09.01.2014 Views

Schwarz-Christoffel Formula for Multiply Connected Domains

Schwarz-Christoffel Formula for Multiply Connected Domains

Schwarz-Christoffel Formula for Multiply Connected Domains

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

12 (2012), No. 2 <strong>Schwarz</strong>-<strong>Christoffel</strong> <strong>Formula</strong> <strong>for</strong> <strong>Multiply</strong> <strong>Connected</strong> <strong>Domains</strong> 459<br />

∑<br />

and summation of the results obtained (including 1 n<br />

2 m=1<br />

term) yields<br />

(32)<br />

ϕ k (z) = c k + 1 2<br />

<strong>for</strong> |z − a k | ≤ r k .<br />

n∑ ∑M m<br />

m=1 l=1<br />

∑ Mm<br />

l=1<br />

(<br />

β lm ln z lm − z<br />

z lm − w + ∑ ln z lm − z(k ∗ 1 )<br />

z<br />

k 1 ≠k lm − w(k ∗ 1 )<br />

+ ∑ k 1 ≠k<br />

+ ∑ k 1 ≠k<br />

∑<br />

ln z lm − z(k ∗ 2 k 1 )<br />

z lm − w ∗ k 2 ≠k 1<br />

(k 2 k 1 )<br />

∑<br />

k 2 ≠k 1<br />

∑<br />

ln z lm − z(k ∗ 3 k 2 k 1 )<br />

z<br />

k 3 ≠k lm − w ∗ 2 (k 3 k 2 k 1 )<br />

<strong>for</strong> the second<br />

)<br />

+ · · ·<br />

− ∑ (1 − iξ k1 ) ln a k 1<br />

− z<br />

a k1 − w − ∑ ∑<br />

(1 − iξ k2 ) ln a k 2<br />

− z(k ∗ 1 )<br />

a<br />

k 1 ≠k<br />

k 1 ≠k k 2 ≠k k2 − w ∗ 1 (k 1 )<br />

− ∑ ∑ ∑<br />

(1 − iξ k3 ) ln a k 3<br />

− z(k ∗ 2 k 1 )<br />

a k3 − w ∗ k 1 ≠k k 3 ≠k 2<br />

(k 2 k 1 )<br />

− ∑ k 1 ≠k<br />

k 2 ≠k 1<br />

∑<br />

∑<br />

k 2 ≠k 1 k 3 ≠k 2<br />

∑<br />

k 4 ≠k 3<br />

(1 − iξ k4 ) ln a k 4<br />

− z ∗ (k 3 k 2 k 1 )<br />

a k4 − w ∗ (k 3 k 2 k 1 )<br />

+ · · · ,<br />

6. Construction of f ′ (z)<br />

Substitute equation (32) <strong>for</strong> ϕ k in (25) and write the result <strong>for</strong> the function<br />

F (z; ξ 1 , ξ 2 , . . . , ξ n ) = exp(Ω(z)) in the <strong>for</strong>m of the infinite product<br />

{ ⎡<br />

n∏ ∏M m ( ) ( )<br />

βlm /2<br />

zlm − z<br />

n∏<br />

⎤ zlm − z ∗ βlm /2<br />

(k)<br />

(33) F (z; ξ 1 , ξ 2 , . . . , ξ n ) =<br />

⎣<br />

⎦<br />

z<br />

m=1<br />

lm − w<br />

z<br />

l=1<br />

k=1 lm − w(k)<br />

∗<br />

⎡ ( )<br />

n∏<br />

⎤ ∏ zlm − z ∗ βlm /2 }<br />

(k<br />

× ⎣<br />

1 k)<br />

⎦ · · ·<br />

z lm − w ∗ k=1 k 1 ≠k<br />

(k 1 k)<br />

[<br />

∏ n ( ) ] ⎡ ( ) ⎤<br />

1−iξk<br />

ak − w<br />

n∏ ∏ ak1 − w ∗ 1−iξk1<br />

(k)<br />

×<br />

⎣<br />

⎦<br />

a k − z<br />

a<br />

k=1<br />

k=1 k 1 ≠k k1 − z(k)<br />

∗<br />

⎡<br />

( ) ⎤<br />

n∏ ∏ ∏ ak2 − w ∗ 1−iξk2<br />

(k<br />

× ⎣<br />

1 k)<br />

⎦ · · · .<br />

a k2 − z ∗ k=1 k 1 ≠k k 2 ≠k 1<br />

(k 1 k)<br />

This product converges uni<strong>for</strong>mly in every compact subset of D\{∞}.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!