07.01.2014 Views

Presentation - Hazen and Sawyer

Presentation - Hazen and Sawyer

Presentation - Hazen and Sawyer

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UV Advanced Oxidation for<br />

Treatment of Taste <strong>and</strong> Odor<br />

<strong>and</strong> Algal Toxins<br />

Ohio AWWA Annual Conference<br />

Research Workshop<br />

September 20, 2011<br />

Erik Rosenfeldt, PE, PhD


2<br />

<strong>Presentation</strong> Agenda<br />

• Algae issues<br />

Taste <strong>and</strong> Odor<br />

Toxic Substances<br />

• Climate change impacts on algae events<br />

• UV Advanced Oxidation<br />

Fundamentals<br />

Treatment of taste <strong>and</strong> odor, toxins<br />

Comparisons with other technologies<br />

• Summary <strong>and</strong> Conclusions


3<br />

Algae Issues<br />

• Seasonal algae blooms present many problems<br />

for water utilities<br />

Depleted oxygen<br />

Turbidity<br />

Taste <strong>and</strong> Odor<br />

• Cyanobacteria<br />

“Blue-green” algae<br />

Not quite algae, not quite bacteria<br />

• Photosynthetic but lack well-defined nucleus<br />

Responsible for Taste <strong>and</strong> Odor compounds<br />

Create <strong>and</strong> may release toxic compounds


4<br />

Algal Taste <strong>and</strong> Odor Compounds<br />

• Methylisoborneol (MIB) <strong>and</strong> geosmin<br />

Musty/earthy odor detectable at low (5-10 ng/L levels)<br />

Non-toxic<br />

Released by cyanobacteria<br />

Not regulated, but public perception rules


Cyanotoxins<br />

5<br />

• Some blue-green can produce one or more toxins<br />

Do not produce toxins at all times<br />

• Toxins can affect<br />

Fish <strong>and</strong> other aquatic life<br />

Livestock<br />

Pets<br />

Humans<br />

• Exposure routes in humans<br />

Dermal<br />

Oral (water or food)<br />

Inhalation<br />

Dialysis<br />

• Included on US EPAs CCL3


6<br />

Cyanotoxins<br />

Species<br />

Aphanacapsa spp.<br />

Dermatoxin<br />

(Irritant)<br />

Hepatoxin (Liver)<br />

microcystins<br />

Neurotoxin<br />

(Nervous)<br />

Microcystis spp. microcystins, nodularin anatoxins<br />

Snowella spp.<br />

microcystins<br />

Taste/Odor<br />

Compound<br />

Synechococcus spp. microcystins MIB, Geosmin<br />

Woronichinia spp.<br />

microcystins<br />

Lyngbya spp. Lyngbyatoxins saxitoxins MIB<br />

Oscillatoria spp. Aplysiatoxins microcystins<br />

anatoxins,<br />

saxitoxins<br />

MIB, Geosmin<br />

Planktothrix agardhii Aplysiatoxins microcystins saxitoxins MIB, Geosmin<br />

Pseudoanabaena spp.<br />

Anabaena spp.<br />

Anabaenopsis elenkii<br />

Aphanizomenon spp.<br />

Cylindrospermopsis<br />

raciborskii<br />

Nordularia spp.<br />

microcystins,<br />

cylindrospermopsin<br />

microcystins<br />

microcystins,<br />

cylindrospermopsin<br />

cylindrospermopsin<br />

microcystins, nodularin<br />

anatoxins,<br />

saxitoxins<br />

anatoxins,<br />

saxitoxins<br />

saxitoxins<br />

MIB, Geosmin<br />

MIB, Geosmin<br />

Geosmin<br />

Tedesco et al, 2011


Cyanotoxin Occurrence<br />

7<br />

Indiana data<br />

• Yearly occurrence<br />

• Occurs during algal<br />

blooms<br />

Late summer, early fall<br />

• Toxins typically released<br />

during lysis<br />

Algae mitigation processes<br />

can make problem worse<br />

Tedesco et al, 2011


Cyanotoxins in Ohio<br />

8<br />

• Lake Erie <strong>and</strong> Gr<strong>and</strong> Lake<br />

St. Marys Algal Blooms<br />

• Last year: Ohio EPA testing<br />

revealed 0.23 <strong>and</strong> 0.16 ppb<br />

Microcystin in two treated<br />

drinking waters<br />

Lake Erie Source:<br />

• Potassium Permanganate, PAC, Lime Softening,<br />

Filtration, Chlorine<br />

Lake Erie Source:<br />

• Raw water filtration, Ozone, adsorption clarifier,<br />

chlorine disinfection


Cyanotoxins <strong>and</strong> Taste <strong>and</strong> Odor<br />

9<br />

• USGS 2010 study (ES&T<br />

44, 7361 – 7368)<br />

• Sampled 23 Midwest lakes<br />

Multiple toxin classes cooccurred<br />

in 48%<br />

Toxins <strong>and</strong> T&O co-occurred<br />

in 91%<br />

• No health risks during T&O<br />

outbreaks?


Climate Impacts on Algae<br />

10<br />

• Temperature<br />

Warmer temperatures encourage blooms (Pearl <strong>and</strong><br />

Huisman, 2008)<br />

Warmer temperatures increase the odor intensity of VOCs at<br />

very low concentrations, increasing consumer detection<br />

(Whelton et al., 2004)<br />

• Precipitation<br />

Long antecedent dry periods increase nutrient content of<br />

runoff<br />

Low rainfall can cause stagnant conditions in the watershed<br />

• Wind/storms<br />

Heavy storms <strong>and</strong> strong wind can mix reservoirs,<br />

reintroducing nutrients into the water column from bottom<br />

sediments


Northeast Climate Projections<br />

11<br />

• Temperature<br />

3° to 7°C temperature increase by<br />

2100 (Frumhoff et al, 2007)<br />

More frequent days over 35°C<br />

(Karl et al, 2009)<br />

• Precipitation<br />

5 to 10% increase, mostly in fall<br />

<strong>and</strong> winter (Frumhoff et al, 2007)<br />

• Storms<br />

Increasing trends in extreme<br />

precipitation (Spierre <strong>and</strong> Wake,<br />

2010)


What will OH’s climate look like?<br />

12<br />

Lower Emissions Scenario<br />

Higher Emissions Scenario<br />

2010 - 2039<br />

2040 - 2069<br />

2070 - 2090<br />

2010 - 2039<br />

2040 - 2069<br />

2070 - 2090<br />

Adapted from Frumhoff et al, 2007


13<br />

What can be done?<br />

• Algae blooms are getting more prevalent <strong>and</strong><br />

potentially more dangerous<br />

• Fortunately, algae typically only occur in the<br />

summer months<br />

• Several treatment processes are effective<br />

Activated Carbon<br />

• GAC<br />

• PAC<br />

Ozone<br />

UV Advanced Oxidation (UV AOP)


Advanced Oxidation Processes<br />

14<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

An effective process for disinfection <strong>and</strong><br />

chemical oxidation, capable of providing<br />

barriers for protecting public health <strong>and</strong><br />

improving public perception<br />

– Pharmaceuticals, Personal Care Products, EDCs<br />

– Crypto, Viruses, E. coli, etc.<br />

AOPs work by creating hydroxyl radicals (•OH)<br />

– •OH then blast away at organic chemicals<br />

Usually an expensive chemical process<br />

Complex chemistry<br />

UV Based AOPs<br />

■<br />

UV/H 2 O 2 , UV/O 3 , UV/HOCl, etc.<br />

Ozone Based AOPs<br />

■<br />

Ozone/H 2 O 2 , Ozone/NOM, Ozone/pH


15<br />

UV/H 2 O 2 AOP<br />

• H 2 O 2 absorbs UV energy <strong>and</strong><br />

degrades to 2 OH radicals<br />

• Only 1 OH radical per UV<br />

photon<br />

• Due to “water caging”<br />

Org<br />

•OH<br />

H 2 O 2<br />

•OH<br />

UV Absorbance of H 2 O 2<br />

ε (M -1 cm -1 )<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

200 220 240 260 280 300<br />

Wavelength (nm)<br />

Org<br />

H 2 O<br />

H 2 O 2 •OH •OH<br />

H 2 O 2<br />

H 2 O


Fundamentals – UV/H 2 O 2<br />

AOP<br />

16<br />

• AOP High powered<br />

oxidation of<br />

contaminants via OH<br />

radical intermediate<br />

OH radical is very<br />

reactive with “targets”<br />

OH radical is also<br />

reactive with<br />

“scavengers”<br />

Pollutant or<br />

Constituent<br />

OH radical rate<br />

constant (M -1 s -<br />

1<br />

)<br />

Reference<br />

MTBE<br />

Atrazine<br />

NDMA<br />

MIB<br />

Geosmin<br />

Bisphenol-A<br />

1.9x10 9<br />

3x10 9<br />

3.3x10 9<br />

8.2x10 9<br />

1.4x10 10<br />

1.02x10 10 Acero et al., 2001<br />

Acero et al., 2000<br />

Wink <strong>and</strong> Desrosiers, 1991<br />

Glaze et al., 1990<br />

Glaze et al., 1990<br />

Rosenfeldt <strong>and</strong> Linden, 2004<br />

17-β-Estradiolβ<br />

1.41x10 10 Rosenfeldt <strong>and</strong> Linden, 2004<br />

H 2 O 2 2.7x10 7 1988<br />

17-α-Ethinyl Estradiol 1.08x10 10 Rosenfeldt <strong>and</strong> Linden, 2004<br />

4-Nonylphenol<br />

5.65x10 9<br />

AWARF, 2006<br />

Para-Chlorobenzoic<br />

5x10 9<br />

Elovitz <strong>and</strong> von Gunten, 1999<br />

Acid<br />

3.9x10 9<br />

Buston et al., 1988<br />

Nitrobenzene<br />

9.7x10 9<br />

Buxton et al., 1988<br />

Methanol<br />

2.5x10 4 (L mg -1 s - Larson <strong>and</strong> Zepp, 1988<br />

NOM (TOC)<br />

1<br />

)<br />

Hoigne et al., 1985; Buxton et al,<br />

HCO<br />

-<br />

3 8.5x10 6<br />

1988<br />

CO<br />

-2<br />

3 3.9x10 8 Hoigne et al., 1985; Buxton et al.,<br />

Buxton et al., 1988


Differences between UV<br />

disinfection <strong>and</strong> AOP<br />

• Some fundamental differences in<br />

Levels of Applied UV Energy<br />

Fundamental Mechanisms<br />

UV Dose (ie what does it mean?)<br />

• Different “Targets”<br />

17<br />

Disinfection Photolysis AOP


UV AOP for Taste <strong>and</strong> Odor<br />

18<br />

UV Photolysis<br />

UV Advanced Oxidation<br />

Rosenfeldt <strong>and</strong> Linden, 2005<br />

UV Advanced Oxidation<br />

for Geosmin Oxidation<br />

at Cornwall, ON<br />

TrojanUV, 2010


UV AOP for Algal Toxins<br />

UV <strong>and</strong> UV AOP for m-LR destruction<br />

UV AOP for MIB <strong>and</strong> algal toxins at<br />

Cornwall, ON<br />

19<br />

Approximate<br />

Geosmin<br />

removal<br />

Alvarez et al, 2010<br />

UV <strong>and</strong> UV AOP for m-RR destruction<br />

TrojanUV, 2010<br />

Qiao et al, 2005


Taste <strong>and</strong> Odor as a surrogate for toxin<br />

oxidation?<br />

20<br />

• Characteristics of a good surrogate<br />

Co-occurrence (Graham et al, 2010)<br />

• Microcystin co-occurred with geosmin in 87% of blooms, with MIB<br />

in 39%.<br />

• Anatoxin-a co-occurred with geosmin in 100% of blooms, with MIB<br />

in 43%.<br />

Similar trends of occurrence (Graham et al, 2010)<br />

• Although toxins <strong>and</strong> T&O frequently co-occurred, concentrations<br />

were not strongly correlated (r < 0.4, p > 0.1)<br />

• Not surprising because they are not produced by the same<br />

biochemical pathways<br />

Surrogate is conservative<br />

• Microcystin LR <strong>and</strong> Anatoxin degraded faster than MIB, but not<br />

geosmin


Why UV AOP makes some sense<br />

21<br />

• “Instant-on” technology<br />

• Effective Disinfection / Innovative Technology<br />

• Comparable replacement for other T&O treatment<br />

processes<br />

Pantin, 2009


Why UV AOP makes some sense<br />

Cornwall, ON<br />

• Trojan UV Swift TM ECT Reactors (MP technology)<br />

UV system serves in disinfection mode” most of the year (4 of 8 lamps<br />

running)<br />

Can “ramp-up” to AOP conditions seasonally (8 lamps running, add H 2 O 2 )<br />

22<br />

• 5 operational levels UV dose ~ 400 – 60 mJ/cm<br />

2<br />

– H 2 O 2 varies 1, 2, 4, 8, 15 mg/L<br />

UV AOP replaces GAC filter<br />

caps for T&O control<br />

($100,000/yr for GAC<br />

replacement).<br />

UV provides excellent<br />

disinfection barrier<br />

Pantin, 2009


Why UV AOP makes some sense<br />

23<br />

Neshaminy Water Treatment Plant<br />

Civardi <strong>and</strong> Lucca, 2010 (OAWWA <strong>and</strong> Tricon) compared<br />

costs <strong>and</strong> carbon footprint for 20 year design life<br />

• 15 MGD Plant, Desired 1 log removal of “Geosmin <strong>and</strong> MIB”<br />

• Assume 90 days per year of use (each is “instant-on”)<br />

UV-H 2 O 2 AOP<br />

PAC<br />

Capital $2.5 mil $2.2 mil<br />

O&M $200,000 $310,000<br />

Equivalent Uniform<br />

Annual Cost (4%)<br />

$384,000 $475,000<br />

Civardi <strong>and</strong> Lucca, 2010


24<br />

Why UV AOP makes some sense<br />

• Byproducts?<br />

In most cases, this is a major impact on AOP feasibility<br />

• Eg: Estrogenic activity of BPA goes away slower than BPA<br />

H 3 C<br />

CH 3<br />

HO<br />

OH<br />

BPA


Byproducts<br />

25<br />

• In the case of UV AOP treatment of taste <strong>and</strong> odor <strong>and</strong><br />

toxins, the story is simpler…<br />

Taste <strong>and</strong> odor <strong>and</strong> toxic action are very dependent on molecular<br />

structure<br />

Small changes in structure (ie oxidation, phototransformation, etc.)<br />

will likely diminish toxicity significantly<br />

Anatoxin-a<br />

250 µg/kg<br />

Anatoxin-a(S)<br />

20 µg/kg<br />

MIB<br />

No toxicity


Wrap Up<br />

26<br />

• Algal toxins <strong>and</strong> algae related taste <strong>and</strong> odor<br />

outbreaks are both caused by seasonal,<br />

cyanobacteria outbreaks<br />

• Recent research has indicated that presence of<br />

taste <strong>and</strong> odor (geosmin particularly), correlates<br />

well with presence of algal toxins<br />

• UV Advanced Oxidation effectively degrades both<br />

T&O <strong>and</strong> algal toxins<br />

In general, MIB < Geosmin ~ Anatoxin


Parting thought…<br />

27<br />

“Drinking water purveyors frequently tell customers<br />

during taste-<strong>and</strong>-odor outbreaks that there are no<br />

health risks. In our study, however, taste-<strong>and</strong>-odor<br />

causing compounds were always accompanied by<br />

cyanotoxins, highlighting the need for water<br />

purveyors to increase cyanotoxin surveillance during<br />

taste-<strong>and</strong>-odor outbreaks so that treatment can be<br />

modified accordingly, <strong>and</strong> to verify that cyanotoxins<br />

are not present at or above thresholds of potential<br />

health risk.”<br />

Graham et al, 2010


28<br />

Questions?<br />

Erik Rosenfeldt, P.E., PhD<br />

<strong>Hazen</strong> & <strong>Sawyer</strong> Fairfax<br />

703-537-7920<br />

571-505-6601<br />

erosenfeldt@hazen<strong>and</strong>sawyer.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!