19.12.2013 Views

LMB Cambridge - Helsinki Institute of Physics

LMB Cambridge - Helsinki Institute of Physics

LMB Cambridge - Helsinki Institute of Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Impact <strong>of</strong> silicon pixel detectors on<br />

structural biology<br />

Wasi Faruqi<br />

MRC Laboratory <strong>of</strong> Molecular Biology,<br />

Hills Road,<br />

<strong>Cambridge</strong> CB2 0QH,<br />

UK<br />

IWORID 10 <strong>Helsinki</strong>, 1 st July, 2008<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Kings College Chapel, <strong>Cambridge</strong><br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


MRC Laboratory <strong>of</strong> Molecular Biology,<br />

<strong>Cambridge</strong><br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Direct Detection in Silicon Pixel<br />

• Hybrid Pixel Detectors<br />

Medipix2<br />

Detectors<br />

http://medipix.web.cern.ch/MEDIPIX/<br />

• CMOS Detectors<br />

Monolithic Active Pixel Sensors (MAPS) designed at the<br />

STFC Rutherford Lab.<br />

Pixellated silicon, readout built into each pixel.<br />

http://mi3.shef.ac.uk/<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Acknowledgements<br />

<strong>LMB</strong> <strong>Cambridge</strong><br />

•Richard Henderson<br />

•Greg McMullan<br />

•Shaoxia Chen<br />

CERN (Medipix2)<br />

•Lukas Tlustos,<br />

•Xavi Llopart,<br />

•M.Campbell<br />

•RAL-STFC (MAPS)<br />

•R.Turchetta<br />

•M. Prydderch,<br />

•MI3 Collaboration (RCUK)<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Main techniques used in structure<br />

determination<br />

X-ray (Protein) Crystallography<br />

Electron Cryo-Microscopy<br />

Nuclear Magnetic Resonance<br />

(along with other supporting technologies)<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Main scientific aims<br />

•Structural analysis <strong>of</strong> proteins and<br />

macromolecular complexes to atomic or near<br />

atomic resolution<br />

•Electron Cryo-Microscopy frequently used<br />

as a complementary technique to X-ray<br />

Crystallography<br />

•Example: Hepatitis B virus solved by both<br />

techniques – Example in later slide<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Electron Detectors & X-ray Detectors<br />

Electron Detection: What are the main differences<br />

between X-ray Detectors and Electron Detectors?<br />

Electrons 100 – 300 keV<br />

X-rays 10 – 20 keV<br />

Electrons very easily scattered and stopped by matter,<br />

So, need to:<br />

(a) install detector in a vacuum chamber, and<br />

(b) entrance window not possible on the detector<br />

Cannot use gas detectors<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Schematic <strong>of</strong> Microscope<br />

<strong>LMB</strong>-<strong>Cambridge</strong><br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Scientific Background to Electron Cryo-Microscopy<br />

Three Main types <strong>of</strong> Analysis (and the resolution attained<br />

in the analysed structures):<br />

1. Single Particle (molecule) Analysis 3.8 -10 Å<br />

2. Electron Crystallography <strong>of</strong> ordered specimen, i.e. 2-D<br />

crystals ~3Å … near-atomic resolution<br />

3. Electron Tomography 20-100 Å … cell biology<br />

Electron energy preferred: 300 keV (less lens<br />

aberrations, less multiple scattering in sample, less<br />

absorption)<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Electron Cryo-Microscopy<br />

•Image molecules in native aqueous<br />

environment in vitreous ice (prevent de-hydration)<br />

•Trap important conformations in intermediate states <strong>of</strong> a<br />

kinetic cycle by rapid freezing : equivalent to time-resolved<br />

measurements<br />

•Images have low contrast : need sophisticated s<strong>of</strong>tware and<br />

lots <strong>of</strong> averaging<br />

•Radiation damage to specimen a severe limitation – hence<br />

need very good detectors!<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Single Particle Analysis<br />

No crystals required .. Makes it possible, e.g. to analyse<br />

structure <strong>of</strong> membrane proteins, which are very difficult to<br />

crystalise,<br />

Can be applied to large macromolecular complexes<br />

• Powerful technique when used in conjunction with atomic<br />

structures obtained with x-ray crystallography<br />

•Applications: Virus particles, ribosomes, etc<br />

•‘Best’ Resolution with this technique :Rotavirus capsid 3.8 Ǻ<br />

•6.5 Million copies <strong>of</strong> the capsid protein used for the map<br />

•From 8400 virus particles (excellent symmetry)<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Rotavirus Epidemiology<br />

Deaths due<br />

to rotavirus<br />

(diarrhea)<br />

6/26/2008<br />

Causes ~600,000 deaths annually<br />

Infection occurs from feces. Only 10 to 100 infectious particles suffice.<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Symmetry:<br />

60 x 13<br />

=780 VP6 molecules<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong><br />

Zhang et al. (2008)


Side Chains<br />

3.8 Å<br />

X-ray crystallography (2F o<br />

–F c<br />

)<br />

Cryo-EM<br />

6/26/2008<br />

Settembre et al.<br />

<strong>LMB</strong>, <strong>Cambridge</strong><br />

Xing Zhang et al. (2008)


Electron Crystallography<br />

• Averaging done in crystal… many identical scattering<br />

particles<br />

• Main application: membrane proteins (but not<br />

exclusively)<br />

• Near-atomic resolution (~2.5 Å) achieved.<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Bacteriorhodopsin<br />

•Membrane protein family<br />

•Light driven proton pump; photocycle<br />

•Structural changes at atomic resolution studied<br />

by trapping intermediates in reaction cycle<br />

•Diffraction data collected with <strong>LMB</strong> CCD<br />

camera<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Electron Diffraction Studies on Bacteriorhodopsin<br />

(with R.Henderson and S. Subramaniam)<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong><br />

A 7-second diffraction pattern from bacteriorhodopsin with spots visible to 2Å -1


BR Model<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong> Henderson, et al JMB, 213, 899-929 (1990)


BR<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong><br />

Courtesy R.Henderson


Electron Tomography<br />

1. View specimen from large number <strong>of</strong> angles,<br />

but limits due to radiation damage<br />

2. Combine views into 3-D reconstruction<br />

3. Image needs re-focusing and re-aligning after<br />

each step due to imperfections in stage construction<br />

4. Automation and electronic detectors essential!<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Reconstruction<br />

Tomography - Reconstruction <strong>of</strong> a 3D Model<br />

Based on a Series <strong>of</strong> Projections<br />

Projections<br />

Reconstruction<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong><br />

A. Koster et al. 1997


Investigation into Mitotic Proteins using<br />

Electron Tomography<br />

John Kilmartin and Sam Li (<strong>LMB</strong>)<br />

Identify proteins common to yeast and<br />

mammalian cells using mass spectrometry.<br />

Explore function with biochemical techniques and<br />

study structure with electron tomography.<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Recent structures obtained using<br />

Cryo-EM on next slide<br />

a. 70S E.coli ribosome complexed with mRNA and fMettRNA<br />

(11.5 Ǻ)<br />

b. Hepatitis B virus (7.4 Ǻ)<br />

c. Actin filaments decorated with myosin heads (30-35<br />

Ǻ)<br />

d. 2D crystal Light Harvesting Complex II (3.4 Ǻ)<br />

Baker & Henderson‘Electron cryomicroscopy’<br />

International Tables for Crystallography, 451-479,(2002)<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Molecular structures obtained by Electron Cryo-Microscopy Magnification<br />

Micrographs:170K, Models: 1.2 Million<br />

Montage<br />

70S Ribosome<br />

6/26/2008<br />

Hepatitis B Virus Actin-Myosin (Muscle) Light Harvesting Comple<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Hepatitis B Structure<br />

Cryo-EM X-ray Crystallography<br />

Andrew Leslie <strong>LMB</strong><br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Scientific Background to Electron Cryo-Microscopy<br />

Three Main types <strong>of</strong> Analysis (and the resolution attained<br />

in the analysed structures):<br />

1. Single Particle (molecule) Analysis 4 -10 Å<br />

2. Electron Crystallography <strong>of</strong> ordered specimen, i.e. 2-D<br />

crystals ~3Å … near-atomic resolution<br />

3. Electron Tomography 20-100 Å … cell biology<br />

Electron energy preferred: 300 keV (less lens aberrations,<br />

less multiple scattering in sample, less absorption)<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


High Resolution Imaging Detector<br />

Requirements for Cryo-EM<br />

1. Electronic detector with computer control.. eliminate film!<br />

2. Number <strong>of</strong> independent pixels : 4000 by 4000<br />

3. Pixel Size 10 – 50 µm (has to fit in commercial microscopes)<br />

4. High sensitivity with no noise – ability to add multiple frames<br />

5. Radiation damage; should be able to withstand<br />

at least 1 MRad this would be ~ a one year dose for cryo-EM<br />

6. Readout time preferably short<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Medipx2(Quad) in 300 kV Microscope<br />

Mounting<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


300 kV EM with detector installed<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong><br />

Medipix Quad


Detectors: Quality Factors<br />

Sensitivity: Detective Quantum Efficiency (DQE),<br />

(S/N) 2 output /(S/N)2 input (=1 for perfect detector)<br />

DQE(0) zero spatial frequency<br />

DQE(spatial frequency)<br />

Resolution: Modulation Transfer Function (MTF)<br />

Framing Speeds… inverse <strong>of</strong> readout time<br />

Radiation Hardness … useful lifetime<br />

Dynamic Range … ability to record very weak and very<br />

strong parts <strong>of</strong> an image simultaneously (diffraction only)<br />

Defects …… Faults in fabrication, etc<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Monte Carlo simulation <strong>of</strong> electron trajectories in silicon.<br />

Detector thickness = 300 microns, pixel=55 microns<br />

Extension <strong>of</strong> simulations to include energy deposition<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong><br />

McMullan, et al Ultramicroscopy,<br />

107,(2007), 401-413


MTF at Nyquist Frequency<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong><br />

McMullan, et al<br />

Ultramicroscopy, 107, (2007),<br />

401-413


Single Electron Clusters; 240 incident electrons at 120 keV<br />

250<br />

Counts/electron vs Ext Vthl<br />

High Threshold<br />

Low Threshold<br />

200<br />

No counts<br />

1 count<br />

Counts/electron<br />

150<br />

100<br />

2 counts<br />

50<br />

0<br />

1190 1240 1290 1340 1390 1440 1490<br />

Ext Vthl (1190 __ 120 keV)<br />

3<br />

4<br />

counts<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Increased probability <strong>of</strong> several pixels counting an electron at<br />

lower thresholds. Seed pixel in centre <strong>of</strong> array. E=120 keV<br />

(a) (b) (c) (d) (e)<br />

(f) (g) (h) (i) (j)<br />

6/26/2008<br />

(k) (l) (m) (n) (o)<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


DQE(0) and DQE(Nyquist)<br />

DQE<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong><br />

Threshold(keV)


Some examples <strong>of</strong> Single Particle<br />

Imaging using the Medipix2_Quad<br />

Detector<br />

All images recorded at 120 keV<br />

McMullan & Faruqi<br />

Nucl. Instr. and Meth. A 591 (2008) 129–133<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Rotavirus with 1.6(left) and 160(right) electrons/pixel<br />

0.04 electron/Å 2 (at specimen) 4 electrons/Å 2<br />

Rotavirus imaged with Medipix2 Quad<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Single Lambda Phage on MPX2 Quad<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


TMV: Results <strong>of</strong> image alignment<br />

Negatively stained TMV<br />

protein stacked disks:<br />

(a) first image in a series <strong>of</strong><br />

65,<br />

(b) simple sum <strong>of</strong> the 65<br />

images (blurred),<br />

(c) aligned sum <strong>of</strong> the<br />

images (sharp),<br />

(d) sample movement in Å.<br />

The scale bar in (b)<br />

indicates 500 Å<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Tobacco Mosaic Virus (from 65 images)<br />

Magn. =180K<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


MAPS CMOS Detector<br />

- charged particles<br />

• no bias voltages<br />

• charge diffusion<br />

• 100% fill factor<br />

Epilayer<br />

Substrate<br />

6/26/2008<br />

Turchetta et al<br />

NIM A458 (2001) 677-689<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Monolithic Active Pixel Sensor (MAPS)<br />

General Background<br />

Monolithic Active Pixel Sensor (MAPS ) –designed at<br />

RAL*<br />

Size: 525 by 525, 25 μm square pixels<br />

Non-Radhard, standard 0.5 μm CMOS technology<br />

Each pixel contains four diodes<br />

Electrons drift to one <strong>of</strong> the four diodes in pixel<br />

Charge summed from all diodes and converted to a voltage<br />

One ADC per column; all pixels in a row read out in<br />

parallel<br />

*Prydderch, et al Nucl.Instr. & Meth. A512,(2003),358<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Monte Carlo simulation <strong>of</strong> electron trajectories in silicon.<br />

Detector thickness = 300 microns, pixel=55 microns<br />

Extension <strong>of</strong> simulations to include energy deposition<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong><br />

McMullan, et al Ultramicroscopy,<br />

107,(2007), 401-413


MAPS in 300 keV Mounting<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


MI-3 Consortium Members<br />

Pr<strong>of</strong>essor NM Allinson, University <strong>of</strong> Sheffield<br />

Pr<strong>of</strong>essor PP Allport, University <strong>of</strong> Liverpool<br />

Dr RL Bates, University <strong>of</strong> Glasgow<br />

Pr<strong>of</strong>essor AR Cossins, University <strong>of</strong> Liverpool<br />

Pr<strong>of</strong>essor MM El Gomati, University <strong>of</strong> York<br />

Dr AR Faruqi, MRC Laboratory <strong>of</strong> Molecular Biology<br />

Dr MJ French, CCLRC<br />

Pr<strong>of</strong>essor A Holland, Open University<br />

Pr<strong>of</strong>essor RJ Ott, <strong>Institute</strong> <strong>of</strong> Cancer Research<br />

Dr V O'Shea, University <strong>of</strong> Glasgow<br />

Pr<strong>of</strong>essor RD Speller, University College London<br />

Dr R Turchetta, CCLRC<br />

Dr K Wells, University <strong>of</strong> Surrey<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Imaging <strong>of</strong> 100 mesh grid in MAPS<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


ADC Response for Single Electrons<br />

at 40 keV and 120 keV<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Sensitivity:<br />

Noise:<br />

MAPS Summary at 120 keV<br />

~50 ADC Units/electron<br />

~2 ADC Units<br />

Signal/Noise: 20-25<br />

Radiation Hardness:<br />

Active area<br />

10-15 kRad . Needs improvement!<br />

525 x 525 pixels need larger areas<br />

Faruqi, Henderson, Turchetta et al Nucl. Instr.& Meth 546,<br />

170-175, (2005)<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Radhard<br />

Technology<br />

512 x 512, 25 µm<br />

Radiation Damage to STAR250<br />

(FillFactory/Cypress Corp.) at 300 keV<br />

C<br />

Radiation Dose:<br />

A: 200kRad<br />

(annealed for 4<br />

weeks)<br />

B: 200 kRad<br />

C: 1000 kRad<br />

Contrast values<br />

labelled in bottom<br />

left image<br />

B<br />

B<br />

C<br />

A<br />

A<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Startracker & Film response to electrons 10 - 300 keV<br />

50<br />

Response - Film values normalised<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 50 100 150 200 250 300<br />

Electron energy (keV)<br />

Startracker<br />

Film<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Large Area Sensor : Specifications<br />

Pixel Size 40µm<br />

Array Size 1.4K by 1.4K<br />

Array Dimensions 5.6cm x 5.6cm<br />

Epi Thickness 15µm<br />

Frame Rate<br />

10 f/s max<br />

Noise floor<br />

28e<br />

Radiation tolerance ~


Large Area Sensor Wafer<br />

Courtesy <strong>of</strong><br />

Andy Clark &<br />

Renato Turchetta<br />

MI3<br />

Collaboration<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Large Area Sensor - Mounted<br />

Courtesy <strong>of</strong><br />

Andy Clark &<br />

Renato Turchetta<br />

MI3<br />

Collaboration<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


6/26/2008<br />

Detectors for Protein Crystallography : Main<br />

Requirements<br />

High Efficiency, low noise (high DQE)<br />

Large active area; can get better S/N by increasing distance<br />

Excellent spatial resolution; need to resolve ~500 orders (3K x3K)<br />

Very large dynamic range (strong & weak spots)<br />

High rate capability (no dead time, shutterless operation)<br />

No spatial distortions or non-uniformity <strong>of</strong> response; any corrections should<br />

be stable over long periods<br />

Ability to operate at a wide range <strong>of</strong> wavelengths for MAD, 0.6Ǻ –2.5Ǻ<br />

Low cost, reliable (low maintenance)<br />

Continuous readout to eliminate beam shutter (closed during readout)<br />

PILATUS 1M and 6M (PSI, Villigen) - talks during conference<br />

Medipix3: Does it <strong>of</strong>fer special advantages for Crystallography?<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Medipix3<br />

Silicon sensor, 300 or 500 µm for very high efficiency<br />

1 or 2 counters per pixel – continuous R/W with no dead time<br />

Pixel Size : 55 µm square, very well suited for microcrystallography.<br />

Can be re-arranged to be 110 µm for medical work<br />

with higher energy x-rays<br />

Pixel level intelligence – expect improved resolution (by reducing<br />

effects <strong>of</strong> charge sharing between pixels)<br />

Counting rates ~ 10 6 counts/second/pixel<br />

Chips to be 4-side buttable (in future) for extended tiling<br />

For more details, see Michael Campbell during IWORID10 or visit:<br />

http://medipix.web.cern.ch/MEDIPIX/


Medipix3 – charge summing concept<br />

The winner takes<br />

all<br />

• The incoming<br />

quantum is assigned as<br />

a single hit<br />

• Charge processed is<br />

summed in every 4<br />

pixel cluster on an<br />

event-by-event basis<br />

55μ<br />

Medipix<br />

Collaboration<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


55μ<br />

4<br />

5<br />

6 7<br />

DIGITAL CIRCUITRY<br />

4. Control logic<br />

(124)<br />

5. 2x15bit counters<br />

/ shift registers<br />

(480)<br />

6. Configuration<br />

latches (152)<br />

7. Arbitration<br />

circuits (100)<br />

Total digital 856<br />

2<br />

1 3<br />

17 October 2006 Michael Campbell<br />

55μ<br />

ANALOG CIRCUITRY<br />

1. Preamplifier (24)<br />

2. Shaper (134)<br />

3. Discriminators<br />

and Threshold<br />

Adjustment<br />

Circuits (72)<br />

Total analog 230


The Medipix3 Consortium<br />

• University <strong>of</strong> Canterbury, Christchurch, New Zealand<br />

• CEA, Paris, France<br />

• CERN, Geneva, Switzerland,<br />

• DESY-Hamburg, Germany<br />

• Albert-Ludwigs<br />

Ludwigs-Universität Freiburg, , Germany,<br />

• University <strong>of</strong> Glasgow, Scotland, UK<br />

• Leiden Univ., The Netherlands<br />

• NIKHEF, Amsterdam, The Netherlands<br />

• Laboratory <strong>of</strong> Molecular Biology, <strong>Cambridge</strong>, England, UK<br />

• Mid Sweden University, Sundsvall, , Sweden<br />

• Czech Technical University, Prague, Czech Republic<br />

• ESRF, Grenoble, , France<br />

• Universität Erlangen-Nurnberg<br />

Nurnberg, Erlangen, , Germany<br />

• University <strong>of</strong> California, Berkeley, USA<br />

• VTT, Information Technology, Espoo, , Finland<br />

• ISS, Forschungszentrum Karlsruhe, Germany<br />

• Diamond Light Source, Oxfordshire, UK<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Microcrystallography – A new application?<br />

Useful technique for very small crystals, ~20 µm 3<br />

(large crystals more difficult to grow in many cases)<br />

ESRF Micr<strong>of</strong>ocus Beam ID13, Focused beam size ~1 µm<br />

Energy=13 keV,<br />

Flux = 3x10 10 photons/sec/µm 2<br />

XylanaseII structure determined to 1.5 Ǻ, diffraction pattern<br />

next slide.<br />

MW=21kDa, 40Ǻ x 39Ǻ X 57Ǻ<br />

Detector needs to have small pixels, high DQE<br />

Riekel, Schertler… Current Opinion Strc Biol (2005), 15, 556-562<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Micro-diffraction from Xylanase II<br />

Data collected on<br />

MarCCD165<br />

Pixel size ~79 µm<br />

square<br />

Spot size limited by<br />

detector resolution and<br />

not by beam or crystal<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Summary: X-ray Detectors<br />

Potential Advantages<br />

Direct detection in Silicon – better resolution as no light scattering,<br />

even better resolution with Medipix3<br />

Fast readout – fast framing (few milliseconds) possible<br />

Excellent S/N – noiseless readout, high dynamic range<br />

Detector and electronics separate – choose detector material (Si,<br />

GaAs, CdTe, …) for optimum efficiency<br />

See also: PILATUS contribution to this conference<br />

Downside<br />

Large area detectors difficult and expensive to build<br />

Individual detectors, ~2 cm 2 , tiled to obtain larger areas but gaps in<br />

between chips/modules leads to some dead space<br />

Technology not yet mature (?) – problems <strong>of</strong> ‘yield’<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Summary: Detectors for Electron<br />

Microscopy<br />

• Medipix2 is a superb detector up to 120 keV<br />

• But, it may prove expensive to design 4K square arrays<br />

without dead spaces<br />

• Higher energies (300 keV) may be feasible but with higher<br />

density compounds, e.g. Cd(Zn)Te<br />

• CMOS detectors <strong>of</strong>fer a good chance <strong>of</strong> a radiation hard,<br />

4Kx4K square detector – but needs a lot more R&D effort<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>


Acknowledgements<br />

<strong>LMB</strong> <strong>Cambridge</strong><br />

•Richard Henderson<br />

•Greg McMullan<br />

•David Cattermole<br />

•Shaoxia Chen<br />

CERN (Medipix2)<br />

•Lukas Tlustos,<br />

•Xavi Llopart,<br />

•M.Campbell<br />

http://medipix.web.cern.ch/MEDIPIX/<br />

•RAL-STFC (MAPS)<br />

•R.Turchetta, et al<br />

•M. Prydderch, et al<br />

•MI3 Collaboration (RCUK)<br />

•http://mi3.shef.ac.uk/<br />

6/26/2008<br />

<strong>LMB</strong>, <strong>Cambridge</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!