08.01.2014 Views

Tunnel Intersection in Combined Anatomic Reconstruction ... - Healio

Tunnel Intersection in Combined Anatomic Reconstruction ... - Healio

Tunnel Intersection in Combined Anatomic Reconstruction ... - Healio

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

n the cutt<strong>in</strong>g edge<br />

Section Editor: Bennie G.P. L<strong>in</strong>deque, MD<br />

<strong>Tunnel</strong> <strong>Intersection</strong> <strong>in</strong> Comb<strong>in</strong>ed<br />

<strong>Anatomic</strong> <strong>Reconstruction</strong> of the ACL<br />

and Posterolateral Corner<br />

Steven J. Narvy, MD; Michael P. Hall, MD; Ronald S. Kvitne, MD; James E. Tibone, MD<br />

Abstract: Femoral tunnel <strong>in</strong>tersection <strong>in</strong> comb<strong>in</strong>ed anterior cruciate<br />

ligament and posterolateral corner reconstruction has been<br />

reported to be high. The purpose of this study was to exam<strong>in</strong>e the<br />

risk of <strong>in</strong>tersection between an anatomic femoral anterior cruciate<br />

ligament tunnel created with a retrograde ream<strong>in</strong>g device and<br />

femoral lateral collateral ligament reconstruction tunnels of vary<strong>in</strong>g<br />

trajectory <strong>in</strong> a synthetic femur model.<br />

Injuries to the posterolateral<br />

corner (PLC) of the knee are<br />

<strong>in</strong>frequent but can cause severe<br />

disability due to damage<br />

to the articular cartilage and<br />

persistent <strong>in</strong>stability. 1 Although<br />

<strong>in</strong>jury to the posterolateral<br />

structures can occur <strong>in</strong> isolation,<br />

coexist<strong>in</strong>g <strong>in</strong>jury to other<br />

structures, such as the menisci<br />

or the cruciate ligaments, is<br />

common. 2-4 Unrecognized<br />

posterolateral rotatory <strong>in</strong>stability<br />

has been shown to be a<br />

major cause of anterior cruciate<br />

ligament (ACL) reconstruction<br />

failure. 1,5,6 This has led to an <strong>in</strong>creased<br />

awareness of comb<strong>in</strong>ed<br />

<strong>in</strong>juries and <strong>in</strong>creased numbers<br />

of comb<strong>in</strong>ed ACL and PLC reconstructions.<br />

Numerous authors have<br />

published various surgical<br />

techniques for PLC reconstruction.<br />

3,7-18 Many tunnel configurations<br />

have been proposed,<br />

<strong>in</strong>clud<strong>in</strong>g a neutral lateral tunnel<br />

orig<strong>in</strong>at<strong>in</strong>g at the isometric po<strong>in</strong>t<br />

of the lateral epicondyle 14,15 and<br />

tunnels orig<strong>in</strong>at<strong>in</strong>g from the anatomic<br />

orig<strong>in</strong> of the lateral collateral<br />

ligament (LCL). 19<br />

The authors are from the Department of Orthopaedic Surgery (SJN,<br />

JET), Keck School of Medic<strong>in</strong>e, University of Southern California; and the<br />

Kerlan-Jobe Orthopaedic Cl<strong>in</strong>ic (MPH, RSK, JET), Los Angeles, California.<br />

The authors have no relevant f<strong>in</strong>ancial relationships to disclose.<br />

Correspondence should be addressed to: Ronald S. Kvitne, MD, Kerlan-<br />

Jobe Orthopaedic Cl<strong>in</strong>ic, 6801 Park Terrace, Los Angeles, CA 90045<br />

(drkvitne@aol.com).<br />

doi: 10.3928/01477447-20130624-07<br />

In the sett<strong>in</strong>g of comb<strong>in</strong>ed<br />

ligament reconstruction procedures,<br />

the close proximity of<br />

ACL and LCL tunnels <strong>in</strong> the<br />

lateral femoral condyle can<br />

cause bone weaken<strong>in</strong>g and tunnel<br />

collision, particularly when<br />

perform<strong>in</strong>g double-bundle<br />

ACL reconstruction. 20,21 This<br />

can compromise graft function.<br />

Accord<strong>in</strong>gly, the safest LCL<br />

tunnel trajectory has been recommended<br />

to avoid any proximal<br />

angulation <strong>in</strong> the coronal<br />

plane. 4,6 However, when creat<strong>in</strong>g<br />

a concomitant, parallel<br />

tunnel for a popliteal tendon<br />

reconstruction, this trajectory<br />

may risk damage to the articular<br />

cartilage of the lateral femoral<br />

condyle or trochlea. 6 In addition,<br />

this contradicts several<br />

popular PLC reconstruction<br />

techniques that recommend<br />

proximal and anterior angulation<br />

of both tunnels. 7,22<br />

The accuracy of ACL tunnel<br />

placement is also important <strong>in</strong><br />

comb<strong>in</strong>ed ligament reconstruction.<br />

Gaditoka et al 23 recently<br />

compared transtibial ACL tunnel<br />

creation to outside-<strong>in</strong> and<br />

anteromedial portal techniques<br />

<strong>in</strong> a cadaver model and noted<br />

statistically significant improvements<br />

<strong>in</strong> the percentage of<br />

coverage of the ACL footpr<strong>in</strong>t<br />

by the femoral tunnel with the<br />

anteromedial portal and outside<strong>in</strong><br />

techniques. The center of the<br />

outside-<strong>in</strong> tunnel was found to<br />

most closely replicate the center<br />

of the ACL footpr<strong>in</strong>t. In addition,<br />

the exit po<strong>in</strong>t of outside-<strong>in</strong><br />

tunnels on the lateral femoral<br />

condyle was farther away from<br />

the LCL orig<strong>in</strong> (particularly <strong>in</strong><br />

the anterior direction) than the<br />

anteromedial portal tunnels.<br />

This <strong>in</strong>creased ability of outside-<strong>in</strong><br />

tunnel creation to replicate<br />

the center of the ACL footpr<strong>in</strong>t<br />

and to better control tunnel<br />

trajectory relative to the lateral<br />

epicondyle may be cl<strong>in</strong>ically<br />

relevant <strong>in</strong> the reconstruction of<br />

a multiligament-<strong>in</strong>jured knee.<br />

The purpose of this study<br />

was to exam<strong>in</strong>e the risk of <strong>in</strong>tersection<br />

between an anatomic<br />

femoral ACL tunnel created<br />

with an outside-<strong>in</strong> ream<strong>in</strong>g device<br />

(FlipCutter; Arthrex, Inc,<br />

Naples, Florida) and femoral<br />

LCL reconstruction tunnels of<br />

vary<strong>in</strong>g trajectory <strong>in</strong> a synthetic<br />

femur model and to identify the<br />

best trajectory for safe tunnel<br />

JULY 2013 | Volume 36 • Number 7 529


n the cutt<strong>in</strong>g edge<br />

2A<br />

Figure 2: Anterior (axial) (A) and proximal (coronal) (B) angulation of the lateral collateral ligament tunnel.<br />

2B<br />

Figure 1: Photograph show<strong>in</strong>g the anterior cruciate<br />

ligament tunnel.<br />

placement. The authors hypothesized<br />

that us<strong>in</strong>g a retrograde<br />

ACL tunnel creation technique<br />

would reduce the risk of tunnel<br />

<strong>in</strong>tersection and allow for a<br />

greater range of acceptable tunnel<br />

positions.<br />

Materials and Methods<br />

Eighteen solid foam synthetic<br />

femurs (Pacific Research<br />

Laboratories, Inc, Vachon,<br />

Wash<strong>in</strong>gton) were used as the<br />

model for tunnel creation. N<strong>in</strong>e<br />

were size large (36-mm lateral<br />

femoral condyle), and 9 were<br />

size medium (28-mm lateral<br />

femoral condyle). These synthetic<br />

femurs were mounted<br />

proximally to a custom-made<br />

frame, and anatomic ACL tunnels<br />

were drilled retrograde<br />

from the ACL footpr<strong>in</strong>t us<strong>in</strong>g<br />

the FlipCutter set at 110°<br />

and angled 45° anterior <strong>in</strong> the<br />

axial plane (Figure 1). Entry<br />

po<strong>in</strong>ts on the lateral femoral<br />

cortex were standardized at<br />

4 cm proximal to the articular<br />

surface <strong>in</strong> the midpo<strong>in</strong>t <strong>in</strong><br />

1<br />

the anteroposterior<br />

plane of the femur<br />

(just anterior to the<br />

superiormost aspect<br />

of the lateral<br />

epicondyle), and<br />

drill<strong>in</strong>g angle was<br />

confirmed us<strong>in</strong>g a goniometer.<br />

Several studies have noted <strong>in</strong>creased<br />

tunnel collision with<br />

30 mm ACL tunnels compared<br />

with 25 mm tunnels 4,6 ; a 10-mm<br />

tunnel was therefore reamed<br />

to 25 mm deep us<strong>in</strong>g the calibration<br />

mechanism on the<br />

FlipCutter to prevent confound<strong>in</strong>g<br />

due to tunnel depth.<br />

Lateral collateral ligament<br />

tunnels were then created at the<br />

anatomic proximal attachment<br />

of the LCL (1.4 mm proximal<br />

and 3.1 mm posterior to the<br />

lateral epicondyle). 19 Previous<br />

studies have shown that lateral<br />

tunnel trajectories greater than<br />

40° <strong>in</strong> either the axial plane or<br />

coronal plane can result <strong>in</strong> elliptical<br />

tunnels and th<strong>in</strong>ned cortices<br />

about the tunnel open<strong>in</strong>g 4 ;<br />

accord<strong>in</strong>gly, tunnel trajectories<br />

were limited to this range. From<br />

the LCL start<strong>in</strong>g po<strong>in</strong>t, 8-mm<br />

tunnels were drilled to a depth of<br />

25 mm at either 0°, 20°, or 40°<br />

of angulation <strong>in</strong> either the proximal<br />

plane or the anterior plane<br />

(Figure 2). Specimens without<br />

obvious tunnel convergence underwent<br />

computed tomography<br />

(CT) scan with 3-dimensional<br />

reconstruction (2-mm cuts)<br />

(Aquilion16; Toshiba Medical<br />

Systems, Tust<strong>in</strong>, California) to<br />

determ<strong>in</strong>e the distance between<br />

the created tunnels or to determ<strong>in</strong>e<br />

whether an occult tunnel<br />

collision existed (Figures 3, 4).<br />

Radiographic measurements<br />

were conducted us<strong>in</strong>g the computer’s<br />

straight-l<strong>in</strong>e measur<strong>in</strong>g<br />

tool to determ<strong>in</strong>e the tangent<br />

distance between the created<br />

tunnels.<br />

Results<br />

Overall frequency of tunnel<br />

<strong>in</strong>tersection was 3/9 (33%)<br />

<strong>in</strong> large femur specimens and<br />

5/9 (56%) <strong>in</strong> medium femur<br />

specimens (P5.34; x 2 ). Among<br />

specimens without tunnel <strong>in</strong>tersection,<br />

mean tunnel separation<br />

was 4.862.5 mm. Mean tunnel<br />

separation was 5.162.8 mm<br />

for the large-sized femora and<br />

4.362.0 mm for the mediumsized<br />

femora (P5.64; Student’s<br />

t test).<br />

At 0° of anterior angulation<br />

<strong>in</strong> the axial plane, 5 (83%)<br />

of 6 specimens were noted to<br />

have tunnel <strong>in</strong>tersection. At<br />

20° of anterior angulation, 3<br />

(50%) of 6 tunnels <strong>in</strong>tersected.<br />

Mean tunnel separation among<br />

the rema<strong>in</strong><strong>in</strong>g specimens was<br />

4.261.5 mm. No <strong>in</strong>tersection<br />

occurred with LCL tunnels created<br />

with 40° of anterior angulation,<br />

with a mean separation of<br />

5.762.6 mm.<br />

At 0° of proximal angulation,<br />

1 (17%) of 6 specimens<br />

experienced tunnel <strong>in</strong>tersection.<br />

Increas<strong>in</strong>g degrees of<br />

proximal angulation to 20° and<br />

40° produced a 50% and 66%<br />

rate of tunnel <strong>in</strong>tersection, respectively.<br />

At these higher degrees<br />

of proximal angulation,<br />

high concomitant anterior angulation<br />

to 40° prevented tunnel<br />

<strong>in</strong>tersection <strong>in</strong> both medium<br />

and large specimens.<br />

Maximum tunnel separation<br />

was noted at 40° of anterior<br />

angulation and 0° of proximal<br />

angulation (9.6 mm <strong>in</strong> the<br />

large femur and 7.2 mm <strong>in</strong> the<br />

medium femur). However, the<br />

guide p<strong>in</strong> used to drill the LCL<br />

tunnel at this trajectory violated<br />

the trochlea <strong>in</strong> both medium and<br />

large specimens (Table).<br />

Discussion<br />

This study demonstrates a<br />

decreased risk of tunnel <strong>in</strong>tersection<br />

with greater anterior<br />

angulation and an <strong>in</strong>creased<br />

risk of tunnel <strong>in</strong>tersection with<br />

530 ORTHOPEDICS | <strong>Healio</strong>.com/Orthopedics


n the cutt<strong>in</strong>g edge<br />

Table<br />

<strong>Tunnel</strong> Trajectory Results<br />

Figure 3: Computed tomography scan show<strong>in</strong>g<br />

divergent tunnels.<br />

Figure 4: Computed tomography scan show<strong>in</strong>g<br />

tunnel collision.<br />

3<br />

4<br />

Specimen<br />

No.<br />

Femur<br />

Size<br />

PLC Angle, deg<br />

Anterior<br />

Proximal<br />

Collision<br />

Separation<br />

on CT, mm<br />

1 Large 0 0 No 1.8<br />

2 Large 0 20 Yes<br />

3 Large 0 40 Yes<br />

4 Large 20 0 No 5.9<br />

5 Large 20 20 No 3.4<br />

6 Large 20 40 Yes<br />

Notes<br />

7 Large 40 0 No 9.6 Trochlea<br />

violated<br />

8 Large 40 20 No 6.7<br />

9 Large 40 40 No 3.4<br />

10 Medium 0 0 Yes<br />

11 Medium 0 20 Yes<br />

12 Medium 0 40 Yes<br />

13 Medium 20 0 No 3.2<br />

14 Medium 20 20 Yes<br />

15 Medium 20 40 Yes<br />

16 Medium 40 0 No 7.2 Trochlea<br />

violated<br />

17 Medium 40 20 No 4.4<br />

18 Medium 40 40 No 2.6<br />

Abbreviation: CT, computed tomography; deg, degrees; PLC, posterolateral corner.<br />

greater proximal angulation.<br />

These f<strong>in</strong>d<strong>in</strong>gs were particularly<br />

important <strong>in</strong> the mediumsized<br />

femora, which had overall<br />

higher rates of <strong>in</strong>tersection,<br />

likely due to the smaller available<br />

volume for travers<strong>in</strong>g tunnels.<br />

However, proximal angulation<br />

greater than 20° did not<br />

produce tunnel collision to the<br />

same extent as has been previously<br />

described. Proximal angulation<br />

of 20° or more was a<br />

safe configuration <strong>in</strong> the large<br />

femur when comb<strong>in</strong>ed with 20°<br />

of anterior angulation and was<br />

safe <strong>in</strong> both femur sizes when<br />

comb<strong>in</strong>ed with 40° of anterior<br />

angulation.<br />

Two studies have previously<br />

evaluated tunnel collision<br />

<strong>in</strong> comb<strong>in</strong>ed ACL–PLC<br />

reconstruction us<strong>in</strong>g synthetic<br />

femur models with study designs<br />

similar to that of the current<br />

study. Shuler et al 4 evaluated<br />

tunnel placement <strong>in</strong> 11<br />

synthetic femurs. The ACL<br />

tunnel was placed <strong>in</strong> a standard<br />

manner but appeared to be nonanatomic<br />

on imag<strong>in</strong>g, with the<br />

<strong>in</strong>tra-articular tunnel aperture<br />

centered over the footpr<strong>in</strong>t of<br />

the anteromedial bundle rather<br />

than between the anteromedial<br />

and posterolateral bundle footpr<strong>in</strong>ts.<br />

The LCL <strong>in</strong>sertion po<strong>in</strong>t<br />

was anatomically located on<br />

the synthetic femurs, and then<br />

tunnels of vary<strong>in</strong>g axial and<br />

coronal angulation (0°-60°)<br />

were drilled from this start<strong>in</strong>g<br />

po<strong>in</strong>t. The authors found that<br />

<strong>in</strong>creas<strong>in</strong>g the axial trajectory<br />

of the lateral tunnel from 0° to<br />

40° was protective aga<strong>in</strong>st tunnel<br />

collision and demonstrated<br />

that tunnel separation distance<br />

<strong>in</strong>creased directly with axial<br />

angulation. Coronal angulation<br />

greater than 20° produced tunnel<br />

collision <strong>in</strong> all specimens.<br />

In a separate arm of the study,<br />

the authors compared LCL tunnels<br />

drilled at 40° anterior/0°<br />

proximal to control tunnels<br />

drilled at 0° anterior/0° proximal<br />

<strong>in</strong> 7 matched cadaver knees<br />

and noted a 29% collision rate<br />

with the more anterior tunnels<br />

compared with 43% <strong>in</strong> the control<br />

group. The authors concluded<br />

that the safest configuration<br />

for tunnel placement was<br />

40° anterior and 0° proximal. 4<br />

Camarda et al 6 performed a<br />

similar study of tunnel placement<br />

when the ACL was reconstructed<br />

us<strong>in</strong>g only the<br />

posterolateral bundle tunnel of<br />

a double-bundle technique concomitantly<br />

with reconstruction<br />

of the lateral collateral ligament<br />

<strong>in</strong> 36 synthetic femurs (18 large<br />

and 18 medium). As <strong>in</strong> the current<br />

study, 9 different guidewire<br />

JULY 2013 | Volume 36 • Number 7 531


n the cutt<strong>in</strong>g edge<br />

orientations <strong>in</strong> the anterior and<br />

proximal planes were created at<br />

20° <strong>in</strong>tervals for the LCL tunnel.<br />

6 Similar to Shuler et al, 4 the<br />

authors demonstrated a significantly<br />

higher rate of tunnel collision<br />

with proximal angulation<br />

greater than 20°. No collisions<br />

were noted when the LCL tunnel<br />

was reamed at 0° of proximal<br />

angulation, irrespective of<br />

anterior trajectory. 6<br />

Also similar to Shuler et<br />

al, 4 the current authors noted<br />

maximal tunnel separation at<br />

40° anterior and 0° proximal.<br />

This configuration resulted <strong>in</strong><br />

violation of the trochlea <strong>in</strong> both<br />

medium and large specimens,<br />

although proximal angulation<br />

to 20° at the same anterior trajectory<br />

produced satisfactory<br />

tunnel separation. This f<strong>in</strong>d<strong>in</strong>g<br />

suggests that proximal angulation<br />

may be protective of the<br />

trochlea when comb<strong>in</strong>ed with<br />

significant anterior angulation.<br />

However, the limitations of<br />

this laboratory model must be<br />

appreciated <strong>in</strong> mak<strong>in</strong>g this determ<strong>in</strong>ation.<br />

Variability of human<br />

femoral condyle size can<br />

greatly affect the risk of tunnel<br />

collision, and although 2 sizes<br />

of synthetic femur were used<br />

<strong>in</strong> the current study, <strong>in</strong> vivo<br />

tunnel creation may produce<br />

different f<strong>in</strong>d<strong>in</strong>gs. Similarly,<br />

<strong>in</strong> vivo retrograde ream<strong>in</strong>g is<br />

based on <strong>in</strong>tra-articular landmarks<br />

from the footpr<strong>in</strong>t of<br />

the ACL, which was not present<br />

<strong>in</strong> this sawbones model.<br />

Us<strong>in</strong>g a handheld goniometer<br />

for lateral tunnel placement<br />

may have an <strong>in</strong>creased risk<br />

of variability compared with<br />

a well-controlled jig. Most<br />

importantly, the small sample<br />

size limits the generalizability<br />

of the current results to <strong>in</strong><br />

vivo reconstructive procedures.<br />

Nonetheless, this study demonstrates<br />

the technical feasibility<br />

of a comb<strong>in</strong>ed ACL-PLC reconstruction<br />

us<strong>in</strong>g a retrograde<br />

ream<strong>in</strong>g device <strong>in</strong> a laboratory<br />

model. Increas<strong>in</strong>g anterior angulation<br />

when comb<strong>in</strong>ed with<br />

25-mm LCL tunnels may help<br />

avoid tunnel <strong>in</strong>tersection when<br />

perform<strong>in</strong>g such comb<strong>in</strong>ed<br />

procedures, particularly <strong>in</strong><br />

smaller-sized femora.<br />

Conclusion<br />

The results of this study provide<br />

evidence for safe LCL tunnel<br />

creation when us<strong>in</strong>g retrograde<br />

ACL ream<strong>in</strong>g techniques<br />

<strong>in</strong> comb<strong>in</strong>ed ACL and PLC reconstruction.<br />

Forty degrees of<br />

anterior angulation of the LCL<br />

tunnel produced the lowest risk<br />

of tunnel collision but at the risk<br />

of trochlear violation without<br />

concomitant proximal angulation.<br />

Therefore, optimal tunnel<br />

orientation is recommended at<br />

40° of anterior angulation and<br />

20° of proximal angulation.<br />

References<br />

1. Covey DC. Injuries of the posterolateral<br />

corner of the knee.<br />

J Bone Jo<strong>in</strong>t Surg Am. 2001;<br />

83(1):106-118.<br />

2. LaPrade RF, Wentorf FA, Fritts<br />

H, Gundry C, Hightower CD. A<br />

prospective magnetic resonance<br />

imag<strong>in</strong>g study of the <strong>in</strong>cidence<br />

of posterolateral and multiple<br />

ligament <strong>in</strong>juries <strong>in</strong> acute knee<br />

<strong>in</strong>juries present<strong>in</strong>g with a hemarthrosis.<br />

Arthroscopy. 2007;<br />

23(12):1341-1347.<br />

3. Lee SH, Jung YB, Jung HJ, Song<br />

KS, Ko YB. Comb<strong>in</strong>ed reconstruction<br />

for posterolateral rotatory<br />

<strong>in</strong>stability with anterior cruciate<br />

ligament <strong>in</strong>juries of the knee.<br />

Knee Surg Sports Traumatol Arthrosc.<br />

2010; 18(9):1219-1225.<br />

4. Shuler MS, Jasper LE, Rauh PB,<br />

Mulligan ME, Moorman CT<br />

III. <strong>Tunnel</strong> convergence <strong>in</strong> comb<strong>in</strong>ed<br />

anterior cruciate ligament<br />

and posterolateral corner reconstruction.<br />

Arthroscopy. 2006;<br />

22(2):193-198.<br />

5. LaPrade RF, Hamilton CD,<br />

Engebretsen L. Treatment of<br />

acute and chronic comb<strong>in</strong>ed anterior<br />

cruciate ligament and posterolateral<br />

knee ligament <strong>in</strong>juries.<br />

Sports Med Arthrosc Rev. 1997;<br />

5:91-99.<br />

6. Camarda L, D’Arienzo M, Patera<br />

GP, Filosto L, LaPrade<br />

RF. Avoid<strong>in</strong>g tunnel collisions<br />

between fibular collateral ligament<br />

and ACL posterolateral<br />

bundle reconstruction. Knee Surg<br />

Sports Traumatol Arthrosc. 2011;<br />

19(4):598-603.<br />

7. LaPrade RF, Johansen S, Wentorf<br />

FA, Engebretsen L, Esterberg JL,<br />

Tso A. An analysis of an anatomical<br />

posterolateral knee reconstruction:<br />

an <strong>in</strong> vitro biomechanical<br />

study and development of a<br />

surgical technique. Am J Sports<br />

Med. 2004; 32(6):1405-1414.<br />

8. Stannard JP, Brown SL, Rob<strong>in</strong>son<br />

JT, McGw<strong>in</strong> G, Volgas DA.<br />

<strong>Reconstruction</strong> of the posterolateral<br />

corner of the knee. Arthroscopy.<br />

2005; 21(9):1051-1059.<br />

9. Bicos J, Arciero RA. Novel approach<br />

for reconstruction of the<br />

posterolateral corner us<strong>in</strong>g a free<br />

tendon graft technique. Sports<br />

Med Arthrosc. 2006; 14(1):28-<br />

36.<br />

10. Larson RV. Isometry of the lateral<br />

collateral and popliteofibular<br />

ligaments and techniques for<br />

reconstruction us<strong>in</strong>g a free semitend<strong>in</strong>osus<br />

tendon graft. Oper<br />

Tech Sports Med. 2001; 9:84-90.<br />

11. Simonian PT. Operative treatment<br />

of posterolateral knee <strong>in</strong>stability.<br />

Oper Tech Sports Med.<br />

2001; 9:76-83.<br />

12. Yoon KH, Bae DK, Ha JH, Park<br />

SW. <strong>Anatomic</strong> reconstructive<br />

surgery for posterolateral <strong>in</strong>stability<br />

of the knee. Arthroscopy.<br />

2006; 22(2):159-165.<br />

13. Latimer HA, Tibone JE, ElAttrache<br />

NS, McMahon PJ. <strong>Reconstruction</strong><br />

of the lateral collateral<br />

ligament of the knee with patellar<br />

tendon allograft. Report of a new<br />

technique <strong>in</strong> comb<strong>in</strong>ed ligament<br />

<strong>in</strong>juries. Am J Sports Med. 1998;<br />

26(5):656-662.<br />

14. Kocabey Y, Nawab A, Caborn<br />

DN, Nyland J. Posterolateral corner<br />

reconstruction us<strong>in</strong>g a hamstr<strong>in</strong>g<br />

allograft and a bioabsorbable<br />

tenodesis screw: description<br />

of a new surgical technique.<br />

Arthroscopy. 2004; 20(suppl<br />

2):159-163.<br />

15. Verma NN, Mithöfer K, Battaglia<br />

M, MacGillivray J. The dock<strong>in</strong>g<br />

technique for posterolateral<br />

corner corner reconstruction. Arthroscopy.<br />

2005; 21(2):238-242.<br />

16. McGuire DA, Wolchok JC. Posterolateral<br />

corner reconstruction.<br />

Arthroscopy. 2003; 19(7):790-<br />

793.<br />

17. Sekiya JK, Kurtz CA. Posterolateral<br />

corner reconstruction of the<br />

knee: surgical technique utiliz<strong>in</strong>g<br />

a bifid Achilles tendon allograft<br />

and a double femoral tunnel. Arthroscopy.<br />

2005; 21(11):1400.<br />

18. Kim SJ, Park IS, Cheon YM, Ryu<br />

SW. New technique for chronic<br />

posterolateral <strong>in</strong>stability of the<br />

knee: posterolateral reconstruction<br />

us<strong>in</strong>g the tibialis posterior<br />

tendon allograft. Arthroscopy.<br />

2004; 20(suppl 2):195-200.<br />

19. LaPrade RF, Ly TV, Wentorf FA,<br />

Engebretsen L. The posterolateral<br />

attachments of the knee: a<br />

qualitative and quantitative morphologic<br />

analysis of the fibular<br />

collateral ligament, popliteus tendon,<br />

popliteofibular ligament, and<br />

lateral gastrocnemius tendon. Am<br />

J Sports Med. 2003; 31:854-860.<br />

20. Albright JP, Brown AW. Management<br />

of chronic posterolateral<br />

rotatory <strong>in</strong>stability of the<br />

knee: surgical technique for the<br />

posterolateral corner sl<strong>in</strong>g procedure.<br />

Instr Course Lect. 1998;<br />

47:369-378.<br />

21. Neven E, D’Hooghe P, Bellemans<br />

J. Double-bundle anterior<br />

cruciate ligament reconstruction:<br />

a cadaveric study on the posterolateral<br />

tunnel position and safety<br />

of the lateral structures. Arthroscopy.<br />

2008; 24(4):436-440.<br />

22. Arciero RA. <strong>Anatomic</strong> posterolateral<br />

corner knee reconstruction.<br />

Arthroscopy. 2005;<br />

21(9):1147.<br />

23. Gaditoka HR, Sim JA, Hosse<strong>in</strong>i<br />

A, Gill TJ, Li G. The relationship<br />

between femoral tunnels created<br />

by the transtibial, anteromedial<br />

portal, and outside-<strong>in</strong> techniques<br />

and the anterior cruciate ligament<br />

footpr<strong>in</strong>t. Am J Sports Med.<br />

2012; 40(4):882-888.<br />

532 ORTHOPEDICS | <strong>Healio</strong>.com/Orthopedics

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!