<br />

gx 5 sin 2x<br />

The graph of g is a vertical shift upward of five<br />

units of the graph of f.<br />

23. The graph of g has twice the amplitude as the graph<br />

of f. The period is the same.<br />

25. The graph of g is a horizontal shift units to the<br />

right of the graph of f.<br />

<br />

22.<br />

fx cos 4x, gx 6 cos 4x<br />

g is a vertical shift of f six units downward.<br />

24. The period of g is one-half the period of f.<br />

26. Shift the graph of f two units upward to obtain the<br />

graph of g.


320 <strong>Chapter</strong> 4 Trigonometric Functions<br />

27.<br />

f x sin x<br />

28.<br />

fx sin x<br />

2<br />

Period:<br />

Amplitude: 1<br />

gx sin x 3<br />

gx 4 sin x<br />

2<br />

Period:<br />

Amplitude:<br />

4 4<br />

<br />

<br />

3<br />

2<br />

x 0<br />

2 2<br />

sin x 0 1 0 1 0<br />

4<br />

y<br />

g<br />

sin x 3<br />

1 3<br />

0 1<br />

2 2<br />

3<br />

2<br />

3π<br />

−<br />

2<br />

1<br />

−2<br />

−3<br />

f<br />

π<br />

2<br />

x<br />

2<br />

y<br />

g<br />

f<br />

−4<br />

6π<br />

x<br />

–2<br />

29.<br />

fx cos x<br />

30.<br />

fx 2 cos 2x<br />

2<br />

Period:<br />

Amplitude: 1<br />

gx 4 cos x is a vertical shift of the graph of<br />

fx four units upward.<br />

y<br />

gx cos 4x<br />

<br />

x 0<br />

4 2 4<br />

2 cos 2x 2 0 2 0 2<br />

<br />

3<br />

<br />

6<br />

4<br />

3<br />

g<br />

cos 4x<br />

y<br />

1<br />

1 1 1 1<br />

31.<br />

− 2π<br />

Period:<br />

2<br />

−1<br />

−2<br />

fx 1 2 sin x 2<br />

4<br />

Amplitude:<br />

f<br />

1<br />

2<br />

2π<br />

gx 3 1 is the graph of fx<br />

2 sin x 2<br />

shifted vertically three units upward.<br />

x<br />

4<br />

3<br />

2<br />

1<br />

−4π<br />

−π<br />

−1<br />

−2<br />

−3<br />

−4<br />

y<br />

g<br />

f<br />

2π<br />

3π 4π<br />

2<br />

–2<br />

x<br />

f<br />

g<br />

π<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.5 Graphs of Sine and Cosine Functions 321<br />

32.<br />

fx 4 sin x<br />

33.<br />

fx 2 cos x<br />

gx 4 sin x 2<br />

1 3<br />

x 0 1 2<br />

2 2<br />

f x 0 4 0 4 0<br />

Period:<br />

Amplitude: 2<br />

gx 2 cosx is the graph of fx shifted<br />

units to the left.<br />

<br />

2<br />

y<br />

gx<br />

2<br />

2 2 6 2<br />

3<br />

f<br />

y<br />

4<br />

3<br />

2<br />

−2 −1 1<br />

2<br />

−1<br />

−2<br />

1<br />

f<br />

g<br />

x<br />

–3<br />

g<br />

π<br />

2π<br />

x<br />

34.<br />

fx cos x<br />

gx cos x <br />

<br />

x 0<br />

2<br />

<br />

2<br />

<br />

3<br />

2<br />

2<br />

35.<br />

f x sin x, gx cos x <br />

sin x cos x <br />

Period:<br />

2<br />

Amplitude: 1<br />

<br />

2<br />

<br />

2<br />

cos x<br />

cos x <br />

<br />

2<br />

1<br />

0 1 0<br />

0 1 0 1 0<br />

1<br />

−2<br />

2<br />

f = g<br />

2<br />

y<br />

−2<br />

f<br />

1<br />

g<br />

− 2π<br />

2π<br />

© Houghton Mifflin Company. All rights reserved.<br />

−π<br />

−1<br />

36. fx sin x, gx cos x <br />

<br />

2<br />

x 0<br />

2 2<br />

sin x<br />

0 1 0 1 0<br />

cos x <br />

<br />

2<br />

π<br />

x<br />

<br />

<br />

3<br />

0 1 0 1 0<br />

2<br />

2<br />

f = g<br />

−2<br />

2<br />

−2<br />

Conjecture: sin x cos x <br />

<br />

2


322 <strong>Chapter</strong> 4 Trigonometric Functions<br />

37.<br />

fx cos x<br />

38.<br />

fx cos x, gx cosx <br />

gx sin x <br />

Thus, f x gx.<br />

2<br />

f = g<br />

<br />

2 sin <br />

<br />

2 x cos x<br />

x 0<br />

2 2<br />

cos x 1 0 1 0 1<br />

cosx <br />

<br />

<br />

3<br />

1 0 1 0 1<br />

2<br />

−2<br />

2<br />

2<br />

−2<br />

−2<br />

f = g<br />

2<br />

−2<br />

Conjecture: cos x cosx <br />

39.<br />

y 3 sin x<br />

40.<br />

y 1 4 cos x<br />

2<br />

Period:<br />

Amplitude: 3<br />

Key points:<br />

0, 0,<br />

<br />

<br />

, 0,<br />

2 , 3 ,<br />

3<br />

2 , 3 ,<br />

2, 0<br />

Period:<br />

2<br />

Amplitude:<br />

1<br />

4<br />

y<br />

y<br />

4<br />

3<br />

1<br />

2<br />

1<br />

3π<br />

π π 3π<br />

− −<br />

2 2 2 2<br />

x<br />

0.5<br />

π<br />

−<br />

2<br />

−0.5<br />

π<br />

2<br />

π<br />

2π<br />

x<br />

−4<br />

−1<br />

41.<br />

y cos x 2<br />

42.<br />

y sin 4x<br />

4<br />

Period:<br />

Amplitude: 1<br />

Key points: 0, 1, , 0, 2, 1, 3, 0, 4, 1<br />

3<br />

2<br />

−1<br />

−2<br />

−3<br />

y<br />

2π<br />

4π<br />

x<br />

Period:<br />

2<br />

4 2<br />

Amplitude: 1<br />

<br />

y<br />

2<br />

1<br />

3π<br />

π 3π<br />

5π<br />

−<br />

8<br />

8 8 8<br />

−2<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.5 Graphs of Sine and Cosine Functions 323<br />

43.<br />

y sin x <br />

2<br />

Period:<br />

Amplitude: 1<br />

Shift: Set x and x <br />

4 0 4 2<br />

Key points: <br />

<br />

4<br />

<br />

; a 1, b 1, c <br />

4<br />

<br />

<br />

x <br />

4<br />

<br />

x 9<br />

4<br />

4 , 0 , 3<br />

4 , 1 , 5<br />

4 , 0 , 7<br />

4 , 1 , 9<br />

<br />

4 , 0 <br />

−π<br />

y<br />

3<br />

2<br />

1<br />

–2<br />

–3<br />

π<br />

x<br />

44.<br />

y sinx <br />

Horizontal shift<br />

<br />

units to the right<br />

2<br />

1<br />

y<br />

π<br />

−<br />

2<br />

−1<br />

π<br />

2<br />

3π<br />

2<br />

x<br />

−2<br />

45.<br />

y 8 cosx <br />

Period:<br />

2<br />

10<br />

8<br />

y<br />

Amplitude: 8<br />

Key points: , 8, <br />

<br />

2 , 0 , 0, 8, <br />

<br />

2 , 0 , , 8<br />

2<br />

− 2π<br />

−π<br />

−2<br />

−4<br />

−6<br />

−8<br />

−10<br />

π 2π<br />

x<br />

46.<br />

<br />

y 3 cos x <br />

47.<br />

2<br />

y 2 sin 2x<br />

3<br />

Amplitude: 3<br />

Amplitude: 2<br />

© Houghton Mifflin Company. All rights reserved.<br />

Horizontal shift units to the left<br />

2<br />

Note: 3 cos x <br />

4<br />

3<br />

1<br />

π<br />

−<br />

2<br />

−2<br />

−3<br />

−4<br />

y<br />

π<br />

2<br />

<br />

3π<br />

2<br />

<br />

2<br />

x<br />

3 sin x<br />

Period:<br />

23 3<br />

−6<br />

2<br />

4<br />

−4<br />

6


324 <strong>Chapter</strong> 4 Trigonometric Functions<br />

48.<br />

y 10 cos<br />

x<br />

6<br />

49.<br />

y 4 5 cos<br />

t<br />

12<br />

50.<br />

y 2 2 sin 2x<br />

3<br />

Amplitude: 10<br />

2<br />

Period:<br />

6 12<br />

Amplitude: 5<br />

2<br />

Period:<br />

12 24<br />

Amplitude: 2<br />

2<br />

Period:<br />

23 3<br />

12<br />

20<br />

6<br />

−18<br />

18<br />

−30<br />

30<br />

−6<br />

6<br />

−12<br />

−20<br />

−2<br />

51.<br />

y 2 3 cos x 2 <br />

52.<br />

4<br />

Amplitude:<br />

2<br />

2<br />

3<br />

<br />

Period:<br />

12 4<br />

y 3 cos6x 53.<br />

Amplitude: 3<br />

Period:<br />

2<br />

6 3<br />

6<br />

<br />

y 2 sin4x <br />

Amplitude: 2<br />

<br />

Period:<br />

2<br />

4<br />

2<br />

π<br />

−<br />

2<br />

π<br />

2<br />

−<br />

<br />

− 4π 5π<br />

−6<br />

−4<br />

−2<br />

54. 2<br />

y 4 sin 55. y cos 2x <br />

3 x <br />

2 1<br />

56.<br />

3<br />

Amplitude: 4<br />

Amplitude: 1<br />

Period:<br />

3<br />

<br />

Period: 1<br />

3<br />

8<br />

<br />

x<br />

y 3 cos 2 2 3<br />

Amplitude: 3<br />

Period: 4<br />

1<br />

<br />

−6<br />

6<br />

−12<br />

12<br />

−3<br />

3<br />

57.<br />

−1<br />

−8<br />

y 5 sin 2x 1059.<br />

58. y 5 cos 2x 6<br />

Amplitude: 5<br />

Amplitude: 5<br />

Period:<br />

<br />

Period:<br />

20<br />

12<br />

−<br />

<br />

−<br />

<br />

−4<br />

0<br />

<br />

−7<br />

y 1<br />

100 sin 120t<br />

Amplitude:<br />

Period:<br />

<br />

−<br />

180<br />

1<br />

60<br />

0.02<br />

−0.02<br />

1<br />

100<br />

<br />

180<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.5 Graphs of Sine and Cosine Functions 325<br />

60.<br />

y 1<br />

100 cos50 t 61.<br />

Amplitude:<br />

Period:<br />

−0.06<br />

1<br />

25<br />

0.04<br />

−0.04<br />

1<br />

100<br />

0.06<br />

fx a cos x d<br />

1<br />

Amplitude: 8 0 4<br />

2<br />

Since f x is the graph of<br />

gx 4 cos x reflected about the<br />

x-axis and shifted vertically four<br />

units upward, we have a 4<br />

and d 4. Thus,<br />

fx 4 cos x 4<br />

4 4 cos x.<br />

62.<br />

fx a cos x d<br />

2 4<br />

Amplitude:<br />

1<br />

2<br />

Reflected in the x-axis:<br />

a 1<br />

4 1 cos 0 d<br />

d 3<br />

y 3 cos x<br />

63. f x a cos x d 64. y a cos x d<br />

65.<br />

1<br />

Amplitude: 7 5 6<br />

2<br />

Graph of f is the graph of<br />

gx 6 cos x reflected about the<br />

x-axis and shifted vertically one<br />

unit upward. Thus,<br />

f x 6 cos x 1.<br />

Amplitude: 1 2<br />

Period: 2<br />

Reflected in x-axis,<br />

a 1 2<br />

d 4<br />

y 4 1 2 cos x<br />

f x a sinbx c<br />

Amplitude:<br />

Since the graph is reflected<br />

about the x-axis, we have<br />

a 3.<br />

2<br />

a 3<br />

Period:<br />

b ⇒ b 2<br />

Phase shift: c 0<br />

Thus, f x 3 sin 2x.<br />

66.<br />

y a sinbx c<br />

67.<br />

f x a sinbx c<br />

© Houghton Mifflin Company. All rights reserved.<br />

68.<br />

Amplitude: 2 ⇒ a 2<br />

Period:<br />

2<br />

4<br />

b 4 ⇒ b 1 2<br />

Phase shift:<br />

y 2 sin <br />

x<br />

2<br />

c 0<br />

y a sinbx c 69.<br />

Amplitude: 2 ⇒ a 2<br />

Period: 4<br />

2<br />

b 4 ⇒ b 2<br />

Phase shift:<br />

c<br />

b<br />

x<br />

y 2 sin 2 <br />

1 ⇒ c <br />

2<br />

<br />

<br />

2<br />

<br />

Amplitude: a 1<br />

Period:<br />

Phase shift:<br />

2 ⇒ b 1<br />

Thus, f x sin x <br />

y 1 sin x<br />

y 2 1 2<br />

bx c 0 when x <br />

4 .<br />

1 <br />

4 c 0 ⇒ c <br />

<br />

4 .<br />

In the interval 2, 2, sin x 1 2 when<br />

x 5<br />

6 , 6 , 7<br />

6 , 11<br />

6 .<br />

−2<br />

2<br />

y 2<br />

<br />

y 1<br />

2<br />

<br />

<br />

4<br />

−2


326 <strong>Chapter</strong> 4 Trigonometric Functions<br />

70.<br />

y 1 cos x<br />

y 2 1<br />

y 1 y 2 when x , .<br />

71.<br />

v 0.85 sin<br />

(a)<br />

2<br />

t<br />

3<br />

2<br />

0<br />

4<br />

y 1<br />

−2<br />

2<br />

−2<br />

−2<br />

y 2<br />

(b)<br />

Time for one cycle one period 2<br />

3 6 sec<br />

(c) Cycles per min 60 cycles per min<br />

6 10<br />

(d) The period would change.<br />

72.<br />

S 74.50 43.75 cos<br />

(a)<br />

120<br />

t<br />

6<br />

73.<br />

h 25 sin t 75 30<br />

15<br />

(a)<br />

60<br />

<br />

1<br />

0<br />

12<br />

0<br />

0<br />

135<br />

(b) Maximum sales: December t 12<br />

Minimum sales: June t 6<br />

(b) Minimum:<br />

30 25 5 feet<br />

Maximum: 30 25 55 feet<br />

74.<br />

75.<br />

P 100 20 cos 8<br />

3 t<br />

130<br />

0<br />

60<br />

1.5<br />

Period:<br />

83 3 4<br />

1 heartbeat<br />

34<br />

C 30.3 21.6 sin <br />

2t<br />

365 10.9 <br />

2<br />

(a) Period: 2<br />

b 2 365 days<br />

2365<br />

This is to be expected: 365 days 1 year<br />

(b) The constant 30.3 gallons is the average daily<br />

fuel consumption.<br />

⇒ 4 heartbeatssecond 80 heartbeatsminute<br />

3<br />

(c)<br />

60<br />

0<br />

0<br />

365<br />

Consumption exceeds 40 gallonsday when<br />

124 ≤ x ≤ 252. (Graph C together with y 40.)<br />

(Beginning of May through part of September)<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.5 Graphs of Sine and Cosine Functions 327<br />

76. (a) Yes, y is a function of t because for each<br />

value of t there corresponds one and only<br />

one value of y.<br />

(b) The period is approximately<br />

20.375 0.125 0.5 seconds.<br />

(c) One model is<br />

(d) 4<br />

y 0.35 sin 4 t 2.<br />

The amplitude is approximately<br />

1<br />

22.35 1.65 0.35 centimeters.<br />

0<br />

0<br />

0.9<br />

77. (a)<br />

y<br />

(c)<br />

y<br />

2.0<br />

2.0<br />

1.5<br />

1.5<br />

1.0<br />

1.0<br />

0.5<br />

−10 10<br />

20 30 40 50 60 70<br />

x<br />

−10 10<br />

20 30 40 50 60 70<br />

x<br />

−0.5<br />

−0.5<br />

(b) y 0.506 sin0.209x 1.336 0.526<br />

The model is a good fit.<br />

2<br />

(d) The period is<br />

0.209 30.06.<br />

(e) June 29, 2007 is day 545. Using the model,<br />

y 0.2709 or 27.09%.<br />

© Houghton Mifflin Company. All rights reserved.<br />

78. (a) At 19.73 sin0.472t 1.74 70.2<br />

(b) 80<br />

(c)<br />

0<br />

0<br />

The model somewhat fits the data.<br />

95<br />

0<br />

45<br />

12<br />

12<br />

The model is a good fit.<br />

79. True. The period is 2<br />

310 20<br />

3 .<br />

81. True<br />

(d) Nantucket: 58<br />

Athens: 70.2<br />

The constant term (d) gives the average daily high<br />

temperature.<br />

(e) Period for<br />

Nt 2<br />

211 11<br />

Period for At 2<br />

0.472 13<br />

You would expect the period to be 12 (1 year).<br />

(f) Athens has greater variability. This is given by the<br />

amplitude.<br />

1<br />

80. False. The amplitude is that of y cos x.<br />

2<br />

82. Answers will vary.<br />

83. The graph passes through 0, 0 and has period . 84. The amplitude is 4 and the period 2. Since<br />

Matches (e).<br />

0, 4 is on the graph, matches (a).<br />

4<br />

85. The period is and the amplitude is 1. Since<br />

0, 1 and , 0 are on the graph, matches (c).<br />

86. The period is . Since 0, 1 is on the graph,<br />

matches (d).


328 <strong>Chapter</strong> 4 Trigonometric Functions<br />

87. (a) hx cos 2 x is even. (b) hx sin 2 x is even.<br />

(c) hx sin x cos x is odd.<br />

h(x) = cos 2 x<br />

2<br />

2<br />

h(x) = sin 2 x<br />

2<br />

h(x) = sin x cos x<br />

−<br />

<br />

−<br />

<br />

−<br />

<br />

−2<br />

−2<br />

−2<br />

88. (a) In Exercise 87, fx cos x is even and we saw that hx cos 2 x is even.<br />

Therefore, for fx even and hx fx 2 , we make the conjecture that hx is even.<br />

(b) In Exercise 87, gx sin x is odd and we saw that hx sin 2 x is even.<br />

Therefore, for gx odd and hx gx 2 , we make the conjecture that hx is even.<br />

(c) From part (c) of 87, we conjecture that the product of an even function and an odd<br />

function is odd.<br />

89. (a)<br />

x<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

(b)<br />

1.1<br />

sin x<br />

x<br />

0.8415 0.9983 1.0 1.0<br />

−1 1<br />

0.8<br />

x<br />

sin x<br />

x<br />

0 0.001 0.01 0.1 1<br />

Undef. 1.0 1.0 0.9983 0.8415<br />

As x → 0, fx sin x approaches 1.<br />

x<br />

sin x<br />

(c) As x approaches 0, approaches 1.<br />

x<br />

90. (a)<br />

x 1 0.1 0.01 0.001<br />

(b)<br />

1 cos x<br />

x<br />

0.4597 0.05 0.005 0.0005<br />

−1<br />

0.5<br />

1<br />

91. (a)<br />

(b)<br />

−2π<br />

x<br />

−2π<br />

1 cos x<br />

x<br />

2<br />

−2<br />

2<br />

0 0.001 0.01 0.1 1<br />

Undef. 0.0005 0.005 0.05 0.4597<br />

2π<br />

2π<br />

(c) Next term for sine approximation:<br />

Next term for cosine approximation:<br />

−2π<br />

2<br />

2π<br />

−0.5<br />

As x → 0, 1 cos x approaches 0.<br />

x<br />

1 cos x<br />

(c) As x approaches 0, approaches 0.<br />

x<br />

−2π<br />

x7<br />

7!<br />

x6<br />

6!<br />

2<br />

2π<br />

© Houghton Mifflin Company. All rights reserved.<br />

−2<br />

−2<br />

−2


Section 4.6 Graphs of Other Trigonometric Functions 329<br />

92. (a) sin1 0.8415 (d)<br />

93.<br />

(b)<br />

(e)<br />

(c) sin <br />

(f )<br />

8 0.3827<br />

cos <br />

4 0.7071<br />

sin 1 2 0.4794 cos1 0.5403<br />

cos 1 2 0.8776<br />

In all cases, the approximations are very accurate.<br />

<br />

y<br />

7 (2, 7)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1 (0, 1)<br />

x<br />

−4 −3 −2 −1 1 2 3 4<br />

−1<br />

Slope 7 1<br />

2 0 3<br />

94. y<br />

(−1, 4) 4<br />

3<br />

2<br />

1<br />

−2<br />

−3<br />

−4<br />

m 2 4<br />

−4 −3 −2 −1 1 2 3 4<br />

−1<br />

(3, −2)<br />

x<br />

95. 8.5 8.5 <br />

180<br />

487.014<br />

<br />

3 1 6<br />

4 3<br />

2<br />

96. 0.48 0.48 <br />

180<br />

27.502<br />

<br />

97. Answers will vary. (Make a Decision)<br />

Section 4.6<br />

Graphs of Other Trigonometric Functions<br />

© Houghton Mifflin Company. All rights reserved.<br />

■ You should be able to graph:<br />

y a tanbx c y a cotbx c<br />

y a secbx c y a cscbx c<br />

■ When graphing y a secbx c or y a cscbx c you should know to first graph y a cosbx c<br />

or y a sinbx c since<br />

(a) The intercepts of sine and cosine are vertical asymptotes of cosecant and secant.<br />

(b) The maximums of sine and cosine are local minimums of cosecant and secant.<br />

(c) The minimums of sine and cosine are local maximums of cosecant and secant.<br />

■ You should be able to graph using a damping factor.<br />

Vocabulary Check<br />

1. vertical 2. reciprocal 3. damping


330 <strong>Chapter</strong> 4 Trigonometric Functions<br />

1.<br />

2.<br />

fx tan x<br />

(a) x-intercepts: 2, 0, , 0, 0, 0, , 0, 2, 0<br />

(c) Increasing on:<br />

Never decreasing<br />

2, 3<br />

2 , 3<br />

2 , <br />

(e) Vertical asymptotes: x 3<br />

2 , <br />

2 , 2 , 3<br />

2<br />

<br />

<br />

<br />

2 , <br />

<br />

2 , <br />

fx cot x<br />

(a) x-intercepts: 3<br />

2 , 0 , 2 , 0 , 2 , 0 , 3<br />

2 , 0 <br />

(c) Decreasing on: 2, , , 0, 0, , , 2<br />

Never increasing<br />

(e) Vertical asymptotes: x 2, , 0, , 2<br />

<br />

<br />

2 , <br />

<br />

2 ,<br />

3<br />

2 , 3<br />

2 , 2<br />

(b) y-intercept:<br />

0, 0<br />

(d) No relative extrema<br />

(b) No y-intercepts<br />

(d) No relative extrema<br />

3. fx sec x 4.<br />

(a) No x-intercepts<br />

(b) y-intercept: 0, 1<br />

(c) Increasing on intervals:<br />

2, 3<br />

2 , 3<br />

2 , , 0,<br />

Decreasing on intervals:<br />

, <br />

<br />

2 , <br />

<br />

2 , 0 , , 3<br />

2 , 3<br />

2 , 2<br />

(d) Relative minima: 2, 1, 0, 1, 2, 1,<br />

Relative maxima: , 1, , 1<br />

(e) Vertical asymptotes: x 3<br />

2 , <br />

2 , 2 , 3<br />

2<br />

5. y 1 2 tan x<br />

Period:<br />

Two consecutive asymptotes:<br />

0<br />

x<br />

y<br />

<br />

<br />

<br />

4<br />

1 2<br />

0<br />

<br />

4<br />

1<br />

2<br />

<br />

2 , <br />

<br />

<br />

<br />

2 , <br />

x and x <br />

2 2<br />

π<br />

−<br />

2<br />

4<br />

3<br />

2<br />

1<br />

<br />

y<br />

π π<br />

2<br />

<br />

x<br />

6.<br />

fx csc x<br />

(a) No x-intercepts<br />

(b) No y-intercepts<br />

(c) Increasing on intervals:<br />

3<br />

2 , , , <br />

2 , 2 , , ,<br />

2 <br />

Decreasing on intervals:<br />

2, 3<br />

2 , 2 , 0 , 0, 2 , 3<br />

2 , 2<br />

(d) Relative minima: 3<br />

2 , 1 , 2 , 1 <br />

Relative maxima: 2 , 1 , 3<br />

2 , 1 <br />

(e) Vertical asymptotes: x ±, ±2<br />

y 1 4 tan x<br />

Period:<br />

Asymptotes:<br />

π<br />

<br />

3<br />

2<br />

1<br />

−1<br />

−2<br />

−3<br />

y<br />

x ± <br />

2<br />

π<br />

<br />

x<br />

<br />

<br />

<br />

<br />

3<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.6 Graphs of Other Trigonometric Functions 331<br />

7.<br />

y 2 tan 2x<br />

8.<br />

y 3 tan 4x<br />

y<br />

<br />

Period:<br />

2<br />

Period:<br />

<br />

4<br />

Two consecutive asymptotes:<br />

2x <br />

2 ⇒ x 4<br />

<br />

<br />

<br />

2x <br />

2 ⇒ x 4<br />

<br />

6<br />

y<br />

Asymptotes:<br />

4x ⇒ x <br />

2<br />

8<br />

<br />

<br />

4x <br />

2 ⇒ x 8<br />

−4<br />

−8<br />

π<br />

2<br />

x<br />

x<br />

<br />

<br />

8<br />

0<br />

<br />

8<br />

−<br />

3π<br />

4<br />

−<br />

π<br />

4<br />

−4<br />

π 3π<br />

4 4<br />

x<br />

y<br />

2 0 2<br />

−6<br />

9. y 1 2 sec x<br />

Graph first.<br />

y<br />

10.<br />

y 1 4 sec x<br />

y<br />

Period:<br />

y 1 2 cos x 1<br />

2<br />

One cycle: 0 to 2<br />

−π<br />

3<br />

2<br />

π<br />

x<br />

Period: 2<br />

3<br />

2<br />

1<br />

− 2π<br />

−π<br />

π 2π<br />

x<br />

11.<br />

y sec x 3<br />

y<br />

12.<br />

y 2 sec 4x 2<br />

y<br />

Period: 2<br />

Shift graph of sec x<br />

down three units.<br />

−2<br />

−1<br />

1<br />

−3<br />

−4<br />

−5<br />

1 2<br />

x<br />

Period:<br />

Asymptotes:<br />

<br />

2<br />

<br />

4 2<br />

<br />

x <br />

8 , x 8<br />

−<br />

π<br />

4<br />

6<br />

4<br />

2<br />

π<br />

4<br />

π<br />

2<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

13.<br />

y 3 csc x 2<br />

Graph y 3 sin x first.<br />

2<br />

Period:<br />

2<br />

12 4<br />

One cycle: 0 to 4<br />

10<br />

8<br />

6<br />

4<br />

2<br />

−3π<br />

−2π<br />

−π π<br />

−8<br />

−10<br />

y<br />

2π<br />

3π 4π<br />

x<br />

14.<br />

<br />

<br />

x <br />

16<br />

0<br />

16<br />

y 0.828 0 0.828<br />

y csc x 3<br />

2<br />

Period:<br />

13 6<br />

Asymptotes:<br />

x 0, x 3<br />

<br />

2<br />

4<br />

−4π<br />

x<br />

y 1.155 1.155 1.155<br />

3<br />

y<br />

−π<br />

−1<br />

−2<br />

−3<br />

π<br />

4π<br />

x


332 <strong>Chapter</strong> 4 Trigonometric Functions<br />

15.<br />

y 1 2 cot x 2<br />

y<br />

16.<br />

y 3 cot x<br />

y<br />

<br />

Period:<br />

12 2<br />

Two consecutive<br />

asymptotes:<br />

x<br />

2 0 ⇒ x 0<br />

x<br />

2 ⇒ x 2<br />

x<br />

− π<br />

<br />

2<br />

6<br />

−4<br />

−6<br />

<br />

π<br />

3<br />

2<br />

x<br />

Period:<br />

<br />

<br />

1<br />

Asymptotes:<br />

x 0, x 1<br />

3<br />

2<br />

1<br />

−3 −2 −1 1 2 3<br />

−3<br />

x<br />

y<br />

1<br />

2<br />

0 1 2<br />

17.<br />

y 2 tan<br />

Period:<br />

4 4<br />

Two consecutive<br />

asymptotes:<br />

x<br />

4 2 ⇒ x 2<br />

x<br />

4 <br />

<br />

<br />

x<br />

4<br />

<br />

2 ⇒<br />

x 2<br />

−6<br />

y<br />

6<br />

4<br />

2<br />

−2 2 4 6<br />

x<br />

18.<br />

y 1 2 tan x<br />

Period: 1<br />

Asymptotes:<br />

x 1 2 , x 1 2<br />

x 1 0<br />

4<br />

1<br />

4<br />

1<br />

y 0 1 2 2<br />

−1<br />

y<br />

3<br />

2<br />

1<br />

−1<br />

−2<br />

−3<br />

1<br />

x<br />

x<br />

y<br />

1<br />

2<br />

0 1<br />

0 2<br />

19.<br />

21.<br />

y<br />

y 1 2 sec2x 20.<br />

Period:<br />

2<br />

2 <br />

<br />

Asymptotes: x ±<br />

4<br />

y csc x<br />

Graph y sin x first.<br />

Period:<br />

2<br />

Asymptotes: Set<br />

−<br />

π<br />

2<br />

4<br />

3<br />

2<br />

1<br />

π<br />

2<br />

x 0 and x 2<br />

x x <br />

x<br />

−2π<br />

−π<br />

6<br />

4<br />

2<br />

y<br />

y secx <br />

Period:<br />

2<br />

<br />

Asymptotes: x ±<br />

2<br />

π<br />

2π<br />

x<br />

−2π<br />

y<br />

8<br />

6<br />

−2<br />

−4<br />

−6<br />

−8<br />

2π<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.6 Graphs of Other Trigonometric Functions 333<br />

22.<br />

y csc2x <br />

Period:<br />

−π<br />

π<br />

−<br />

2<br />

2<br />

2 <br />

5<br />

4<br />

3<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

y<br />

π<br />

2<br />

π<br />

x<br />

23.<br />

y 2 cot x <br />

Period:<br />

Two consecutive<br />

asymptotes:<br />

<br />

x <br />

2 0 ⇒ x 2<br />

<br />

<br />

<br />

2<br />

<br />

x <br />

2 ⇒ x 3<br />

2<br />

x<br />

3<br />

4<br />

<br />

5<br />

4<br />

−π<br />

y<br />

−2<br />

−4<br />

−6<br />

π<br />

x<br />

y<br />

2 0 2<br />

24.<br />

y 1 4 cotx <br />

Period:<br />

<br />

y<br />

25.<br />

y 2 csc 3x 2<br />

sin3x<br />

Period:<br />

2<br />

3<br />

26.<br />

y csc4x <br />

y <br />

1<br />

sin4x <br />

5<br />

4<br />

3<br />

2<br />

1<br />

3π<br />

π π 3π<br />

− −<br />

2 2 2 2<br />

−2<br />

−3<br />

−4<br />

−5<br />

x<br />

−<br />

10<br />

−10<br />

10<br />

<br />

−<br />

<br />

2<br />

3<br />

−3<br />

3<br />

<br />

2<br />

−<br />

<br />

−<br />

<br />

2<br />

<br />

2<br />

−10<br />

−3<br />

© Houghton Mifflin Company. All rights reserved.<br />

27.<br />

y 2 sec 4x<br />

y <br />

− 2<br />

− 2<br />

2<br />

cos 4x<br />

4<br />

−4<br />

4<br />

−4<br />

<br />

2<br />

<br />

2<br />

28.<br />

y 1 4 sec x <br />

−2<br />

−2<br />

2<br />

−2<br />

2<br />

−2<br />

1<br />

4 cos x<br />

2<br />

2<br />

29.<br />

y 1 3 sec x<br />

2 <br />

Period: 4<br />

−6<br />

−6<br />

<br />

1<br />

3 cos x<br />

2 <br />

2<br />

−2<br />

2<br />

<br />

2<br />

<br />

2<br />

6<br />

6<br />

−2


334 <strong>Chapter</strong> 4 Trigonometric Functions<br />

30.<br />

y 1 2 csc2x 31.<br />

3<br />

3<br />

tan x 1<br />

x 7<br />

4 , 3<br />

4 ,<br />

<br />

4 , 5<br />

4<br />

−<br />

<br />

−<br />

<br />

−3<br />

−3<br />

32.<br />

cot x 3<br />

33.<br />

sec x 2<br />

The solutions appear to be:<br />

<br />

x 7<br />

6 , 6 , 5<br />

6 , 11<br />

6<br />

(or in decimal form: 3.665, 0.524, 2.618, 5.760)<br />

x ± 2<br />

3 , ±4<br />

3<br />

34.<br />

csc x 2<br />

The solutions appear to be:<br />

7<br />

4 , 5<br />

4 ,<br />

<br />

4 , 3<br />

4<br />

(or in decimal form: 5.498, 3.927, 0.785, 2.356)<br />

35. The graph of fx sec x has y-axis symmetry.<br />

Thus, the function is even.<br />

36.<br />

fx tan x<br />

tanx tan x<br />

Thus, the function is odd and the graph of<br />

is symmetric with the origin.<br />

y tan x<br />

37. The function<br />

f x csc 2x 1<br />

sin 2x<br />

has origin symmetry. Thus, the function is odd.<br />

38.<br />

40.<br />

f x cot 2x 39. y 1 sin x csc x and y 2 1<br />

f x cot2x<br />

Odd<br />

cos2x<br />

sin2x cos2x f x<br />

sin2x<br />

y 1 sin x sec x, y 2 tan x 41. y 1 cos x and<br />

sin x<br />

4<br />

Equivalent<br />

−2<br />

−4<br />

It appears that y 1 y 2 .<br />

sin x sec x sin x<br />

2<br />

1<br />

cos x sin x<br />

cos x tan x<br />

−3<br />

2<br />

−2<br />

3<br />

Not equivalent because is not defined at 0.<br />

1<br />

sin x csc x sin x 1, sin x 0<br />

sin x<br />

cot x cos x<br />

sin x<br />

y 1<br />

y 2 cot x 1<br />

tan x<br />

−2<br />

4<br />

−4<br />

2<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.6 Graphs of Other Trigonometric Functions 335<br />

42.<br />

y 1 sec 2 x 1, y 2 tan 2 x 43.<br />

3<br />

−<br />

2<br />

−1<br />

It appears that y 1 y 2 .<br />

1 tan 2 x sec 2 x<br />

3<br />

3<br />

2<br />

tan 2 x sec 2 x 1<br />

fx x cos x<br />

As x → 0,<br />

Odd function<br />

f <br />

3<br />

2 0 f x → 0.<br />

Matches graph (d).<br />

44.<br />

fx x sin x 45.<br />

gx x sin x<br />

gx x cos x<br />

46.<br />

Even function<br />

Matches graph (a) as x → 0,<br />

fx → 0, and f x ≥ 0 for all x.<br />

As x → 0, gx → 0.<br />

Odd function<br />

g2 0<br />

Matches graph (c) as<br />

x → 0, gx → 0.<br />

Matches graph (b).<br />

47.<br />

f x sin x cos x <br />

2 , gx 0 48.<br />

fx gx<br />

<br />

2<br />

fx sin x cos x <br />

gx 2 sin x<br />

<br />

2<br />

−2<br />

3<br />

f = g<br />

2<br />

The graph is the line y 0.<br />

−2<br />

−2<br />

f = g<br />

2<br />

It appears that<br />

That is,<br />

sin x cos x <br />

fx gx.<br />

<br />

2<br />

2 sin x.<br />

−3<br />

49.<br />

f x sin 2 x, gx 1 1 cos 2x<br />

2 50.<br />

fx cos 2<br />

x<br />

2<br />

2<br />

f = g<br />

f x gx<br />

2<br />

f = g<br />

gx 1 2 1 cos x<br />

−2<br />

2<br />

© Houghton Mifflin Company. All rights reserved.<br />

51.<br />

53.<br />

fx e x cos x<br />

Damping factor:<br />

e x<br />

x → , f x → 0<br />

hx e x2 4<br />

cos x<br />

Damping factor:<br />

h → 0 as x → <br />

e x2 4<br />

−2<br />

−3<br />

−3<br />

−2<br />

3<br />

−3<br />

2<br />

2<br />

6<br />

3<br />

52.<br />

54.<br />

It appears that<br />

fx gx.<br />

That is, that<br />

x<br />

cos 2<br />

2 1 2 1 cos x.<br />

fx e 2x sin x<br />

Damping factor:<br />

f x → 0 as x → <br />

e 2x<br />

gx e x 2 2<br />

sin x<br />

Damping factor: y e x 2 2<br />

e x 2 2 ≤ gx ≤ e x 2 2<br />

−3<br />

−8<br />

−2<br />

2<br />

−2<br />

1<br />

3<br />

8<br />

−2<br />

x → ±, gx → 0<br />

−1


336 <strong>Chapter</strong> 4 Trigonometric Functions<br />

55. (a)<br />

(b)<br />

(c)<br />

As x →<br />

As x →<br />

<br />

2 , fx → . 56.<br />

<br />

2 , fx → .<br />

<br />

As x → <br />

2 , fx → .<br />

<br />

(d) As x → <br />

2 , fx → .<br />

fx sec x<br />

(a)<br />

(b)<br />

(c)<br />

As x →<br />

As x →<br />

<br />

2 , fx → .<br />

<br />

2 , fx → .<br />

<br />

As x → <br />

2 , fx → .<br />

<br />

(d) As x → <br />

2 , fx → .<br />

57.<br />

fx cot x 58.<br />

(a) As x → 0 , fx → .<br />

(b) As x → 0 , fx → .<br />

(c) As x → <br />

, fx → .<br />

(d) As x → <br />

, fx → .<br />

fx csc x<br />

(a) As x → 0 , fx → .<br />

(b) As x → 0 , fx → .<br />

(c) As x → <br />

, fx → .<br />

(d) As x → <br />

, fx → .<br />

59. As the predator population increases, the number of prey decreases. When the number<br />

of prey is small, the number of predators decreases.<br />

60.<br />

Ht 54.33 20.38 cos<br />

<br />

t<br />

15.69 sin<br />

6<br />

<br />

t<br />

6<br />

Lt 39.36 15.70 cos<br />

<br />

t<br />

14.16 sin<br />

6<br />

<br />

t<br />

6<br />

61.<br />

(a)<br />

90<br />

0<br />

0<br />

Period of cos<br />

t<br />

Period of sin<br />

6 : 2<br />

6 12<br />

Period of Ht: 12<br />

Period of Lt: 12<br />

tan x 5 d<br />

H<br />

L<br />

t<br />

6 : 2<br />

6 12<br />

d 5<br />

tan x 5 cot x 0<br />

12<br />

36<br />

−36<br />

<br />

(b) From the graph, it appears that the greatest difference<br />

between high and low temperatures occurs in summer.<br />

The smallest difference occurs in winter.<br />

(c) The highest high and low temperatures appear to occur<br />

around the middle of July, roughly one month after the<br />

time when the sun is northernmost in the sky.<br />

62.<br />

cos x 36 d<br />

d 36 36 sec x<br />

cos x<br />

−<br />

<br />

2<br />

72<br />

36<br />

<br />

2<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.6 Graphs of Other Trigonometric Functions 337<br />

63. (a)<br />

0.6<br />

(b) The displacement function is not periodic, but damped.<br />

It approaches 0 as t increases.<br />

0<br />

4<br />

−0.6<br />

1700<br />

64. (a) 850 revmin<br />

2<br />

(b) The direction of the saw is reversed.<br />

<br />

(c) L 60 2 cot , 0 < <<br />

2<br />

(d)<br />

0.3 0.6 0.9 1.2 1.5<br />

<br />

L 306.2 217.9 195.9 189.6 188.5<br />

<br />

<br />

(e) Straight line lengths change faster.<br />

(f) 500<br />

0<br />

0<br />

<br />

2<br />

<br />

<br />

65. True. 3<br />

and x is a vertical<br />

2 <br />

2 2<br />

66. True. For x → , 2 x → 0.<br />

asymptote for the tangent function.<br />

67.<br />

f x 2 sin x, gx 1 2 csc x<br />

(a)<br />

(b) f x > gx for<br />

6 < x < 5 (c) As x → , 2 sin x → 0 and<br />

6<br />

1<br />

since gx is the<br />

2 csc x → ,<br />

3<br />

f<br />

g<br />

0<br />

<br />

<br />

reciprocal of f x.<br />

−1<br />

68. (a)<br />

2<br />

(b)<br />

y 3 <br />

4 sin x 1 3 sin 3x 1 5 sin 5x 1 7 sin 7x <br />

−3<br />

3<br />

2<br />

© Houghton Mifflin Company. All rights reserved.<br />

69. (a)<br />

−3<br />

x<br />

tan x<br />

x<br />

x<br />

tan x<br />

x<br />

−2<br />

2<br />

−2<br />

1<br />

3<br />

0.1<br />

0.01<br />

1.5574 1.0033 1.0 1.0<br />

0.001<br />

0 0.001 0.01 0.1 1<br />

Undef. 1.0 1.0 1.0033 1.5574<br />

−3<br />

−2<br />

(c) y 4 y 3 4<br />

1 9 sin 9x <br />

3<br />

(b)<br />

−1.1<br />

2<br />

0<br />

As x → 0, fx tan x → 1.<br />

x<br />

(c) The ratio approaches 1 as x approaches 0.<br />

1.1


338 <strong>Chapter</strong> 4 Trigonometric Functions<br />

70. (a)<br />

x<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

(b)<br />

1.1<br />

tan 3x<br />

3x<br />

0.0475<br />

1.0311 1.0003 1.0<br />

−1<br />

1<br />

−1.1<br />

x<br />

tan 3x<br />

3x<br />

0 0.001 0.01 0.1 1<br />

Undef. 1.0 1.0003 1.0311 0.0475<br />

As x → 0, fx <br />

tan 3x<br />

3x<br />

→ 1.<br />

(c) The ratio approaches 1 as x approaches 0.<br />

71. Period is and graph is increasing on<br />

2<br />

4 ,<br />

Matches (a).<br />

<br />

<br />

<br />

4 .<br />

72. Period is and is on the graph.<br />

2 8 , 1 <br />

Matches (b).<br />

<br />

<br />

73.<br />

y = tan(x)<br />

2<br />

2x<br />

y = x + 3<br />

3!<br />

+<br />

16x 5<br />

5!<br />

74.<br />

x 2 5x<br />

y = 1 + +<br />

4<br />

2! 4!<br />

4 y = sec(x)<br />

−3<br />

3<br />

−2<br />

The graphs of y 1 tan x and<br />

<br />

are similar on the interval <br />

2 ,<br />

y 2 x 2x3<br />

3! 16x5<br />

5!<br />

<br />

2 .<br />

−3 3<br />

0<br />

The graphs of y 1 sec x and<br />

<br />

are similar on the interval <br />

2 ,<br />

y 2 1 x2<br />

2! 5x 4<br />

4!<br />

<br />

2 .<br />

7 1 7 1<br />

y 3x 14, x ≥ 14 3 , y ≥ 0 81.<br />

82. One-to-one<br />

75. Distributive Property 76.<br />

77. Additive Identity Property<br />

Multiplicative Inverse Property<br />

78. a b 10 a b 10 79. Not one-to-one<br />

80. Not one-to-one<br />

Associative Property of Addition<br />

x 3y 14, y ≥ 14 3 , x ≥ 0<br />

y x 5 13<br />

x 2 3y 14<br />

x y 5 13<br />

y 1 3x 2 14<br />

x 3 y 5<br />

f 1 x 1 3x 2 14, x ≥ 0<br />

f 1 x x 3 5<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.7 Inverse Trigonometric Functions 339<br />

Section 4.7<br />

Inverse Trigonometric Functions<br />

■ You should know the definitions, domains, and ranges of y arcsin x, y arccos x, and y arctan x.<br />

Function Domain Range<br />

y arcsin x ⇒ x sin y 1 ≤ x ≤ 1<br />

y arccos x ⇒ x cos y 1 ≤ x ≤ 1 0 ≤ y ≤<br />

y arctan x ⇒ x tan y < x < <br />

<br />

<br />

<br />

<br />

<br />

2 ≤ y ≤ 2<br />

<br />

<br />

2 < y < 2<br />

■<br />

You should know the inverse properties of the inverse trigonometric functions.<br />

sinarcsin x x, 1 ≤ x ≤ 1 and arcsinsin y y, <br />

2 ≤ y ≤ 2<br />

<br />

<br />

cosarccos x x, 1 ≤ x ≤ 1 and arccoscos y y, 0 ≤ y ≤<br />

<br />

tanarctan x x and arctantan y y, <br />

2 < y <<br />

<br />

<br />

2<br />

■<br />

You should be able to use the triangle technique to convert trigonometric functions or inverse trigonometric<br />

functions into algebraic expressions.<br />

Vocabulary Check<br />

1. y sin 1 x, 1 ≤ x ≤ 1<br />

2.<br />

3. y tan 1 x, < x < , <br />

<br />

2 < y <<br />

<br />

2<br />

y arccos x, 0 ≤ y ≤<br />

<br />

© Houghton Mifflin Company. All rights reserved.<br />

<br />

1. (a) arcsin 1 (b) arcsin 0 0<br />

2 6<br />

2. (a) y arccos 1 2 ⇒ cos y 1 2 for 0 ≤ y ≤<br />

(b) y arccos 0 ⇒ cos y 0 for 0 ≤ y ≤<br />

<br />

(b) arccos 1 0 because cos 0 1 and 0 ≤ 1 ≤ .<br />

<br />

<br />

⇒ y <br />

3<br />

<br />

⇒ y <br />

3. (a) arcsin 1 because and <br />

2<br />

sin 2 1 2 ≤ 2 ≤ 2 .<br />

<br />

4. (a) arctan 1 because and <br />

4<br />

tan 4 1 2 < 4 < 2 .<br />

(b) arctan 0 0 because tan 0 0 and <br />

2 < 0 < 2 .<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2


340 <strong>Chapter</strong> 4 Trigonometric Functions<br />

5. (a)<br />

arctan 3<br />

3 <br />

<br />

6<br />

<br />

(b) arctan1 <br />

4<br />

6. (a)<br />

arccos 2<br />

2 3<br />

4<br />

<br />

(b) arcsin 2<br />

2 4<br />

7. (a) y arctan3 ⇒ tan y 3 for <br />

2 < y <<br />

(b) y arctan 3 ⇒ tan y 3 ⇒ y <br />

3<br />

<br />

<br />

<br />

<br />

2 ⇒ y 3<br />

8. (a)<br />

y arccos 1 2 ⇒ cos y 1 2 for 0 ≤ y ≤<br />

(b) y arcsin 2<br />

2<br />

(b)<br />

y tan 1 3<br />

3 <br />

⇒ sin y 2<br />

2<br />

⇒ tan y <br />

3<br />

3<br />

<br />

⇒ y 2<br />

<br />

<br />

for <br />

2 ≤ y ≤ 2 ⇒ y 4<br />

3<br />

9. (a) y sin1 ⇒ sin y 3 for <br />

2<br />

2 2 ≤ y ≤ 2 ⇒ y 3<br />

<br />

<br />

<br />

⇒ y <br />

6<br />

<br />

3<br />

10. (a)<br />

x 1.0 0.8 0.6 0.4 0.2<br />

(b)<br />

y 1.5708 0.9273 0.6435 0.4115 0.2014<br />

x 0 0.2 0.4 0.6 0.8 1<br />

y 0 0.2014 0.4115 0.6435 0.9273 1.5708<br />

y<br />

2<br />

1<br />

–1 1<br />

–1<br />

x<br />

(c)<br />

2<br />

–2<br />

−1<br />

1<br />

−2<br />

11.<br />

(d) 0, 0, symmetric to the origin<br />

y arccos x<br />

(a)<br />

(c)<br />

x 1 0.8 0.6 0.4 0.2<br />

y 3.1416 2.4981 2.2143 1.9823 1.7722<br />

x 0 0.2 0.4 0.6 0.8 1.0<br />

y 1.5708 1.3694 1.1593 0.9273 0.6435 0<br />

4<br />

(b)<br />

y<br />

4<br />

3<br />

1<br />

–2 –1 1 2<br />

x<br />

© Houghton Mifflin Company. All rights reserved.<br />

−1<br />

0<br />

1<br />

(d) Intercepts: 0,<br />

<br />

2 ,<br />

1, 0, no symmetry


Section 4.7 Inverse Trigonometric Functions 341<br />

12. (a)<br />

x 10 8 6 4 2<br />

(b)<br />

y 1.4711 1.4464 1.4056 1.3258 1.1071<br />

x 0 2 4 6 8 10<br />

y 0 1.1071 1.3258 1.4056 1.4464 1.4711<br />

y<br />

2<br />

1<br />

–10 –5 5 10<br />

x<br />

(c)<br />

2<br />

–2<br />

−10<br />

10<br />

−2<br />

(d) Horizontal asymptotes: y ±<br />

2<br />

<br />

13.<br />

y arctan x ↔ tan y x<br />

14.<br />

y arccos x<br />

3, <br />

<br />

3 , 3<br />

3 , <br />

<br />

<br />

6 , 1, 4<br />

x 1 ⇒ y ,<br />

2<br />

x 1 cos 2 ⇒ y 2<br />

3 1 2<br />

y cos 6 3<br />

6 ⇒ x 3<br />

2 , 2 <br />

<br />

3 , cos 1<br />

<br />

15. cos 1 0.75 0.72<br />

16. sin 1 0.56 0.59<br />

17. arcsin0.75 0.85<br />

18. arccos0.7 2.35 19. arctan6 1.41<br />

20. tan 1 5.9 1.40<br />

21.<br />

tan x 8<br />

x<br />

22.<br />

cos 4 x<br />

x<br />

arctan x 8<br />

θ<br />

8<br />

arccos 4 x4<br />

θ<br />

© Houghton Mifflin Company. All rights reserved.<br />

23.<br />

sin x 2<br />

5<br />

arcsin <br />

x 2<br />

5 <br />

25. Let y be the third side. Then<br />

y 2 2 2 x 2 4 x 2 ⇒ y 4 x 2<br />

sin x 2 ⇒<br />

cos <br />

tan <br />

4 x2<br />

2<br />

x<br />

4 x 2<br />

arcsin x 2<br />

⇒<br />

⇒<br />

θ<br />

arctan<br />

5<br />

arccos<br />

4 x2<br />

2<br />

x<br />

4 x 2<br />

x + 2<br />

24.<br />

tan x 1<br />

10<br />

arctan <br />

x 1<br />

10 <br />

10<br />

26. Let y be the third side. Then<br />

y 2 3 2 x 2 9 x 2 ⇒ y 9 x 2 .<br />

sin x 3 ⇒<br />

cos <br />

tan <br />

9 x2<br />

3<br />

x<br />

9 x 2<br />

arcsin x 3<br />

⇒<br />

⇒<br />

θ<br />

arccos<br />

arctan<br />

9 x2<br />

3<br />

x<br />

9 x 2<br />

x + 1


342 <strong>Chapter</strong> 4 Trigonometric Functions<br />

27. Let y be the hypotenuse. Then y 2 x 1 2 2 2 x 2 2x 5 ⇒ y x 2 2x 5.<br />

sin <br />

cos <br />

tan x 1<br />

2<br />

x 1<br />

x 2 2x 5<br />

2<br />

x 2 2x 5<br />

⇒<br />

⇒<br />

⇒<br />

arcsin<br />

arccos<br />

arctan x 1<br />

2<br />

x 1<br />

x 2 2x 5<br />

2<br />

x 2 2x 5<br />

28. Let y be the hypotenuse. Then y 2 x 2 2 3 2 x 2 4x 13 ⇒ y x 2 4x 13.<br />

sin <br />

cos <br />

tan x 2<br />

3<br />

x 2<br />

x 2 4x 13<br />

3<br />

x 2 4x 13<br />

⇒<br />

⇒<br />

⇒<br />

arcsin<br />

arccos<br />

arctan x 2<br />

3<br />

x 2<br />

x 2 4x 13<br />

3<br />

x 2 4x 13<br />

29. sinarcsin 0.7 0.7 30. tanarctan 35 35<br />

31. cosarccos0.3 0.3<br />

32. sinarcsin0.1 0.1<br />

33.<br />

arcsinsin 3 arcsin0 0<br />

Note:<br />

3<br />

is not in the range of the arcsine function.<br />

34. arccos cos 7<br />

2 arccos0 <br />

36. arcsin sin 7<br />

4 arcsin 2<br />

3<br />

38. cos 1 cos<br />

2 cos1 0 <br />

<br />

2<br />

<br />

2 4<br />

3<br />

40. cos 1 tan<br />

4 cos1 1 <br />

42. cosarctan1 cos <br />

4 2<br />

2<br />

44. sinarctan1 sin <br />

4 2 2<br />

<br />

46. arccos sin <br />

6 arccos 1 2 2 3<br />

<br />

<br />

<br />

2<br />

35. arctan tan 11<br />

6 arctan 3<br />

5<br />

37. sin 1 sin<br />

2 sin1 1 <br />

5<br />

39. sin 1 tan<br />

4 sin1 1 <br />

41. tanarcsin 0 tan 0 0<br />

<br />

<br />

2<br />

<br />

43. sinarctan 1 sin 4 2<br />

2<br />

<br />

45. arcsin cos <br />

6 arcsin 3<br />

47. Let y arctan 4 Then<br />

3 .<br />

<br />

2<br />

<br />

3 6<br />

<br />

2 3<br />

tan y 4 and<br />

3 , 0 < y < 2 , 5<br />

4<br />

© Houghton Mifflin Company. All rights reserved.<br />

sin y 4 5 .<br />

y<br />

3


Section 4.7 Inverse Trigonometric Functions 343<br />

u arcsin 3 5 ,<br />

49. Let y arcsin 24 Then<br />

25 .<br />

48. Let<br />

sin u 3 5 , 0 < u <<br />

hyp<br />

<br />

2 . 5<br />

u<br />

4<br />

3<br />

24<br />

sin y <br />

and cos y 7<br />

25 .<br />

25<br />

24<br />

25 , 7<br />

sec arcsin 3 5 sec u<br />

y<br />

adj 5 4<br />

50. Let<br />

y arctan 3 5 .<br />

u arctan 12 5 , 51. Let Then, and<br />

<br />

tan u 12<br />

5 , 2 < u < 0.<br />

y<br />

<br />

tan y 3 5 , 2 < y < 0<br />

sec y 34<br />

5 .<br />

13<br />

5<br />

u<br />

−12<br />

y<br />

34<br />

5<br />

−3<br />

x<br />

csc arctan 12 5 <br />

hyp<br />

csc u <br />

opp 13 12<br />

52. Let<br />

u arcsin 3 4 ,<br />

y arccos 2 3 .<br />

53. Let Then,<br />

<br />

sin u 3 4 , 2 < u < 0.<br />

cos y 2 3 ,<br />

<br />

2 < y <<br />

y<br />

<br />

and<br />

sin y 5<br />

3 .<br />

© Houghton Mifflin Company. All rights reserved.<br />

tan arcsin 3 4<br />

u<br />

4<br />

7<br />

−3<br />

tan u <br />

3<br />

7 37<br />

7<br />

54. Let u arctan 5 8 ,<br />

tan u 5 8 , 0 < u < 2 .<br />

89<br />

u<br />

8<br />

<br />

cot arctan 5 8 cot u 8 5<br />

5<br />

5<br />

−2<br />

55. Let y arctan x. Then,<br />

3<br />

y<br />

tan y x and cot y 1 x .<br />

x 2 + 1<br />

x<br />

y<br />

1<br />

x


344 <strong>Chapter</strong> 4 Trigonometric Functions<br />

56. Let<br />

u arctan x,<br />

tan u x x 1 .<br />

Let y arccosx 2, cos y x 2.<br />

Opposite side: 1 x 2 2<br />

x 2 + 1<br />

x<br />

sin y <br />

1 x 22<br />

1<br />

x 2 4x 3<br />

u<br />

1<br />

sinarctan x sin u opp<br />

hyp x<br />

x 2 1<br />

y<br />

1<br />

x + 2<br />

1 − (x + 2) 2<br />

58. Let<br />

57.<br />

u arcsinx 1,<br />

sin u x 1 x 1<br />

1 .<br />

59. Let y arccos x Then cos y x and<br />

5 .<br />

5 ,<br />

1<br />

x −1<br />

tan y <br />

25 x2<br />

.<br />

x<br />

u<br />

2x − x 2<br />

5<br />

25 − x 2<br />

secarcsin x 1 sec u hyp<br />

adj 1<br />

2x x 2<br />

y<br />

x<br />

60. Let u arctan 4 tan u 4 x , x .<br />

x<br />

61. Let y arctan Then tan y <br />

x and<br />

7 . 7<br />

x 2 + 16<br />

4<br />

csc y <br />

7 x2<br />

.<br />

x<br />

u<br />

62. Let<br />

x<br />

cot arctan 4 x<br />

u<br />

u arcsin x h ,<br />

r<br />

r<br />

r 2 − ( x − h) 2<br />

cot u <br />

adj<br />

opp x 4<br />

x − h<br />

sin u x h .<br />

r<br />

7 + x 2<br />

y<br />

7<br />

x<br />

63. Let y arctan 14 Then tan y 14 and<br />

x .<br />

x<br />

sin y 14<br />

Thus,<br />

196 x 2.<br />

196 + x 2 14<br />

y<br />

x<br />

y arcsin <br />

14<br />

196 x 2 .<br />

© Houghton Mifflin Company. All rights reserved.<br />

cos arcsin x h<br />

r cos u r 2 x h 2<br />

r


Section 4.7 Inverse Trigonometric Functions 345<br />

64. If then sin u 36 x 2<br />

arcsin 36 x 2<br />

u,<br />

.<br />

6<br />

6<br />

36 − x 2<br />

6<br />

u<br />

x<br />

3<br />

65. Let y arccos<br />

Then,<br />

x 2 2x 10 .<br />

cos y <br />

and<br />

sin y <br />

y arcsin<br />

3<br />

x 2 2x 10 3<br />

x 1 2 9<br />

x 1 <br />

x 1 2 9 .<br />

Thus,<br />

x 1 <br />

x 1 2 9 arcsin<br />

x 1 <br />

x 2 2x 10 .<br />

36 x2<br />

arcsin arccos x 6<br />

6<br />

66. If arccos x 2 u, 2 < x < 4 then cos u x 2<br />

2<br />

2 . 67.<br />

2<br />

4x − x<br />

2<br />

y 2 arccos x<br />

Domain: 1 ≤ x ≤ 1<br />

Range: 0 ≤ y ≤ 2<br />

Vertical stretch of fx arccos x<br />

2<br />

u<br />

x − 2<br />

arccos x 2<br />

2<br />

arctan 4x x 2<br />

x 2 ,<br />

since 2 < x < 4<br />

−2<br />

0<br />

2<br />

68.<br />

y arcsin x 2<br />

Domain: 2 ≤ x ≤ 2<br />

<br />

<br />

Range: <br />

2 ≤ y ≤ 2<br />

<br />

2<br />

69. The graph of fx arcsinx 2 is a horizontal<br />

translation of the graph of y arcsin x by two units.<br />

0<br />

<br />

2<br />

4<br />

© Houghton Mifflin Company. All rights reserved.<br />

70.<br />

−3<br />

3<br />

−<br />

<br />

2<br />

gt arccost 2 71.<br />

Domain: 3 ≤ t ≤ 1<br />

This is the graph of y arccos t shifted two units<br />

to the left.<br />

<br />

− 2<br />

f x arctan 2x<br />

Domain: all real numbers<br />

−3<br />

<br />

<br />

2<br />

3<br />

<br />

Range: <br />

2 < y < 2<br />

−4<br />

0<br />

0<br />

− 2


346 <strong>Chapter</strong> 4 Trigonometric Functions<br />

72.<br />

fx arccos x 4<br />

<br />

Domain:<br />

4, 4<br />

Range: 0, <br />

−5<br />

0<br />

5<br />

73.<br />

ft 3 cos 2t 3 sin 2t 74.<br />

3 2 3 2 sin 2t arctan<br />

32 sin2t arctan 1<br />

32 sin 2t <br />

6<br />

<br />

4<br />

3<br />

3<br />

ft 4 cos t 3 sin t<br />

4 2 3 2 sin t arctan 4 3<br />

5 sin t arctan 4 3<br />

The graph suggests that<br />

A cos t B sin t A 2 B 2 sin t arctan A B<br />

−2<br />

2<br />

is true.<br />

6<br />

−6<br />

−9<br />

9<br />

The graphs are the same.<br />

−6<br />

<br />

75. As x → 1 , arcsin x →<br />

2 . 76. As x → 1 , arccos x → 0. 77. As x →, arctan x →<br />

2 .<br />

<br />

<br />

78. As x → 1 , arcsin x → <br />

2 . 79. As x → 1 , arccos x → . 80. As x → , arctan x → <br />

2 .<br />

<br />

81. (a)<br />

sin 10<br />

s<br />

⇒<br />

arcsin <br />

10<br />

s <br />

(b)<br />

s 52: arcsin <br />

10<br />

52 0.1935,<br />

11.1<br />

82. (a)<br />

(b)<br />

(c)<br />

s 26: arcsin <br />

10<br />

26 0.3948,<br />

34 ft<br />

tan 11<br />

17 ⇒ 0.5743<br />

tan0.5743 h<br />

20<br />

11 ft<br />

or 32.9<br />

22.6<br />

⇒ h 20 tan0.5743<br />

83. (a)<br />

tan s<br />

750<br />

arctan <br />

s<br />

(b) When s 400,<br />

arctan <br />

400<br />

When s 1600,<br />

750<br />

0.49 radian,<br />

750<br />

1.13 radians,<br />

28.<br />

65.<br />

© Houghton Mifflin Company. All rights reserved.<br />

12.94 feet


Section 4.7 Inverse Trigonometric Functions 347<br />

84.<br />

arctan<br />

(a)<br />

0<br />

1.5<br />

−0.5<br />

3x<br />

x 2 4 , x > 0 (b) is maximum when x 2 feet.<br />

(c) The graph has a horizontal asymptote at<br />

As the camera moves further from the picture, the<br />

6<br />

angle subtended by the camera approaches 0.<br />

<br />

0.<br />

85. (a) tan 6 x<br />

arctan <br />

6<br />

(b) When x 10,<br />

arctan <br />

6<br />

When x 3,<br />

arctan <br />

6<br />

0.54 radian, 31.<br />

10<br />

3<br />

<br />

87. False. arcsin 1 2 6<br />

x<br />

1.11 radians, 63.<br />

86. (a)<br />

tan x<br />

20<br />

arctan x<br />

(b) When x 5,<br />

arctan 5 20 14.0,<br />

When x 12,<br />

arctan 12<br />

88. False. tan x sin x<br />

cos x<br />

20<br />

(0.24 rad).<br />

31.0, 0.54 rad.<br />

20<br />

89. y arccot x if and only if cot y x,<br />

< x < and 0 < y < .<br />

90. y arcsec x if and only if sec y x where<br />

x ≤ 1 x ≥ 1 and 0 ≤ y < 2 and<br />

2 < y ≤ . The domain of y arcsec x<br />

y<br />

is , 1 1, and the range is<br />

0, 2 2, .<br />

π<br />

y<br />

π<br />

2<br />

π<br />

© Houghton Mifflin Company. All rights reserved.<br />

x<br />

−2 −1 1 2<br />

91. y arccsc x if and only if csc y x.<br />

Domain: , 1 1, <br />

Range: <br />

<br />

<br />

2 , 0 0, 2<br />

π<br />

2<br />

−2 −1 1 2<br />

−<br />

π<br />

2<br />

y<br />

π<br />

2<br />

−2 −1 1 2<br />

x<br />

x


348 <strong>Chapter</strong> 4 Trigonometric Functions<br />

92. (a) y arccot x if and only if x cot y, < x < and<br />

Thus,<br />

0 < y <<br />

1<br />

x tan y and y arctan 1 x .<br />

Hence, graph<br />

y <br />

arctan1x,<br />

2,<br />

arctan1x,<br />

(b) y arcsec x if and only if x sec y, x ≤ 1 or x ≥ 1, and 0 ≤ y < or<br />

2 < y < .<br />

2<br />

1<br />

Thus, and y arccos 1 Hence graph y arccos 1 x , 1 1,<br />

x cos y<br />

x .<br />

x ,<br />

.<br />

(c) y arccsc x if and only if x csc y, x ≤ 1 or x ≥ 1, and or 0 < y ≤<br />

2 ≤ y < 0<br />

2 .<br />

x < 0<br />

x 0.<br />

x > 0<br />

1<br />

Thus, Hence, graph y arcsin <br />

1<br />

x , x , 1 1,<br />

x sin y and y arcsin 1 x .<br />

.<br />

<br />

.<br />

<br />

<br />

<br />

93. y arcsec 2 ⇒ sec y 2 and 0 ≤ y <<br />

<br />

<br />

2 2 < y ≤<br />

<br />

⇒ y <br />

4<br />

94. y arcsec 1 ⇒ sec y 1 and 0 ≤ y <<br />

<br />

<br />

2 2 < y ≤<br />

⇒ y 0<br />

95. y arccot3 ⇒ cot y 3 and 0 < y <<br />

⇒ y 5<br />

6<br />

96. y arccsc 2 ⇒ csc y 2 and <br />

2 ≤ y < 0 0 < y ≤<br />

<br />

<br />

<br />

2 ⇒ y 6<br />

97. Let y arcsinx. Then,<br />

98.<br />

sin y x<br />

sin y x<br />

siny x<br />

y arcsin x<br />

y arcsin x.<br />

Therefore, arcsinx arcsin x.<br />

99. arcsin x arccos x <br />

2<br />

Let<br />

Let<br />

<br />

arcsin x ⇒ sin x.<br />

arccos x ⇒ cos x.<br />

<br />

y arctanx<br />

tan y x<br />

<br />

<br />

arctantany arctan x<br />

y arctan x<br />

y arctan x<br />

<br />

tan y x, <br />

2 < y < 2<br />

<br />

tany x, <br />

2 < y < 2<br />

Hence, sin a cos ⇒ a and are complementary angles ⇒ a ⇒ arcsin x arccos x <br />

2<br />

2 .<br />

<br />

<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.7 Inverse Trigonometric Functions 349<br />

100.<br />

Area arctan b arctan a<br />

(a)<br />

a 0, b 1<br />

(b)<br />

a 1, b 1<br />

Area arctan 1 arctan 0<br />

Area arctan 1 arctan1<br />

(c)<br />

<br />

<br />

<br />

4 0 4 0.785<br />

a 0, b 3<br />

Area arctan 3 arctan 0<br />

1.25 0 1.25<br />

1.25<br />

(d)<br />

<br />

<br />

4 <br />

<br />

4 <br />

a 1, b 3<br />

Area arctan 3 arctan1<br />

<br />

<br />

2 1.571<br />

1.25 <br />

4 2.03<br />

101.<br />

4<br />

42 <br />

1 2 2<br />

2<br />

102.<br />

2<br />

3 23<br />

33 23<br />

3<br />

103.<br />

23<br />

6<br />

3<br />

3<br />

104.<br />

55<br />

210 55<br />

225 5<br />

22 52<br />

4<br />

105.<br />

sin 5 6<br />

106.<br />

tan 2, 0 <<br />

<br />

<<br />

<br />

2<br />

Adjacent side:<br />

cos 11<br />

6<br />

tan 5<br />

11 511<br />

11<br />

6 2 5 2 11<br />

6<br />

θ<br />

11<br />

5<br />

sin 2 5 25<br />

5<br />

cos 5<br />

5<br />

csc 5<br />

2<br />

5<br />

θ<br />

1<br />

2<br />

csc 6 5<br />

sec 5<br />

sec 6<br />

11 611<br />

11<br />

cot 1 2<br />

© Houghton Mifflin Company. All rights reserved.<br />

107.<br />

cot 11<br />

5<br />

sin 3 4<br />

Adjacent side: 16 9 7<br />

cos 7<br />

4<br />

tan 3 7 37<br />

7<br />

csc 4 3<br />

sec 4 7 47<br />

7<br />

θ<br />

4<br />

7<br />

3<br />

108.<br />

sec 3, 0 <<br />

sin 22<br />

3<br />

cos 1 3<br />

tan 22<br />

<br />

<<br />

csc 3<br />

22 32<br />

4<br />

cot 1<br />

22 2<br />

4<br />

<br />

2<br />

3<br />

θ<br />

1<br />

2 2<br />

cot 7<br />

3


350 <strong>Chapter</strong> 4 Trigonometric Functions<br />

Section 4.8<br />

Applications and Models<br />

■ You should be able to solve right triangles.<br />

■ You should be able to solve right triangle applications.<br />

■ You should be able to solve applications of simple harmonic motion: d a sin wt or d a cos wt.<br />

Vocabulary Check<br />

1. elevation, depression 2. bearing 3. harmonic motion<br />

1. Given: A 30, b 10<br />

B 90 30 60<br />

tan A a b<br />

⇒ a b tan A 10 tan 30 5.77<br />

cos A b c ⇒ c b<br />

cos A 10<br />

cos 30 11.55<br />

2. Given: B 60, c 15<br />

A 90 60 30<br />

sin B b c<br />

⇒ b c sin B 15 sin 60 153 12.99<br />

2<br />

cos B a c ⇒ a c cos B 15 cos 60 15 2 7.50<br />

3. Given: B 71, b 144. Given: A 7.4, a 20.5<br />

tan B b a ⇒ a b<br />

tan B 14<br />

tan 71 4.82<br />

sin B b c ⇒ c b<br />

sin B 14<br />

sin 71 14.81<br />

A 90 71 19<br />

B 90 7.4 82.6<br />

5. Given: a 6, b 126. Given: a 25, c 45<br />

c 2 a 2 b 2 ⇒ c 36 144 13.42<br />

tan A a b 6 12 1 2 ⇒ A arctan 1 2 26.57<br />

B 90 26.57 63.43<br />

tan A a b ⇒ b a<br />

tan A 20.5<br />

tan 7.4 157.84<br />

sin A a c ⇒ c a<br />

sin A 20.5<br />

sin 7.4 159.17<br />

b c 2 a 2 1400 1014 37.42<br />

sin A a c ⇒ A arcsin 25<br />

45 33.75<br />

cos B a c ⇒ B arccos 25<br />

45 56.25<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.8 Applications and Models 351<br />

7. Given: b 16, c 548. Given: b 1.32, c 18.9<br />

a c 2 b 2 2660 51.58<br />

cos A b c 16<br />

54 ⇒ A arccos 16<br />

54 72.76<br />

B 90 72.76 17.24<br />

a c 2 b 2 355.4676 18.85<br />

cos A b c 1.32<br />

18.9 ⇒ A arccos 1.32<br />

18.9 86.00<br />

sin B b c ⇒ B arcsin 1.32<br />

18.9 4.00<br />

9.<br />

A 12 15, c 430.5<br />

B 90 12 15 77 45<br />

sin 12 15 a<br />

430.5<br />

a<br />

C<br />

B<br />

c = 430.5<br />

12°15′<br />

b<br />

A<br />

a 430.5 sin 12 15 91.34<br />

cos 12 15 b<br />

430.5<br />

b 430.5 cos 12 15 420.70<br />

10. Given: B 65 12, a 145.5<br />

A 90 65 12 24 48<br />

cos B a c ⇒ c <br />

a<br />

cos B 145.5<br />

cos65 12 346.88<br />

tan B b a ⇒ b a tan B 145.5 tan65 12 314.89<br />

11.<br />

tan h<br />

b2<br />

12.<br />

tan h<br />

b2<br />

h 1 2 b tan <br />

h 1 2 b tan <br />

h 1 12 tan 18 1.95 meters<br />

2<br />

© Houghton Mifflin Company. All rights reserved.<br />

13.<br />

15. (a)<br />

h 1 8 tan 52 5.12 in.<br />

2<br />

tan h<br />

b2<br />

h 1 2 b tan <br />

h 1 18.5 tan 41.6 8.21 ft<br />

2<br />

θ<br />

L<br />

60 ft<br />

(b)<br />

tan 60<br />

L<br />

L 60<br />

tan <br />

60 cot <br />

14.<br />

tan h<br />

b2<br />

h 1 2 b tan <br />

h 1 3.26 tan 72.94 5.31 cm<br />

2<br />

(c)<br />

<br />

L<br />

10<br />

20<br />

30<br />

40<br />

50<br />

340 165 104 72 50<br />

(d) No, the shadow lengths do not increase in<br />

equal increments. The cotangent function<br />

is not linear.


352 <strong>Chapter</strong> 4 Trigonometric Functions<br />

16. (a)<br />

(c)<br />

850 ft<br />

θ<br />

L<br />

<br />

10 20 30 40 50<br />

L 4821 2335 1472 1013 713<br />

(b)<br />

tan 850<br />

L<br />

L 850<br />

tan <br />

850 cot <br />

(d) No, the cotangent function is not a<br />

linear function.<br />

17.<br />

sin 80 h 20<br />

18.<br />

tan13 <br />

h<br />

58.2<br />

h 20 sin 80<br />

20 h<br />

h 58.2 tan13 13.44 meters<br />

19.70 feet<br />

80°<br />

13°<br />

58.2 meters<br />

h<br />

19.<br />

sin 50 <br />

h<br />

100<br />

h 100 sin 50<br />

20.<br />

sin 31.5 <br />

x<br />

4000<br />

x 4000 sin 31.5<br />

31.5°<br />

4000<br />

x<br />

76.6 feet<br />

100<br />

h<br />

2089.99 feet<br />

50°<br />

21. (a)<br />

h<br />

22.<br />

tan 28 <br />

a<br />

100<br />

⇒ a 100 tan 28<br />

tan 39.75 a s<br />

100<br />

(b) Let the height of the church x and the height<br />

of the church and steeple y. Then:<br />

(c)<br />

35°<br />

47° 40′<br />

50 ft<br />

tan 35 x<br />

50<br />

and<br />

x 50 tan 35 and y 50 tan 47 40<br />

h y x 50tan 47 40 tan 35<br />

h 19.9 feet<br />

tan 47 40 y<br />

50<br />

s<br />

a<br />

a s 100 tan 39.75<br />

s 100 tan 39.75 a<br />

100 tan 39.75 100 tan 28<br />

30 feet<br />

100<br />

39.75°<br />

28°<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.8 Applications and Models 353<br />

23. (a)<br />

l 2 100 2 20 3 h 2<br />

24. (a)<br />

sin 60 h 30<br />

⇒ h 30 sin 60<br />

l 100 2 17 h 2<br />

h 2 34h 10,289<br />

θ<br />

153 25.98 ft<br />

30<br />

h<br />

l<br />

h<br />

60°<br />

d<br />

θ<br />

20 ft<br />

θ<br />

3 ft 3 ft<br />

100 ft<br />

(b) cos 100 ⇒<br />

l<br />

l <br />

(c) If then l 100<br />

Then<br />

cos 35 122.077.<br />

35,<br />

17 h 2 100 2 l 2<br />

17 h 70.02<br />

arccos <br />

100<br />

17 h 2 l 2 100 2 4902.906<br />

h 53.02 feet<br />

(b)<br />

(c)<br />

tan h d 153<br />

d<br />

25 ≤<br />

<br />

tan 25 ≤ tan ≤ tan 30<br />

tan 25 ≤ h d<br />

h<br />

tan 25 ≥ d ≥<br />

≤ 30<br />

≤ tan 30<br />

h<br />

tan 30<br />

55.72 ≥ d ≥ 45.00<br />

25.98<br />

d<br />

d is in the interval 45.0, 55.72.<br />

53 feet, 1 4 inch.<br />

25.<br />

tan 75<br />

95<br />

arctan 15<br />

19 38.29<br />

26. (a)<br />

1<br />

12 ft<br />

2<br />

θ<br />

27.<br />

sin 4000<br />

16,500 ⇒ 14.03<br />

90 75.97<br />

1<br />

17 ft<br />

3<br />

75<br />

(b)<br />

tan 121 2<br />

17 1 3<br />

4000<br />

16,500<br />

α<br />

θ<br />

© Houghton Mifflin Company. All rights reserved.<br />

28.<br />

2.5 miles<br />

θ<br />

95<br />

tan 250<br />

2.55280<br />

arctan <br />

250<br />

θ<br />

2.55280 1.09<br />

250 feet<br />

not drawn to scale<br />

(c)<br />

arctan 121 2<br />

17 1 3<br />

35.8<br />

29. Since the airplane speed is<br />

ft sec<br />

ft<br />

275 60 16,500<br />

sec min min ,<br />

after one minute its distance travelled is 16,500 feet.<br />

sin 18 <br />

a<br />

16,500<br />

a 16,500 sin 18<br />

5099 ft<br />

18°<br />

16500<br />

a


354 <strong>Chapter</strong> 4 Trigonometric Functions<br />

30.<br />

sin 18 <br />

If<br />

s <br />

h<br />

275s<br />

h<br />

275 sin 18<br />

275( s)<br />

h 10,000, s 10,000 117.7 seconds.<br />

275 sin 18<br />

18°<br />

h<br />

31.<br />

sin 9.5 x 4<br />

x 4 sin 9.5<br />

0.66 mile<br />

9.5°<br />

4<br />

x<br />

If h 16,000, s 16,000 188.3 seconds.<br />

275 sin 18<br />

32.<br />

sin25.2 1808<br />

L<br />

⇒ L 1808<br />

1808<br />

sin25.2 4246.3 feet 25.2°<br />

L<br />

33.<br />

90 29 61<br />

N<br />

206 120 nautical miles<br />

sin 61 <br />

cos 61 <br />

a<br />

120<br />

b<br />

120<br />

⇒ a 120 sin 61 104.95 nautical miles<br />

⇒ b 120 cos 61 58.18 nautical miles<br />

W<br />

a<br />

b<br />

61°<br />

120<br />

S<br />

E<br />

34.<br />

c 6001.5 900<br />

y 900 sin 38 554.1 miles<br />

x 900 cos 38 709.2 miles<br />

c<br />

52°<br />

38°<br />

x<br />

y<br />

32, 68<br />

35. Note: ABC forms a right triangle.<br />

(a)<br />

(b)<br />

90 32 58<br />

Bearing from A to C: N 58 E<br />

32<br />

90 22<br />

C <br />

54<br />

tan C d<br />

50 ⇒ tan 54 d 50 ⇒ d 68.82 m<br />

W<br />

B<br />

d<br />

N<br />

φ<br />

γ<br />

θ β<br />

α<br />

50<br />

β<br />

A<br />

S<br />

C<br />

E<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.8 Applications and Models 355<br />

36.<br />

tan 14 d x<br />

⇒ x d cot 14<br />

37.<br />

tan 45<br />

30 3 2 ⇒<br />

56.31<br />

tan 34 d y ⇒<br />

d<br />

30 x d<br />

30 d cot 14<br />

Bearing:<br />

N 56.31 W<br />

N<br />

cot 34 <br />

30 d cot 14<br />

d<br />

d cot 34 30 d cot 14<br />

W<br />

Port<br />

45<br />

30<br />

θ<br />

Ship<br />

E<br />

d <br />

30<br />

cot 34 cot 14<br />

5.46 kilometers<br />

S<br />

38.<br />

tan 85<br />

160 ⇒<br />

27.98<br />

39.<br />

tan 6.5 350<br />

d<br />

⇒ d 3071.91 ft<br />

Bearing: S 27.98 W<br />

N<br />

tan 4 350<br />

D<br />

⇒ D 5005.23 ft<br />

W<br />

160<br />

θ<br />

Airport<br />

85<br />

θ<br />

S<br />

Plane<br />

E<br />

Distance between ships:<br />

350 4°<br />

d<br />

D<br />

D d 1933.3 ft<br />

6.5°<br />

S 1 S 2<br />

© Houghton Mifflin Company. All rights reserved.<br />

40.<br />

42.<br />

10 km<br />

28°<br />

55°<br />

55°<br />

d<br />

T 1<br />

cot 55 d 10 ⇒ d 7 kilometers<br />

cot 28 D 10<br />

D<br />

28°<br />

⇒ D 18.8 kilometers<br />

Distance between towns:<br />

D d 18.8 7 11.8 kilometers<br />

tan 2.5 h , tan 10 <br />

h<br />

x x 18<br />

x <br />

h<br />

tan 2.5 h<br />

h 18 tan 10<br />

18 <br />

tan 10 tan 10<br />

h tan 10 h tan 2.5 18tan 10tan 2.5<br />

h <br />

T 2<br />

h<br />

tan 2.5 , x h<br />

tan 10 18<br />

18tan 10tan 2.5<br />

tan 10 tan 2.5<br />

h<br />

2.5°<br />

x<br />

not drawn to scale<br />

1.04 miles 5515 feet<br />

41.<br />

tan 57 a x<br />

tan 16 <br />

tan 16 <br />

cot 16 <br />

a<br />

x 556<br />

a<br />

a cot 57 556<br />

a cot 57 556<br />

a<br />

a cot 16 a cot 57 55 6<br />

h<br />

10°<br />

x − 18<br />

not drawn to scale<br />

⇒ x a cot 57<br />

57°<br />

H<br />

x<br />

P 1 P 2<br />

16°<br />

550<br />

60<br />

⇒ a 3.23 miles 17,054 feet<br />

a


356 <strong>Chapter</strong> 4 Trigonometric Functions<br />

43. (a)<br />

44. (a) Using the two triangles with acute angle ,<br />

50 + 6 = 56<br />

cos 3 and sin 3 .<br />

L 1<br />

L 2<br />

θ<br />

40<br />

arctan 56<br />

40 54.5<br />

Hence, L L 1 L 2 3 sec 3 csc .<br />

3<br />

β<br />

L 1<br />

L 2<br />

Similarly for the back row,<br />

arctan 56<br />

150 20.5.<br />

(b) For 45, you need to be 56 feet away since<br />

(b)<br />

20<br />

β<br />

3<br />

arctan 56<br />

56 45.<br />

0<br />

0<br />

<br />

2<br />

(c) The least value is 0.785. <br />

<br />

4<br />

45.<br />

L 1 : 3x 2y 5 ⇒ y 3 2 x 5 2 ⇒ m 1 3 2<br />

46.<br />

L 1 2x y 8 ⇒ m 1 2<br />

L 2 : x y 1 ⇒ y x 1 ⇒ m<br />

<br />

1 32<br />

tan <br />

1 132 <br />

2 1<br />

52<br />

12 5<br />

arctan 5 78.7<br />

L 2 x 5y 4 ⇒ m 2 1 5<br />

<br />

tan m 2 m 1<br />

1 1 m 2 m<br />

1 1 m 2 m<br />

arctan m 2 m 1<br />

arctan<br />

1<br />

5 2<br />

1 1 52<br />

arctan3 2 3 74.7<br />

47. The diagonal of the base has a length of<br />

a 2 a 2 2a. Now, we have:<br />

tan a<br />

2a <br />

arctan<br />

49. cos 30 b r<br />

b cos 30r<br />

b 3r<br />

2<br />

1 2<br />

1<br />

2 35.3<br />

θ<br />

b<br />

2a<br />

r<br />

2<br />

30°<br />

r<br />

a<br />

y<br />

48.<br />

50.<br />

tan a2<br />

a<br />

arctan 2 54.7º<br />

c 35 2 17.5<br />

sin 15º a c<br />

2<br />

15°<br />

a c sin 15 17.5 sin 15 4.53<br />

θ<br />

a<br />

c<br />

a 2<br />

a<br />

© Houghton Mifflin Company. All rights reserved.<br />

y 2b<br />

x<br />

Distance 2a 9.06 centimeters<br />

2 <br />

3r<br />

2 3r


51. d 0 when t 0, a 8, period 2<br />

52. Displacement at t 0 is<br />

Use d a sin t since d 0 when t 0.<br />

Amplitude:<br />

2<br />

<br />

2 ⇒ <br />

Thus, d 8 sin t.<br />

Period:<br />

Section 4.8 Applications and Models 357<br />

2<br />

<br />

t<br />

d 3 sin 3 <br />

a 3 0 ⇒ d a sin t.<br />

<br />

6 ⇒ <br />

3<br />

53. d 3 when t 0, a 3, period 1.5<br />

Use d a cos t since d 3 when t 0.<br />

2<br />

<br />

1.5 ⇒ 4 3<br />

Thus, d 3 cos <br />

4<br />

t<br />

3 .<br />

54. Displacement at t 0 is<br />

Amplitude:<br />

Period:<br />

2<br />

<br />

t<br />

d 2 cos 5 <br />

a 2 2 ⇒ d a cos t<br />

<br />

10 ⇒ <br />

5<br />

55.<br />

d 4 cos 8t<br />

(a) Maximum displacement amplitude 4<br />

(b)<br />

Frequency <br />

<br />

2<br />

8<br />

2<br />

4 cycles per unit of time<br />

(c) d 4 cos85 4<br />

<br />

(d) 8t <br />

2 ⇒ t 1<br />

16<br />

56.<br />

d 1 cos 20t<br />

2<br />

57.<br />

d 1 sin 140t<br />

16<br />

© Houghton Mifflin Company. All rights reserved.<br />

(a) Maximum displacement:<br />

(b) Frequency:<br />

<br />

2<br />

(c) When t 5, d 1 2 cos205 1 2 .<br />

(d) Least positive value for t for which d 0:<br />

1<br />

2 cos 20t 0<br />

cos 20t 0<br />

<br />

20t <br />

2<br />

20 10<br />

<br />

2<br />

t <br />

2 1<br />

20<br />

1 40<br />

a 1 2 1 2<br />

(a)<br />

(b)<br />

(c)<br />

Maximum displacement amplitude 1 16<br />

Frequency <br />

d 0<br />

<br />

2<br />

140<br />

2<br />

70 cycles per unit of time<br />

(d) 140t ⇒ t 1<br />

140


358 <strong>Chapter</strong> 4 Trigonometric Functions<br />

58.<br />

d 1 sin 792t<br />

64<br />

(a) Maximum displacement:<br />

(b) Frequency:<br />

<br />

2<br />

792 396<br />

2<br />

a 1 64 1 64<br />

(c) When t 5, d 1 64 sin7925 0.<br />

(d) Least positive value for t for which d 0:<br />

1<br />

64 sin 792t 0<br />

sin 792t 0<br />

792t <br />

t <br />

<br />

792<br />

1<br />

792<br />

59.<br />

d a sin t60. At t 0, buoy is at its high point ⇒ d a cos t.<br />

Period 2 1<br />

<br />

frequency<br />

<br />

2<br />

<br />

1<br />

264<br />

2264 528<br />

Distance from high to low 2 a 3.5<br />

Returns to high point every 10 seconds:<br />

Period 2 10 ⇒ <br />

5<br />

d 7 4 cos<br />

<br />

t<br />

5<br />

a 7 4<br />

<br />

61.<br />

y 1 4 cos 16t, t > 0<br />

(a)<br />

0.5<br />

(b) Period: 2<br />

16 8 seconds (c) 1<br />

cos 16t 0 when<br />

4<br />

0<br />

<br />

16t <br />

2 ⇒ t 32 seconds.<br />

−0.5<br />

<br />

<br />

<br />

62. (a)<br />

<br />

L 1<br />

L 2<br />

2 3<br />

0.1 23.0<br />

sin 0.1 cos 0.1<br />

2 3<br />

0.2 13.1<br />

sin 0.2 cos 0.2<br />

2 3<br />

0.3 9.9<br />

sin 0.3 cos 0.3<br />

2 3<br />

0.4 8.4<br />

sin 0.4 cos 0.4<br />

(c) L L 1 L 2 2 3<br />

sin cos <br />

L 1 L 2<br />

(b)<br />

(d)<br />

2 3<br />

0.5 7.6<br />

sin 0.5 cos 0.5<br />

2 3<br />

0.6 7.2<br />

sin 0.6 cos 0.6<br />

2 3<br />

0.7 7.0<br />

sin 0.7 cos 0.7<br />

2 3<br />

0.8 7.1<br />

sin 0.8 cos 0.8<br />

The minimum length of the elevator is 7.0 meters.<br />

12<br />

From the graph, it appears<br />

that the minimum length is<br />

7.0 meters, which agrees<br />

with the estimate of part (b).<br />

0<br />

0<br />

<br />

2<br />

© Houghton Mifflin Company. All rights reserved.


Section 4.8 Applications and Models 359<br />

63. (a), (b)<br />

Base 1 Base 2 Altitude Area<br />

8 8 16 cos 10 8 sin 10 22.1<br />

8 8 16 cos 20 8 sin 20 42.5<br />

8 8 16 cos 30 8 sin 30 59.7<br />

8 8 16 cos 40 8 sin 40 72.7<br />

8 8 16 cos 50 8 sin 50 80.5<br />

8 8 16 cos 60 8 sin 60 83.1<br />

8 8 16 cos 70 8 sin 70 80.7<br />

(c)<br />

A 1 2b 1 b 2 h<br />

(d) Maximum area is approximately 83.1 square feet<br />

for<br />

100<br />

0<br />

0<br />

1 28 8 16 cos 8 sin <br />

641 cos sin <br />

60.<br />

90<br />

Maximum 83.1 square feet<br />

64. (a)<br />

S<br />

(b)<br />

a 1 14.30 1.70 6.3<br />

2<br />

S<br />

Average sales<br />

(in millions of dollars)<br />

15<br />

12<br />

9<br />

6<br />

3<br />

2 4 6 8 10 12<br />

Month (1 ↔ January)<br />

t<br />

2<br />

b 12 ⇒ b 6<br />

Shift:<br />

d 14.3 6.3 8<br />

S d a cos bt<br />

<br />

Average sales<br />

(in millions of dollars)<br />

15<br />

12<br />

9<br />

6<br />

3<br />

2 4 6 8 10 12<br />

Month (1 ↔ January)<br />

t<br />

2<br />

(c) Period:<br />

6 12<br />

This corresponds to the 12 months in a year.<br />

Since the sales of outerwear is seasonal, this<br />

is reasonable.<br />

t<br />

S 8 6.3 cos 6 <br />

The model is a good fit.<br />

(d) The amplitude represents the maximum<br />

displacement from the average sale of<br />

8 million dollars. Sales are greatest in<br />

December (cold weather holidays) and<br />

least in June.<br />

© Houghton Mifflin Company. All rights reserved.<br />

65.<br />

St 18.09 1.41 sin <br />

t<br />

6 4.60 <br />

(a)<br />

22<br />

0<br />

14<br />

66. False<br />

It means 24 degrees east of north.<br />

12<br />

2<br />

(b) The period is<br />

months, which is 1 year.<br />

6 12<br />

(c) The amplitude is 1.41. This gives the maximum change<br />

in time from the average time 18.09 of sunset.<br />

67. False. The other acute angle is<br />

Then<br />

tan41.9 opp<br />

adj<br />

<br />

a<br />

22.56<br />

90 48.1 41.9.<br />

⇒ a 22.56 tan41.9.


360 <strong>Chapter</strong> 4 Trigonometric Functions<br />

68. False 69. y 2 4x 1<br />

70.<br />

4x y 6 0<br />

y 0 1 2x 1 3<br />

2y x 1 3<br />

3x 6y 1 0<br />

71.<br />

Slope 6 2<br />

2 3 4 5<br />

y 2 4 x 3<br />

5<br />

72.<br />

m <br />

13 23<br />

12 14 1<br />

34 4 3<br />

y 2 3 4 3 x 1 4<br />

5y 10 4x 12<br />

3y 2 4x 1<br />

4x 5y 22 0<br />

4x 3y 1 0<br />

73. Domain: , 74. Domain: , 75. Domain: , 76. Domain:<br />

or x ≤ 7<br />

7 x ≥ 0<br />

Review Exercises for <strong>Chapter</strong> 4<br />

1. 40 or 0.7 radian<br />

y<br />

3. (a) (b) Quadrant III<br />

4 π<br />

3<br />

x<br />

(c)<br />

4<br />

3 2 10<br />

3<br />

4<br />

3 2 2<br />

3<br />

2. 250 or 4.4 radians<br />

y<br />

4. (a) (b) Quadrant IV<br />

11π<br />

6<br />

x<br />

(c)<br />

11<br />

6 2 23<br />

6<br />

11<br />

<br />

6 2 <br />

6<br />

y<br />

5. (a) (b) Quadrant III<br />

7. Complement:<br />

Supplement:<br />

9. Complement:<br />

Supplement:<br />

−<br />

5 π<br />

6<br />

<br />

<br />

<br />

<br />

x<br />

8 7<br />

8<br />

(c)<br />

2 8 3<br />

8<br />

<br />

2 3<br />

10 5<br />

3<br />

<br />

10 7<br />

10<br />

5<br />

6 2 7<br />

6<br />

5<br />

6 2 17<br />

6<br />

y<br />

6. (a) (b) Quadrant I<br />

−<br />

7 π<br />

4<br />

8. Complement:<br />

Supplement:<br />

10. Complement:<br />

Supplement:<br />

<br />

<br />

<br />

<br />

x<br />

(c)<br />

2 12 5<br />

12<br />

<br />

2<br />

12 11<br />

12<br />

2 2<br />

21 17<br />

42<br />

21 19<br />

21<br />

7<br />

4 2 <br />

<br />

4<br />

7<br />

4 2 15<br />

4<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 4 361<br />

11. (a)<br />

y<br />

12. (a)<br />

y<br />

45°<br />

x<br />

210°<br />

x<br />

(b) Quadrant I<br />

(c) 45 360 405<br />

45 360 315<br />

(b) Quadrant III<br />

(c) 210 360 570<br />

210 360 150<br />

13. (a)<br />

y<br />

14. (a)<br />

y<br />

x<br />

−405°<br />

x<br />

−135°<br />

(b) Quadrant III<br />

(c) 135 360 225<br />

135 360 495<br />

(b) Quadrant IV<br />

(c) 405 720 315<br />

405 360 45<br />

15. Complement of<br />

5: 90 5 85<br />

16. Complement of<br />

Supplement of 5: 180 5 175<br />

84:<br />

90 84 6<br />

Supplement of 84: 180 84 96<br />

17. Complement: not possible<br />

Supplement: 180 171 9<br />

18. Complement of 136: not possible<br />

Supplement of 136: 180 136 44<br />

© Houghton Mifflin Company. All rights reserved.<br />

19. 135 16 45 <br />

135 16<br />

60 3600 45 135.279 20. 234 40 234 <br />

3600 40 234.011<br />

21. 5 22 53 5 22<br />

60 3600 53 5.381<br />

23. 135.29 135 0.2960 135 17 24<br />

25. 85.36 85 0.3660 85 21 36<br />

27. 415 415 <br />

rad<br />

22.<br />

280 8 50 280 8<br />

60 50<br />

3600<br />

24. 25.8 25 48<br />

280 0.13 0.01 280.147<br />

26. 327.93 327 55 48<br />

rad<br />

180 83<br />

36 rad 7.243 rad 28. 355 355 <br />

180<br />

71 rad 6.196 rad<br />

36


362 <strong>Chapter</strong> 4 Trigonometric Functions<br />

rad<br />

rad<br />

29. 72 72 2 rad 1.257 rad 30. 94 94<br />

180 5<br />

<br />

180 47 rad 1.641 rad<br />

90<br />

31.<br />

7 5<br />

7 180<br />

128.571<br />

5<br />

<br />

32. 3<br />

5 3<br />

5 180<br />

108<br />

<br />

33. 3.5 3.5 <br />

180<br />

200.535<br />

<br />

34. 1.55 1.55 <br />

180<br />

88.808<br />

<br />

35.<br />

s r<br />

25 12<br />

25<br />

12 2.083<br />

s r 245<br />

49<br />

36. s r ⇒<br />

4.083 radians<br />

60 12<br />

37.<br />

s r<br />

s 20138<br />

180<br />

s 48.171 m<br />

<br />

38. s r 15 <br />

cm<br />

3 5 15.71<br />

39. In one revolution, the arc length traveled is<br />

s 2r 26 12 cm. The time<br />

required for one revolution is<br />

t 1<br />

500 minutes 1<br />

500 60 3 25 seconds.<br />

Linear speed s t 12<br />

325 100 cmsec<br />

41. t 7 corresponds to <br />

2<br />

4<br />

2 , 2 2 .<br />

43.<br />

cos 5<br />

6 3 2<br />

sin 5<br />

6 1 2<br />

x, y 3<br />

2 , 1 2<br />

45. t 2 corresponds to 1 3<br />

2 , 3 2 .<br />

40. (a) 28 miles per hour 285280 2464 ft/min<br />

60<br />

42.<br />

(b)<br />

Circumference of wheel:<br />

Number of revolutions per minute:<br />

<br />

2464<br />

73<br />

7<br />

t 7392<br />

7392 336.1 revmin<br />

7<br />

2 14,724<br />

7<br />

cos 3<br />

4 2 3<br />

, sin<br />

2 4 2<br />

2<br />

x, y 2<br />

2 , 2<br />

2 <br />

44. t 4 corresponds to 1 3<br />

2 , 3 2 .<br />

46. t 7 corresponds to 3<br />

2 , 1 6<br />

2 .<br />

C 21 3 7 3<br />

2112 rad/min<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 4 363<br />

47. t 5 corresponds to 2<br />

2 , 2<br />

4<br />

2 .<br />

48. t 5 corresponds to 3<br />

6<br />

2 , 1 2 .<br />

49.<br />

7<br />

sin<br />

6 1 2<br />

cot 7<br />

6 3<br />

50.<br />

<br />

<br />

sin<br />

4 2<br />

2 cos 4<br />

cos 7<br />

6 3 2<br />

sec 7<br />

6 2 3 23 3<br />

<br />

<br />

tan<br />

4 1 cot 4<br />

7<br />

tan<br />

6 1<br />

3 3<br />

3<br />

csc 7<br />

6 2<br />

<br />

<br />

sec 2 csc<br />

4 4<br />

51. t 2 corresponds to 1, 0.<br />

52. t corresponds to 1, 0.<br />

sin 2 y 0<br />

cot 2 x y ,<br />

undefined<br />

sin y 0<br />

cot x y ,<br />

undefined<br />

cos 2 x 1 sec 2 1 x 1<br />

tan 2 y csc 2 1 undefined<br />

x 0 y ,<br />

cos x 1 sec 1 x 1<br />

tan y csc 1 undefined<br />

x 0 y ,<br />

© Houghton Mifflin Company. All rights reserved.<br />

53. t 11 corresponds to<br />

6<br />

sin 11<br />

6 y 1 2<br />

cos 11<br />

6 x 3<br />

2<br />

tan 11<br />

6 y x 3<br />

3<br />

cot 11<br />

6 x y 3<br />

sec 11<br />

6 1 x 23<br />

3<br />

csc 11<br />

6 1 y 2<br />

3<br />

2 , 1 2 .<br />

55. t corresponds to 0, 1.<br />

2<br />

2 y 1<br />

sin <br />

<br />

<br />

<br />

cos 2 x 0<br />

<br />

tan 2 y x ,<br />

undefined<br />

<br />

cot <br />

2 x y 0<br />

<br />

sec <br />

2 1 x ,<br />

<br />

undefined<br />

csc <br />

2 1 y 1<br />

54. t 5 corresponds to<br />

6<br />

sin 5<br />

6 y 1 2<br />

cos 5<br />

6 x 3 2<br />

tan 5<br />

6 y x 3<br />

3<br />

cot 5<br />

6 x y 3<br />

sec 5<br />

6 1 x 23 3<br />

csc 5<br />

6 1 y 2<br />

3 2 , 1 2 .


364 <strong>Chapter</strong> 4 Trigonometric Functions<br />

<br />

56. t corresponds to<br />

4<br />

<br />

sin 4 y 2 2<br />

<br />

cos 4 x 2<br />

2<br />

<br />

tan 4 y x 1<br />

2<br />

2 , 2 2 .<br />

<br />

cot <br />

4 x y 1<br />

<br />

sec <br />

4 1 x 2<br />

<br />

csc <br />

4 1 y 2<br />

57. sin <br />

11<br />

4 sin 3<br />

4 2<br />

2<br />

59. sin 17<br />

6 sin 7<br />

6 1 2<br />

58. cos 4 cos 0 1<br />

60. cos 13 5<br />

3 cos<br />

3 1 2<br />

61.<br />

sin t 3 5<br />

62.<br />

cos t 5 13<br />

(a)<br />

sint sin t 3 5<br />

(a)<br />

cost cos t 5 13<br />

(b) csct 1<br />

sint 5 3<br />

(b) sect 1<br />

cost 13<br />

5<br />

63.<br />

sint 2 3<br />

64.<br />

cost 5 8<br />

(a)<br />

sin t sint 2 3 2 3<br />

(a)<br />

cos t cost 5 8<br />

(b) csc t 1<br />

sin t 3 2<br />

(b) sect 1<br />

cost 8 5<br />

65. cot 2.3 1<br />

tan 2.3 0.8935<br />

67. cos 5<br />

3 1 2<br />

69. The opposite side is 9 2 4 2 81 16 65.<br />

sin opp<br />

hyp 65<br />

9<br />

cos adj<br />

hyp 4 9<br />

tan opp<br />

adj 65<br />

4<br />

csc 1 9<br />

sin 65 965<br />

65<br />

sec 1<br />

cos <br />

9 4<br />

cot 1 4<br />

tan 65 465<br />

65<br />

66. sec 4.5 1<br />

cos 4.5 4.7439<br />

68. tan 11<br />

6 0.5774<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 4 365<br />

70.<br />

sin 15<br />

341 541<br />

41<br />

cos 12<br />

341 441<br />

41<br />

tan 15<br />

12 5 4<br />

csc 41<br />

541 41<br />

5<br />

sec 41<br />

441 41<br />

4<br />

cot 4 5<br />

θ<br />

3 41<br />

12<br />

15<br />

71. The hypotenuse is 12 2 10 2 244 261.<br />

sin opp<br />

hyp 10<br />

261 5<br />

61 561<br />

61<br />

cos adj<br />

hyp 12<br />

261 6<br />

61 661<br />

61<br />

tan opp<br />

adj 10<br />

12 5 6<br />

csc 1 61<br />

sin 5<br />

sec 1 61<br />

cos 6<br />

cot 1<br />

tan <br />

6 5<br />

72.<br />

sin 2 10 1 5<br />

csc 5<br />

73. csc tan 1 sin <br />

1 sec <br />

sin cos cos <br />

cos 46<br />

10 26<br />

5<br />

sec 5<br />

26 56<br />

12<br />

tan 2<br />

46 6<br />

12<br />

cot 12<br />

6 26<br />

10<br />

θ<br />

96 = 4 6<br />

2<br />

74.<br />

cot tan <br />

cot <br />

1 tan <br />

1 tan<br />

cot <br />

2 sec 2 <br />

75. (a)<br />

cos 84 0.1045<br />

(b) sin 6 0.1045<br />

© Houghton Mifflin Company. All rights reserved.<br />

76. (a)<br />

csc52 12 <br />

1<br />

sin52 12 <br />

(b) sec54 7 1<br />

1<br />

<br />

<br />

cos54 7 cos54.1167 1.7061<br />

<br />

<br />

<br />

1<br />

sin 52.2 1.2656<br />

77. (a) cos<br />

4 0.7071 78. (a) tan <br />

3<br />

79. tan 62 <br />

20 0.5095<br />

125<br />

(b) sec<br />

4 1.4142<br />

x 125 tan 62<br />

(b) cot <br />

3<br />

20 1<br />

tan320<br />

235 feet<br />

80. (a) (b)<br />

30<br />

152 ft<br />

h<br />

(c)<br />

sin 30 <br />

h<br />

152<br />

h 152 <br />

1<br />

2 76<br />

1.9626<br />

⇒ h 152 sin 30<br />

feet


366 <strong>Chapter</strong> 4 Trigonometric Functions<br />

81.<br />

x 12, y 16, r 144 256 400 20<br />

sin y r 4 5<br />

csc r y 5 4<br />

cos x r 3 5<br />

sec r x 5 3<br />

tan y x 4 3<br />

cot x y 3 4<br />

82.<br />

x 2, y 10, r 4 100 104 226<br />

83.<br />

x 7, y 2, r 49 4 53<br />

sin y r 10<br />

226 526<br />

26<br />

sin y r 2<br />

53 253<br />

53<br />

cos x r 2<br />

226 26<br />

26<br />

cos x r 7<br />

53 753 53<br />

tan y x 10 2 5<br />

tan y x 2 7<br />

csc r y 26<br />

5<br />

csc 53<br />

2<br />

sec r x 26<br />

sec 53<br />

7<br />

cot x y 1 5<br />

cot 7 2<br />

84.<br />

cot r y 3 4<br />

x 3, y 4, r 3 2 4 2 5<br />

85.<br />

x 2 3 and y 5 8 ,<br />

r <br />

2<br />

3 2 <br />

5<br />

8 2 481<br />

24<br />

sin y r 4 5<br />

sin y r 58<br />

48124 15481<br />

481<br />

cos x r 3 5<br />

cos x r 23<br />

48124 16481<br />

481<br />

tan y x 4 3<br />

csc x y 5 4<br />

sec r x 5 3<br />

tan y x 58<br />

23 15<br />

16<br />

csc r y 481<br />

15<br />

sec r x 481<br />

16<br />

cot x y 16<br />

15<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 4 367<br />

86.<br />

x 10 3 , y 2 3 ,<br />

sin y r 23<br />

2263 1<br />

26 26<br />

26<br />

cos x r 103<br />

2263 5<br />

26 526<br />

26<br />

tan y x 23<br />

103 1 5<br />

r 10 3 2 2 3 2 226<br />

3<br />

csc r y 26<br />

sec r x 26 5<br />

cot x y 5<br />

87. sec 6 is in Quadrant IV.<br />

5 , tan < 0 ⇒<br />

r 6, x 5, y 36 25 11<br />

<br />

θ<br />

y<br />

5<br />

x<br />

sin y r 11 6<br />

csc 611<br />

11<br />

6<br />

− 11<br />

cos x r 5 6<br />

tan y x 11 5<br />

sec 6 5<br />

cot 511<br />

11<br />

88.<br />

tan y x 12 5 ⇒ r 13,<br />

sin > 0 ⇒ y 12, x 5<br />

sin y r 12<br />

13<br />

cos x r 5 13<br />

csc r y 13<br />

12<br />

sec r x 13<br />

5 13 5<br />

cot x y 5 12<br />

© Houghton Mifflin Company. All rights reserved.<br />

89. sin 3 is in Quadrant II.<br />

8 , cos < 0 ⇒<br />

y 3, r 8, x 55<br />

sin y r 3 8<br />

cos x r 55 8<br />

tan y x 3<br />

55 355 55<br />

<br />

csc 8 3<br />

sec 8<br />

55 855 55<br />

cot 55<br />

3<br />

3<br />

− 55<br />

y<br />

8 θ<br />

x


368 <strong>Chapter</strong> 4 Trigonometric Functions<br />

90.<br />

cos x r 2<br />

5<br />

sin y r 21<br />

5<br />

tan y x 21 2<br />

⇒ y ±21,<br />

csc r y 5<br />

21 521<br />

21<br />

sin > 0 ⇒ y 21<br />

sec r x 5<br />

2 5 2<br />

cot x y 2<br />

21 221 21<br />

91. Reference angle:<br />

y<br />

92. 635 is coterminal with 275.<br />

264 180 84<br />

Reference angle:<br />

y<br />

θ = 264<br />

360 275 85<br />

θ ′ = 84<br />

x<br />

θ = 635°<br />

x<br />

θ ′ = 85<br />

93. Coterminal angle:<br />

2 6<br />

Reference angle:<br />

4<br />

5 4<br />

5<br />

<br />

5 5<br />

θ ′ = π 5<br />

y<br />

θ =<br />

−<br />

6π<br />

5<br />

x<br />

17<br />

Reference angle:<br />

2 5<br />

<br />

3 3<br />

5<br />

94. is coterminal with<br />

3<br />

3 .<br />

θ =<br />

17π<br />

3<br />

y<br />

θ ′ = π 3<br />

x<br />

95. 240 is in Quadrant III with reference angle 60. 96. 315 is in Quadrant IV with reference angle 45.<br />

sin 240 sin 60 3<br />

2<br />

cos 240 cos 60 1 2<br />

tan 240 32<br />

12<br />

tan210 <br />

3<br />

12<br />

32 1 3 3 3<br />

sin 315 sin 45 2<br />

2<br />

cos 315 cos 45 2<br />

2<br />

tan 315 tan 45 1<br />

97. 210 is coterminal with 150 in Quadrant II with 98. 315 is coterminal with 45 in Quadrant I.<br />

reference angle 30.<br />

sin210 sin30 1 sin315 2<br />

2<br />

2<br />

cos210 cos30 3<br />

cos315 2<br />

2<br />

2<br />

tan315 1<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 4 369<br />

99. 94 is coterminal with 74 in Quadrant IV<br />

with reference angle 4.<br />

sin 9<br />

cos 9<br />

4 sin <br />

4 cos <br />

<br />

<br />

4 2 2<br />

4 2<br />

2<br />

tan 9<br />

4 22<br />

22<br />

1<br />

100. 116 is in Quadrant IV.<br />

sin <br />

11<br />

6 1 2<br />

cos <br />

11<br />

6 3<br />

2<br />

tan <br />

11<br />

6 3 3<br />

101.<br />

sin4 sin0 0<br />

cos4 1<br />

tan4 0<br />

102.<br />

sin <br />

7<br />

3 sin <br />

cos <br />

7<br />

3 1 2<br />

<br />

3 3<br />

2<br />

103. tan 33 0.6494<br />

tan <br />

7<br />

3 3<br />

104. csc 105 1<br />

sin 105 1.0353<br />

105. sec 12<br />

5 1<br />

cos125 3.2361<br />

<br />

106. sin <br />

9 0.3420<br />

107.<br />

f x 3 sin x<br />

y<br />

108.<br />

f x 2 cos x<br />

y<br />

Amplitude: 3<br />

4<br />

3<br />

2<br />

Amplitude: 2<br />

3<br />

2<br />

1<br />

π<br />

2π<br />

x<br />

−2π<br />

−π<br />

−1<br />

π<br />

2π<br />

x<br />

−2<br />

−4<br />

−3<br />

© Houghton Mifflin Company. All rights reserved.<br />

109.<br />

y<br />

f x 1 4 cos x 110. f x 7 2 sin x<br />

Amplitude: 1 1<br />

4<br />

Amplitude: 7 2<br />

111. Period:<br />

2<br />

<br />

Amplitude: 5<br />

2<br />

−2π<br />

1<br />

2<br />

1<br />

−<br />

2<br />

−1<br />

112. Period:<br />

2π<br />

2<br />

Amplitude: 3 2<br />

x<br />

12 4<br />

2<br />

113. Period:<br />

2 <br />

Amplitude: 3.4<br />

114. Period:<br />

y<br />

4<br />

3<br />

2<br />

1<br />

x<br />

π 2π<br />

−4<br />

2<br />

Amplitude: 4<br />

2 4


370 <strong>Chapter</strong> 4 Trigonometric Functions<br />

115.<br />

y 3 cos 2x<br />

y<br />

116.<br />

y 2 sin x<br />

y<br />

Amplitude: 3<br />

Period: 2 1<br />

2<br />

1<br />

−<br />

2<br />

3<br />

1<br />

−2<br />

1<br />

2<br />

1<br />

x<br />

Period: 2 2<br />

<br />

Amplitude: 2 2<br />

Reflected in x-axis<br />

3<br />

1<br />

–1<br />

–2<br />

1<br />

x<br />

−3<br />

1 2<br />

1<br />

2<br />

x 0<br />

y 2 0 2<br />

–3<br />

117. fx 5 sin 2x<br />

5<br />

Amplitude: 5<br />

Period:<br />

2<br />

25 5<br />

y<br />

6<br />

4<br />

2<br />

–2<br />

–6<br />

6π<br />

x<br />

118.<br />

f x 8 cos x 4<br />

2<br />

Period:<br />

14 8<br />

Amplitude: 8<br />

Reflected in y-axis<br />

2<br />

4<br />

x 0<br />

y 8 0 8 0 8<br />

4<br />

2<br />

8<br />

–4<br />

–6<br />

–8<br />

y<br />

4π 8π<br />

x<br />

119.<br />

f x 5 2 cos x 4<br />

5<br />

Amplitude:<br />

Period: 2<br />

14 8<br />

5<br />

4<br />

3<br />

2<br />

2 1<br />

−4π<br />

y<br />

−3<br />

−4<br />

−5<br />

4π<br />

8π<br />

x<br />

120.<br />

f x 1 2 sin<br />

Amplitude: 1 2<br />

Period: 8<br />

x<br />

4<br />

−6<br />

−2<br />

1<br />

−<br />

1<br />

2<br />

−1<br />

y<br />

2 6<br />

x<br />

121.<br />

f x 5 2 sinx <br />

Amplitude:<br />

Period:<br />

Shift:<br />

2<br />

5<br />

2<br />

x 0 and x 2<br />

x x 3<br />

y<br />

4<br />

3<br />

1<br />

–1<br />

–2<br />

–3<br />

–4<br />

π<br />

x<br />

122.<br />

f x 3 cosx <br />

Period: 2<br />

Amplitude: 3<br />

This is the graph of<br />

y 3 cos x shifted<br />

to the left units.<br />

x<br />

f x<br />

<br />

<br />

<br />

<br />

2<br />

0<br />

<br />

3 0 3 0 3<br />

2<br />

4<br />

3<br />

2<br />

1<br />

–3<br />

–4<br />

<br />

y<br />

π<br />

x<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 4 371<br />

123.<br />

f x 2 cos<br />

x<br />

2<br />

y<br />

4<br />

3<br />

2<br />

124.<br />

f x 1 2 sin x 3<br />

Amplitude: 1 2<br />

−2<br />

−1<br />

y<br />

−1<br />

1<br />

2<br />

x<br />

−4 −3 −2 −1<br />

−1<br />

1 2 3 4<br />

−2<br />

−3<br />

−4<br />

x<br />

Period: 2<br />

Vertical shift<br />

downward three units<br />

−2<br />

−3<br />

−4<br />

125.<br />

fx 3 cos <br />

x<br />

2 <br />

<br />

4<br />

y<br />

4<br />

3<br />

2<br />

−π π<br />

−2<br />

−3<br />

2π 3π<br />

x<br />

126.<br />

f x 4 2 cos4x <br />

Amplitude: 2<br />

<br />

Period:<br />

2<br />

y<br />

8<br />

6<br />

4<br />

2<br />

−4<br />

− π 2<br />

− π 4<br />

−2<br />

π<br />

4<br />

π<br />

2<br />

x<br />

127. fx 2 cos x <br />

128.<br />

4<br />

<br />

fx a cosbx c<br />

Amplitude: 3<br />

Period: ⇒ f x 3 cos2x<br />

129. fx 4 cos 2x <br />

<br />

2<br />

130.<br />

fx a cosbx c 131.<br />

Amplitude:<br />

1<br />

2<br />

Period: 2 ⇒ f x 1 2 cos x<br />

S 48.4 6.1 cos<br />

Maximum sales:<br />

(June)<br />

Minimum sales:<br />

(December)<br />

t<br />

6<br />

t 6<br />

t 12<br />

56<br />

0<br />

40<br />

12<br />

© Houghton Mifflin Company. All rights reserved.<br />

132.<br />

S 56.25 9.50 sin<br />

Maximum sales:<br />

(March)<br />

Minimum sales:<br />

(September)<br />

t 3<br />

t 9<br />

t<br />

6<br />

70<br />

0<br />

45<br />

12<br />

133.<br />

fx tan<br />

<br />

Period:<br />

4 4<br />

Asymptotes:<br />

−4<br />

x 2, x 2<br />

Reflected in<br />

x<br />

y<br />

x<br />

4<br />

x-axis<br />

1 0 1<br />

1 0 1<br />

6<br />

4<br />

2<br />

−6 −2 2 4 6<br />

−2<br />

−4<br />

−6<br />

y<br />

x


372 <strong>Chapter</strong> 4 Trigonometric Functions<br />

134.<br />

f x 4 tan x135.<br />

y<br />

6<br />

4<br />

2<br />

x<br />

1<br />

−<br />

3π<br />

2<br />

4<br />

3<br />

2<br />

1<br />

−1<br />

−2<br />

−3<br />

−4<br />

y<br />

π<br />

2<br />

3π<br />

2<br />

<br />

f x 1 4 tan x <br />

136.<br />

2<br />

x<br />

f x 2 2 tan x 3<br />

−3π −2π<br />

6<br />

4<br />

2<br />

−4<br />

−6<br />

y<br />

π<br />

3π<br />

4π<br />

x<br />

137.<br />

f x 3 cot x 2<br />

<br />

Period:<br />

12 2<br />

y<br />

6<br />

4<br />

2<br />

138.<br />

f x 1 2 cot<br />

y<br />

x<br />

2 1<br />

2 tan<br />

x<br />

2<br />

Two consecutive<br />

asymptotes:<br />

−4π<br />

−2π<br />

2π<br />

4π<br />

x<br />

2<br />

1<br />

x<br />

2 0 ⇒ x 0<br />

−2 −1<br />

1 2<br />

x<br />

x<br />

2 ⇒ x 2<br />

139.<br />

141.<br />

f x 1 2 cot x <br />

Period:<br />

Two consecutive<br />

asymptotes:<br />

x <br />

2 0 ⇒ x 2<br />

x <br />

2 ⇒ x 3<br />

2<br />

f x 1 4 sec x 142. f x 1 2 csc x 1<br />

2 sin x<br />

y<br />

Period:<br />

y<br />

2<br />

2<br />

1<br />

x<br />

1<br />

−1<br />

−2<br />

<br />

<br />

<br />

2<br />

2π<br />

<br />

2<br />

<br />

x<br />

5<br />

4<br />

3<br />

−2π<br />

−π<br />

−1<br />

y<br />

π<br />

2π<br />

x<br />

140.<br />

f x 4 cot x <br />

−2π<br />

−π<br />

−2<br />

−π<br />

4<br />

y<br />

π<br />

π<br />

<br />

2π<br />

2π<br />

3π<br />

4 4<br />

tan x <br />

x<br />

<br />

4<br />

© Houghton Mifflin Company. All rights reserved.


Review Exercises for <strong>Chapter</strong> 4 373<br />

143.<br />

f x 1 4 csc 2x 144.<br />

Period:<br />

<br />

y<br />

f x 1 2 sec 2x <br />

y<br />

1<br />

2 cos 2x<br />

3<br />

2<br />

1<br />

−1<br />

1<br />

x<br />

π<br />

x<br />

−1<br />

145.<br />

f x sec x <br />

Secant function shifted<br />

<br />

to right<br />

<br />

y<br />

146.<br />

4<br />

3<br />

4 −π<br />

π 2π<br />

2<br />

1<br />

x<br />

f x 1 2 csc2x <br />

y<br />

1<br />

2 sin2x <br />

−π<br />

− π 2<br />

π<br />

2<br />

π<br />

x<br />

−1<br />

147.<br />

fx 1 4 tan<br />

x<br />

2<br />

148.<br />

fx tan x <br />

<br />

4<br />

1<br />

4<br />

− π<br />

π<br />

−2π<br />

2π<br />

−1<br />

−4<br />

© Houghton Mifflin Company. All rights reserved.<br />

149.<br />

151.<br />

fx 4 cot2x <br />

− π<br />

10<br />

−10<br />

f x 2 secx <br />

− 2π<br />

10<br />

π<br />

2π<br />

4<br />

tan2x <br />

2<br />

cosx <br />

150.<br />

152.<br />

2<br />

fx 2 cot4x <br />

tan4x <br />

− π<br />

2<br />

−2π<br />

4<br />

− 4<br />

π<br />

2<br />

fx 2 cscx <br />

8<br />

2π<br />

2<br />

sinx <br />

−10<br />

− 8


374 <strong>Chapter</strong> 4 Trigonometric Functions<br />

153.<br />

<br />

fx csc 3x <br />

2 1<br />

sin3x 2<br />

154.<br />

<br />

fx 3 csc 2x <br />

4 3<br />

sin2x 4<br />

4<br />

8<br />

−π<br />

π<br />

− π<br />

π<br />

−4<br />

− 8<br />

155.<br />

f x e x sin 2x 156.<br />

f x e x cos x<br />

Damping factor:<br />

y e x<br />

Damping factor:<br />

e x<br />

20<br />

5<br />

−4<br />

4<br />

−4<br />

4<br />

−20<br />

−5<br />

157.<br />

f x 2x cos x 158.<br />

f x x sin x<br />

6<br />

Damping factor:<br />

14<br />

gx 2x<br />

As x →, f oscillates<br />

between x and x.<br />

−9<br />

9<br />

−10<br />

10<br />

−6<br />

−14<br />

As x →, f oscillates between 2x and 2x.<br />

159. (a) arcsin1 because sin <br />

2<br />

2 1.<br />

(b) arcsin 4 does not exist because the domain of<br />

arcsin is 1, 1.<br />

161. (a) arccos 2 because cos<br />

4 2<br />

2 4<br />

2 .<br />

<br />

<br />

(b) arccos 3 because cos 5<br />

2 5<br />

6<br />

6 3 2 .<br />

<br />

<br />

160. (a) arcsin 1 because sin <br />

2 6<br />

6 1 2 .<br />

(b)<br />

162. (a)<br />

arcsin 3 because<br />

2 3<br />

<br />

sin <br />

3 3 2 .<br />

arctan3 <br />

3<br />

<br />

(b) arctan1 <br />

4<br />

163. arccos0.42 1.14 164. arcsin 0.63 0.68<br />

165. sin 1 0.94 1.22<br />

166. cos 1 0.12 1.69 167. arctan12 1.49<br />

168. arctan 21 1.52<br />

169. tan 1 0.81 0.68<br />

170. tan 1 6.4 1.42<br />

<br />

<br />

<br />

<br />

© Houghton Mifflin Company. All rights reserved.<br />

171. sin x 3<br />

16<br />

⇒<br />

arcsin <br />

x 3<br />

16 <br />

172. tan x 1<br />

20<br />

⇒<br />

arctan <br />

x 1<br />

20


Review Exercises for <strong>Chapter</strong> 4 375<br />

173. Let y arcsinx 1. Then,<br />

174. Let u arccos x cos u x 2 , 2 .<br />

sin y x 1 x 1 and<br />

1<br />

tan arccos<br />

2 x tan u<br />

1<br />

sec y <br />

4 <br />

x 2 x2<br />

2x<br />

<br />

x2 1<br />

2x<br />

x 2 2x . x − 1<br />

y<br />

u<br />

1 − (x − 1) 2<br />

x 2<br />

175. Let y arccos Then cos y <br />

x2<br />

and<br />

4 x 2. 176. Let u arcsin 10x, sin u 10x.<br />

4 x 2<br />

sin y 4 cscarcsin 10x csc u<br />

x2 2 x 2 2<br />

.<br />

4 x 2<br />

<br />

<br />

16 8x2<br />

4 x 2<br />

24 2x2<br />

4 x 2 .<br />

y<br />

4 − x 2<br />

x 2<br />

(4 − x 2 ) 2 − (x 2 ) 2<br />

2<br />

x 4 − x 2<br />

hyp<br />

opp 1<br />

10x<br />

1<br />

u<br />

x<br />

1 − 100x 2<br />

10x<br />

177.<br />

sin1 10 a<br />

3.5<br />

a 3.5 sin1 10 3.5 sin <br />

7<br />

6 0.0713<br />

or 71 meters<br />

3.5<br />

a<br />

1° 10'<br />

not drawn to scale<br />

© Houghton Mifflin Company. All rights reserved.<br />

178.<br />

179.<br />

tan 12<br />

100<br />

arctan <br />

12<br />

sin h 4<br />

tan 14 <br />

y<br />

37,000<br />

0.1194 or 6.84<br />

100<br />

h 4 sin0.1194 0.48 miles or 2534 feet (answer depends on angle<br />

⇒ y 37,000 tan 14 9225.1 feet<br />

tan 58 x y<br />

37,000 ⇒ x y 37,000 tan 58 59,212.4 feet 37,000<br />

14°<br />

x 59,212.4 9225.1 49,987.2 feet<br />

The towns are approximately 50,000 feet apart or 9.47 miles.<br />

h<br />

4<br />

θ<br />

<br />

x<br />

accuracy)<br />

32°<br />

76°<br />

58°<br />

y


376 <strong>Chapter</strong> 4 Trigonometric Functions<br />

180.<br />

sin 48 d 1<br />

650 ⇒ d 1 483 <br />

cos 25 d d 1 d 2 1217<br />

2<br />

810 ⇒ d 2 734 W 48°<br />

48°<br />

cos 48 d 3<br />

650 ⇒ d 3 435<br />

sin 25 d 4<br />

810 ⇒ d 4 342<br />

tan 93<br />

1217 ⇒<br />

sec 4.4 <br />

D<br />

1217<br />

4.4<br />

⇒ D 1217 sec 4.4 1221<br />

The distance is 1221 miles and the bearing is N 85.6 E.<br />

<br />

d 3 d 4 93<br />

N<br />

B<br />

65° 25°<br />

d 810 d 4<br />

3 650<br />

D C<br />

A<br />

θ<br />

d1 d2<br />

S<br />

E<br />

181. Use cosine model with amplitude 3 feet.<br />

Period: 15 seconds<br />

y 3 cos <br />

2<br />

15 t <br />

183. False. y sin is a function, but it is not<br />

one-to-one.<br />

182. Use a cosine model with amplitude<br />

Period: 3 seconds<br />

y 0.75 cos <br />

2<br />

3 t <br />

1.5<br />

2 0.75.<br />

184. False. The sine and cosine functions are useful for<br />

modeling simple harmonic motion.<br />

185.<br />

tan 0.672s 2<br />

3000<br />

(a)<br />

s 10 20 30 40 50 60<br />

1.28 5.12 11.40 19.72 29.25 38.88<br />

<br />

(b)<br />

186. (a)<br />

<br />

−<br />

increases at an increasing rate. The function is not linear.<br />

10<br />

−10<br />

<br />

(b) Next term:<br />

x 9<br />

9<br />

arctan x x x3<br />

3 x5<br />

5 x7<br />

7 x9<br />

9<br />

The accuracy of the approximation<br />

increases as more terms are added.<br />

−<br />

10<br />

−10<br />

<br />

© Houghton Mifflin Company. All rights reserved.


Practice Test for <strong>Chapter</strong> 4 377<br />

<strong>Chapter</strong> 4<br />

Practice Test<br />

1. Express 350 in radian measure.<br />

2. Express 59 in degree measure.<br />

3. Convert 135 14 12 to decimal form.<br />

4. Convert 22.569 to D M S form.<br />

5. If cos 2 3 ,6. use the trigonometric identities to<br />

Find given sin 0.9063.<br />

find tan .<br />

<br />

7. Solve for x in the figure below.<br />

8. Find the magnitude of the reference angle for<br />

65.<br />

35<br />

20°<br />

x<br />

9. Evaluate csc 3.92. 10. Find sec given that lies in Quadrant III and<br />

tan 6.<br />

<br />

11. Graph y 3 sin x 2 . 12. Graph y 2 cosx .<br />

13. Graph y tan 2x. 14. Graph y csc x <br />

15. Graph y 2x sin x, using a graphing calculator. 16. Graph y 3x cos x, using a graphing calculator.<br />

<br />

4 .<br />

17. Evaluate arcsin 1. 18. Evaluate arctan3.<br />

19. Evaluate sin arccos<br />

4<br />

35 . 20. Write an algebraic expression for cos arcsin x 4 .<br />

© Houghton Mifflin Company. All rights reserved.<br />

For Exercises 21–23, solve the right triangle.<br />

21. A 40, c 12 22.<br />

B 6.84, a 21.3 23. a 5, b 9<br />

24. A 20-foot ladder leans against the side of a barn. Find the height of the top<br />

of the ladder if the angle of elevation of the ladder is 67.<br />

A<br />

c<br />

b<br />

B<br />

a<br />

C<br />

25. An observer in a lighthouse 250 feet above sea level spots a ship off the shore.<br />

If the angle of depression to the ship is 5, how far out is the ship?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!