12.01.2014 Views

Active Macro Pixel Sensor Array - Helsinki Institute of Physics

Active Macro Pixel Sensor Array - Helsinki Institute of Physics

Active Macro Pixel Sensor Array - Helsinki Institute of Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Progress with<br />

<strong>Active</strong> <strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> <strong>Array</strong>s<br />

for X-ray X<br />

Imaging Spectroscopy<br />

Heike Soltau, P. Lechner, L. Strüder et al<br />

PN<strong>Sensor</strong> GmbH Munich<br />

MPI Semiconductor Laboratory Munich<br />

IWORID 2008, <strong>Helsinki</strong>


Spectrometric Parameters<br />

• energy range<br />

100 eV to 20 keV<br />

<strong>Active</strong> <strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> <strong>Array</strong>s<br />

are attractive • high quantum efficiency<br />

with thin entrance window<br />

because they allow<br />

and depleted volume <strong>of</strong> 450 µm<br />

–• monolithic minimum devices signal capacitance<br />

in large formats up to 8 x 8 cm²<br />

<strong>of</strong> 20 fF only<br />

– with scalable pixel size<br />

• energy e.g. 300 resolution x 300 µm² down to to 1 x 1 mm²<br />

– charge 50 storage eV @ C capability K<br />

in contrast to a CCD<br />

125 eV @ Mn K<br />

–<br />

•<br />

line<br />

image<br />

readout<br />

(frame)<br />

on demand<br />

rates<br />

with a limited complexity<br />

up to 8.000 per sec<br />

and a high speed<br />

• low electronic noise at high rates<br />

10 el. ENC<br />

• radiation hardness<br />

<strong>Active</strong> <strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> <strong>Array</strong>s


<strong>Active</strong> <strong>Pixel</strong> with DEPMOSFET Amplifier<br />

The pixel is<br />

made up by<br />

• topology<br />

• internal<br />

amplification<br />

• charge storing<br />

capability<br />

• integrated<br />

reset FET<br />

Operation Mode<br />

fully depleted<br />

volume <strong>of</strong> Si<br />

usually OFF<br />

p+ back FET ON contact<br />

and internal drift rings gate<br />

internal Measure gate exists I ds<br />

Clear in ON Internal and OFF Gate<br />

deep state Measure MOSFET n-implantation<br />

<strong>of</strong> the IFET<br />

ds<br />

p-channel ⇓ on<br />

n-type low power<br />

current bulk<br />

local change potential prop.<br />

consumption<br />

to number minimum with <strong>of</strong> electrons<br />

internal for electrons gate<br />

and clear gate<br />

DI > 300 pA / electron


From <strong>Active</strong> <strong>Pixel</strong> <strong>Sensor</strong>s (APS)<br />

to <strong>Active</strong> <strong>Macro</strong> <strong>Pixel</strong> Detectors<br />

<strong>Macro</strong> <strong>Pixel</strong> Detector which is mainly<br />

a DEPFET surrounded by Drift Rings<br />

allows<br />

9 monolithic assembly <strong>of</strong> large areas<br />

9 with minimum number <strong>of</strong> pixels<br />

<strong>of</strong> individually addressable pixels<br />

in arbitrary size<br />

9 homogenous backside<br />

with a fill factor <strong>of</strong> 1<br />

keeping the good properties <strong>of</strong> the APS<br />

9 low noise<br />

9 low power consumption<br />

9 fast processing etc.


<strong>Active</strong> <strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> <strong>Array</strong><br />

readout sequence<br />

matrix operation<br />

• 1st measurement: signal + baseline<br />

• clear: removal <strong>of</strong> signal charges<br />

• 2nd measurement: baseline<br />

• difference = signal<br />

• complete clear is mandatory<br />

• horizontal supply lines, row selection<br />

• vertical signal lines<br />

• 1 active row, other pixels integrating<br />

option to speed up (1)<br />

• readout parallelisation<br />

• 2 x readout channels, 2 active rows


<strong>Active</strong> <strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> <strong>Array</strong> –Read Out<br />

CAMEX64 readout chip<br />

• 64 channel amplifier<br />

• source follower configuration<br />

• 8-fold CDS filter<br />

• 64/1 analog multiplexer<br />

• readout time / row 4 µsec<br />

option to speed up (2)<br />

2 x SWITCHER-II control ASIC<br />

• 64 channel control chip<br />

• 2 ports / channel<br />

• supply <strong>of</strong> switched voltages<br />

• extremely low noise level<br />

• high voltage CMOS process > 20 V p-p<br />

• 50 MHz clock<br />

• "VELA" readout chip by Politecnico di Milano<br />

drain current readout<br />

current (de)integration filter<br />

readout time / row = 2 µsec


Application I<br />

Low Energy Detector (LED) for Simbol-X Mission<br />

Joint French-Italian project<br />

German participation: - mirror calibration<br />

- Low Energy Detector<br />

1 st focussing hard X-ray telescope<br />

ranging between 0.5 keV .. 20 keV .. 80 keV<br />

science targets<br />

• census and physics <strong>of</strong> black holes<br />

• cosmic particle acceleration<br />

mission scenario<br />

• launch mid 2014 (Soyuz-Fregat/Kourou)<br />

• autonomous formation flight<br />

• life time 3 y (+ 2y)<br />

• pointings 1000 (+ 500)<br />

• science time<br />

instrumentation<br />

• low energy detector LED<br />

> 100 Msec<br />

• high energy detector HED


Application I<br />

<strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> for Simbol-X –Design<br />

Focal Plane <strong>Sensor</strong><br />

• monolithic 6" wafer scale device<br />

• pixel size 625 x 625 µm²<br />

• format<br />

128 x 128 pixels<br />

8 x 8 cm²<br />

• quadrant divison<br />

individual r/o & control:<br />

8 x CMX, 8 x SW2<br />

• FP power<br />

< 8 W<br />

Readout Modes<br />

• full frame<br />

CCD-like, bi-directional<br />

full frame time = 128 µsec<br />

frame rate = 8.000/sec<br />

• window mode<br />

window size 2 x 16 rows<br />

no additional hardware<br />

window time = 32 µsec


Application I<br />

<strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> for Simbol-X –Status<br />

Simbol-X LED demonstrator<br />

• pixel<br />

• format<br />

• frametime<br />

500 x 500 µm²<br />

64 x 64 pixels<br />

3.2 x 3.2 cm 2<br />

2 msec<br />

• temperature -80 … -90 °C<br />

• represents 1 quadrant<br />

<strong>of</strong> the flight detector


Application I<br />

<strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> for Simbol-X –Spectroscopy<br />

Spectroscopic Results<br />

• flat field illumination<br />

• energy resolution<br />

(FWHM @ 5.9 keV)<br />

127 eV (singles)<br />

135 eV (all events)<br />

• peak/background ratio<br />

3.000:1 10.000<br />

• pattern statistics<br />

63% singles<br />

29% doubles<br />

• (in)homogeneity<br />

0.3% <strong>of</strong>fset<br />

2.3% gain<br />

9.6% noise


Application II<br />

Wide Field Imager (MIXS-C) for BepiColombo<br />

Mercury Planetary Orbiter<br />

•to investigate the average composition<br />

<strong>of</strong> Mercury’s crust, the composition inside craters<br />

and the distribution <strong>of</strong> iron globally and locally<br />

Mission scenario<br />

•Launch 2013<br />

•Platform: Soyuz Fregat B<br />

• Scheduled arrival at Mercury: 2019<br />

•1 + 1 year <strong>of</strong> expected mission lifetime<br />

Instrumentation<br />

•very diverse<br />

•including the X-ray Spectrometer MIXS<br />

in the focal plane <strong>of</strong> the observatory<br />

X-ray Detector Format<br />

•<strong>Active</strong> area: 1.92 x 1.92 cm2<br />

•<strong>Pixel</strong> number: 64 x 64 pixels<br />

• <strong>Pixel</strong> size: 300 x 300 um


Application II<br />

<strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> for Bepi Colombo –Design<br />

<strong>Pixel</strong> number: 64 x 64 pixels<br />

<strong>Pixel</strong> size: 300 x 300 um<br />

<strong>Active</strong> area <strong>of</strong> 1.92 x 1.92 cm 2<br />

Number <strong>of</strong> drift rings per pixel: 3<br />

Max. drift ring voltages ~30-40 V<br />

No sensitivity gap between pixels<br />

Challenge<br />

Radiation damage <strong>of</strong> 3 x 10 10<br />

10 MeV protons /cm 2<br />

Detection <strong>of</strong> low energies like Fe_L


Application II<br />

<strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> for Bepi Colombo –Read Out<br />

N<br />

W<br />

S<br />

E<br />

2 Hemispheres (North and South)<br />

32 x 64 <strong>Pixel</strong>s each<br />

Read out by 1 CAMEX each<br />

Controlled by 2 Switchers each<br />

Readout speed: target 4 ms / row<br />

6 ms / row might be necessary<br />

Depends on FE performance,<br />

temperature, capacitance...


Application II<br />

<strong>Macro</strong> <strong>Pixel</strong> <strong>Sensor</strong> for Bepi Colombo –Prototype<br />

CAMEX<br />

Switcher<br />

Switcher<br />

Switcher<br />

Switcher<br />

CAMEX


Thank you!<br />

60<br />

Row number<br />

50<br />

40<br />

30<br />

20<br />

20,00<br />

128,0<br />

236,0<br />

344,0<br />

452,0<br />

560,0<br />

668,0<br />

776,0<br />

884,0<br />

992,0<br />

1100<br />

10<br />

10 20 30 40 50 60<br />

Column number<br />

• shadow images <strong>of</strong> a 450 µm thick silicon mask<br />

using an 55 Fe source<br />

• statistics: ~ 5.000 frames<br />

• defect-free: no dark pixel, no bright pixel

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!