12.01.2014 Views

Active Macro Pixel Sensor Array - Helsinki Institute of Physics

Active Macro Pixel Sensor Array - Helsinki Institute of Physics

Active Macro Pixel Sensor Array - Helsinki Institute of Physics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Progress with<br />

<strong>Active</strong> <strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> <strong>Array</strong>s<br />

for X-ray X<br />

Imaging Spectroscopy<br />

Heike Soltau, P. Lechner, L. Strüder et al<br />

PN<strong>Sensor</strong> GmbH Munich<br />

MPI Semiconductor Laboratory Munich<br />

IWORID 2008, <strong>Helsinki</strong>


Spectrometric Parameters<br />

• energy range<br />

100 eV to 20 keV<br />

<strong>Active</strong> <strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> <strong>Array</strong>s<br />

are attractive • high quantum efficiency<br />

with thin entrance window<br />

because they allow<br />

and depleted volume <strong>of</strong> 450 µm<br />

–• monolithic minimum devices signal capacitance<br />

in large formats up to 8 x 8 cm²<br />

<strong>of</strong> 20 fF only<br />

– with scalable pixel size<br />

• energy e.g. 300 resolution x 300 µm² down to to 1 x 1 mm²<br />

– charge 50 storage eV @ C capability K<br />

in contrast to a CCD<br />

125 eV @ Mn K<br />

–<br />

•<br />

line<br />

image<br />

readout<br />

(frame)<br />

on demand<br />

rates<br />

with a limited complexity<br />

up to 8.000 per sec<br />

and a high speed<br />

• low electronic noise at high rates<br />

10 el. ENC<br />

• radiation hardness<br />

<strong>Active</strong> <strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> <strong>Array</strong>s


<strong>Active</strong> <strong>Pixel</strong> with DEPMOSFET Amplifier<br />

The pixel is<br />

made up by<br />

• topology<br />

• internal<br />

amplification<br />

• charge storing<br />

capability<br />

• integrated<br />

reset FET<br />

Operation Mode<br />

fully depleted<br />

volume <strong>of</strong> Si<br />

usually OFF<br />

p+ back FET ON contact<br />

and internal drift rings gate<br />

internal Measure gate exists I ds<br />

Clear in ON Internal and OFF Gate<br />

deep state Measure MOSFET n-implantation<br />

<strong>of</strong> the IFET<br />

ds<br />

p-channel ⇓ on<br />

n-type low power<br />

current bulk<br />

local change potential prop.<br />

consumption<br />

to number minimum with <strong>of</strong> electrons<br />

internal for electrons gate<br />

and clear gate<br />

DI > 300 pA / electron


From <strong>Active</strong> <strong>Pixel</strong> <strong>Sensor</strong>s (APS)<br />

to <strong>Active</strong> <strong>Macro</strong> <strong>Pixel</strong> Detectors<br />

<strong>Macro</strong> <strong>Pixel</strong> Detector which is mainly<br />

a DEPFET surrounded by Drift Rings<br />

allows<br />

9 monolithic assembly <strong>of</strong> large areas<br />

9 with minimum number <strong>of</strong> pixels<br />

<strong>of</strong> individually addressable pixels<br />

in arbitrary size<br />

9 homogenous backside<br />

with a fill factor <strong>of</strong> 1<br />

keeping the good properties <strong>of</strong> the APS<br />

9 low noise<br />

9 low power consumption<br />

9 fast processing etc.


<strong>Active</strong> <strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> <strong>Array</strong><br />

readout sequence<br />

matrix operation<br />

• 1st measurement: signal + baseline<br />

• clear: removal <strong>of</strong> signal charges<br />

• 2nd measurement: baseline<br />

• difference = signal<br />

• complete clear is mandatory<br />

• horizontal supply lines, row selection<br />

• vertical signal lines<br />

• 1 active row, other pixels integrating<br />

option to speed up (1)<br />

• readout parallelisation<br />

• 2 x readout channels, 2 active rows


<strong>Active</strong> <strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> <strong>Array</strong> –Read Out<br />

CAMEX64 readout chip<br />

• 64 channel amplifier<br />

• source follower configuration<br />

• 8-fold CDS filter<br />

• 64/1 analog multiplexer<br />

• readout time / row 4 µsec<br />

option to speed up (2)<br />

2 x SWITCHER-II control ASIC<br />

• 64 channel control chip<br />

• 2 ports / channel<br />

• supply <strong>of</strong> switched voltages<br />

• extremely low noise level<br />

• high voltage CMOS process > 20 V p-p<br />

• 50 MHz clock<br />

• "VELA" readout chip by Politecnico di Milano<br />

drain current readout<br />

current (de)integration filter<br />

readout time / row = 2 µsec


Application I<br />

Low Energy Detector (LED) for Simbol-X Mission<br />

Joint French-Italian project<br />

German participation: - mirror calibration<br />

- Low Energy Detector<br />

1 st focussing hard X-ray telescope<br />

ranging between 0.5 keV .. 20 keV .. 80 keV<br />

science targets<br />

• census and physics <strong>of</strong> black holes<br />

• cosmic particle acceleration<br />

mission scenario<br />

• launch mid 2014 (Soyuz-Fregat/Kourou)<br />

• autonomous formation flight<br />

• life time 3 y (+ 2y)<br />

• pointings 1000 (+ 500)<br />

• science time<br />

instrumentation<br />

• low energy detector LED<br />

> 100 Msec<br />

• high energy detector HED


Application I<br />

<strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> for Simbol-X –Design<br />

Focal Plane <strong>Sensor</strong><br />

• monolithic 6" wafer scale device<br />

• pixel size 625 x 625 µm²<br />

• format<br />

128 x 128 pixels<br />

8 x 8 cm²<br />

• quadrant divison<br />

individual r/o & control:<br />

8 x CMX, 8 x SW2<br />

• FP power<br />

< 8 W<br />

Readout Modes<br />

• full frame<br />

CCD-like, bi-directional<br />

full frame time = 128 µsec<br />

frame rate = 8.000/sec<br />

• window mode<br />

window size 2 x 16 rows<br />

no additional hardware<br />

window time = 32 µsec


Application I<br />

<strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> for Simbol-X –Status<br />

Simbol-X LED demonstrator<br />

• pixel<br />

• format<br />

• frametime<br />

500 x 500 µm²<br />

64 x 64 pixels<br />

3.2 x 3.2 cm 2<br />

2 msec<br />

• temperature -80 … -90 °C<br />

• represents 1 quadrant<br />

<strong>of</strong> the flight detector


Application I<br />

<strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> for Simbol-X –Spectroscopy<br />

Spectroscopic Results<br />

• flat field illumination<br />

• energy resolution<br />

(FWHM @ 5.9 keV)<br />

127 eV (singles)<br />

135 eV (all events)<br />

• peak/background ratio<br />

3.000:1 10.000<br />

• pattern statistics<br />

63% singles<br />

29% doubles<br />

• (in)homogeneity<br />

0.3% <strong>of</strong>fset<br />

2.3% gain<br />

9.6% noise


Application II<br />

Wide Field Imager (MIXS-C) for BepiColombo<br />

Mercury Planetary Orbiter<br />

•to investigate the average composition<br />

<strong>of</strong> Mercury’s crust, the composition inside craters<br />

and the distribution <strong>of</strong> iron globally and locally<br />

Mission scenario<br />

•Launch 2013<br />

•Platform: Soyuz Fregat B<br />

• Scheduled arrival at Mercury: 2019<br />

•1 + 1 year <strong>of</strong> expected mission lifetime<br />

Instrumentation<br />

•very diverse<br />

•including the X-ray Spectrometer MIXS<br />

in the focal plane <strong>of</strong> the observatory<br />

X-ray Detector Format<br />

•<strong>Active</strong> area: 1.92 x 1.92 cm2<br />

•<strong>Pixel</strong> number: 64 x 64 pixels<br />

• <strong>Pixel</strong> size: 300 x 300 um


Application II<br />

<strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> for Bepi Colombo –Design<br />

<strong>Pixel</strong> number: 64 x 64 pixels<br />

<strong>Pixel</strong> size: 300 x 300 um<br />

<strong>Active</strong> area <strong>of</strong> 1.92 x 1.92 cm 2<br />

Number <strong>of</strong> drift rings per pixel: 3<br />

Max. drift ring voltages ~30-40 V<br />

No sensitivity gap between pixels<br />

Challenge<br />

Radiation damage <strong>of</strong> 3 x 10 10<br />

10 MeV protons /cm 2<br />

Detection <strong>of</strong> low energies like Fe_L


Application II<br />

<strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> for Bepi Colombo –Read Out<br />

N<br />

W<br />

S<br />

E<br />

2 Hemispheres (North and South)<br />

32 x 64 <strong>Pixel</strong>s each<br />

Read out by 1 CAMEX each<br />

Controlled by 2 Switchers each<br />

Readout speed: target 4 ms / row<br />

6 ms / row might be necessary<br />

Depends on FE performance,<br />

temperature, capacitance...


Application II<br />

<strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> for Bepi Colombo –Prototype<br />

CAMEX<br />

Switcher<br />

Switcher<br />

Switcher<br />

Switcher<br />

CAMEX


Thank you!<br />

60<br />

Row number<br />

50<br />

40<br />

30<br />

20<br />

20,00<br />

128,0<br />

236,0<br />

344,0<br />

452,0<br />

560,0<br />

668,0<br />

776,0<br />

884,0<br />

992,0<br />

1100<br />

10<br />

10 20 30 40 50 60<br />

Column number<br />

• shadow images <strong>of</strong> a 450 µm thick silicon mask<br />

using an 55 Fe source<br />

• statistics: ~ 5.000 frames<br />

• defect-free: no dark pixel, no bright pixel

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!