12.01.2014 Views

Optimization algorithms for the sound design of chimney and tuning ...

Optimization algorithms for the sound design of chimney and tuning ...

Optimization algorithms for the sound design of chimney and tuning ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Optimization</strong> <strong>algorithms</strong> <strong>for</strong> <strong>the</strong> <strong>sound</strong> <strong>design</strong> <strong>of</strong> <strong>chimney</strong> <strong>and</strong> <strong>tuning</strong> slot organ pipes<br />

Péter Rucz 1 , Fülöp Augusztinovicz 1 , Judit Angster 2 ,<br />

Péter Fiala 1 , Thomas Trommer 2 , András Miklós 3<br />

1 Budapest University <strong>of</strong> Technology <strong>and</strong> Economics, H1117 Budapest, Hungary, Email: rucz@hit.bme.hu<br />

2 Fraunh<strong>of</strong>er-Institut für Bauphysik, 70569 Stuttgart, Germany<br />

3 Steinbeis Transferzentrum Angew<strong>and</strong>te Akustik, 70499 Stuttgart<br />

Introduction<br />

This contribution presents a novel scaling technique developed<br />

by <strong>the</strong> authors <strong>for</strong> <strong>the</strong> optimal <strong>sound</strong> <strong>design</strong> <strong>of</strong><br />

<strong>chimney</strong> organ pipes (see Fig. 1). The goal <strong>of</strong> <strong>the</strong> method<br />

is to determine <strong>the</strong> optimal dimensions <strong>of</strong> <strong>the</strong> pipe body<br />

(resonator) <strong>for</strong> achieving <strong>the</strong> desired <strong>sound</strong> spectrum.<br />

Based on <strong>the</strong> one-dimensional waveguide model <strong>of</strong> <strong>the</strong><br />

resonator <strong>the</strong> eigenfrequencies <strong>of</strong> <strong>the</strong> pipe are calculated<br />

<strong>and</strong> tuned. The first part <strong>of</strong> this paper presents <strong>the</strong><br />

methodology <strong>and</strong> <strong>the</strong> results attained by this technique.<br />

The second part focuses on <strong>the</strong> development <strong>of</strong> a similar<br />

optimization algorithm <strong>for</strong> organ pipes with <strong>tuning</strong> slot<br />

(Expression). The geometrical irregularity introduced by<br />

<strong>the</strong> <strong>tuning</strong> slot requires more advanced modeling techniques<br />

<strong>and</strong> involves application <strong>of</strong> numerical methods.<br />

Chimney pipe optimization<br />

The acoustic input admittance function <strong>of</strong> <strong>the</strong> pipe is defined<br />

as <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> volume velocity <strong>and</strong> <strong>sound</strong> pressure<br />

at <strong>the</strong> pipe mouth, dependent on <strong>the</strong> frequency. Its<br />

maxima are located at <strong>the</strong> eigenfrequencies <strong>of</strong> <strong>the</strong> pipe.<br />

The amplitudes <strong>of</strong> harmonic partials are also affected by<br />

<strong>the</strong> input admittance function: if a partial is coincident<br />

with a resonance or anti-resonance it is amplified or repressed,<br />

respectively. By choosing <strong>the</strong> proper dimensions<br />

<strong>for</strong> <strong>the</strong> pipe body <strong>the</strong>se effects can be fully exploited <strong>and</strong><br />

<strong>the</strong> <strong>sound</strong> spectrum <strong>of</strong> <strong>the</strong> pipe can be tuned.<br />

Under <strong>the</strong> cut-on frequency <strong>of</strong> transversal modes, <strong>the</strong> resonator<br />

can accurately be described by a one-dimensional<br />

model. This model, as it is shown in Fig. 1, consists <strong>of</strong><br />

two waveguides representing <strong>the</strong> main resonator <strong>and</strong> <strong>the</strong><br />

<strong>chimney</strong> <strong>and</strong> <strong>the</strong> radiation impedances at <strong>the</strong> open end<br />

<strong>and</strong> <strong>the</strong> mouth.<br />

Pipe foot<br />

Z M<br />

Main resonator<br />

Z P0<br />

L P<br />

Z S Z P Z C<br />

Chimney<br />

Z C0<br />

L C<br />

Figure 1: One-dimensional model <strong>of</strong> a <strong>chimney</strong> pipe<br />

The input impedance <strong>for</strong> <strong>the</strong> complete system Z S can<br />

be written with expressing <strong>the</strong> input impedance <strong>of</strong> <strong>the</strong><br />

Z R<br />

<strong>chimney</strong> Z C first:<br />

Z C = Z C0<br />

Z R + iZ C0 tan(kL C )<br />

Z C0 + iZ R tan(kL C )<br />

<strong>and</strong> (1)<br />

Z S = Z M + Z P0<br />

Z C + iZ P0 tan(kL P )<br />

Z P0 + iZ C tan(kL P ) . (2)<br />

Here L P <strong>and</strong> L C represent <strong>the</strong> lengths, while Z P0 <strong>and</strong><br />

Z C0 are <strong>the</strong> acoustic plane wave impedances <strong>of</strong> <strong>the</strong> main<br />

resonator <strong>and</strong> <strong>the</strong> <strong>chimney</strong>, respectively. The acoustic<br />

wavenumber is denoted by k. The radiation impedance<br />

at <strong>the</strong> open end Z R is calculated using <strong>the</strong> <strong>for</strong>mulas <strong>of</strong><br />

Levine <strong>and</strong> Schwinger [1], while Z M is evaluated using<br />

<strong>the</strong> relation given by Fletcher <strong>and</strong> Rossing in [2].<br />

As it is seen, <strong>the</strong> input admittance function Y S (f) =<br />

1/Z S (f) is dependent on various scaling dimensions. The<br />

set <strong>of</strong> <strong>the</strong>se parameters is denoted by P.<br />

The optimization objectives are defined as:<br />

1. Tune <strong>the</strong> fundamental frequency <strong>of</strong> <strong>the</strong> pipe f 1 to<br />

a given frequency.<br />

2. Tune an o<strong>the</strong>r eigenfrequency to be coincident with<br />

<strong>the</strong> given harmonic partial, f m = nf 1 , with m <strong>and</strong> n<br />

denoting <strong>the</strong> number <strong>of</strong> <strong>the</strong> eigenfrequency <strong>and</strong> <strong>the</strong><br />

chosen partial, respectively.<br />

To be able to per<strong>for</strong>m <strong>the</strong> optimization, a cost function<br />

C(P) is constructed, which measures <strong>the</strong> distance <strong>of</strong> <strong>the</strong><br />

actual configuration from <strong>the</strong> ideal one in a special metric.<br />

To minimize C(P) a general global optimization<br />

approach based on <strong>the</strong> simplex technique developed by<br />

Nelder <strong>and</strong> Mead [3] is applied. This method shows good<br />

per<strong>for</strong>mance <strong>and</strong> stability <strong>for</strong> a large set <strong>of</strong> functions [4].<br />

Various <strong>chimney</strong> pipes with different optimization objectives<br />

were built using <strong>the</strong> <strong>design</strong> process described above.<br />

Original <strong>and</strong> optimized pipe dimensions are given in Table<br />

1 <strong>for</strong> one <strong>of</strong> <strong>the</strong> experimental pipes. The effect <strong>of</strong><br />

<strong>the</strong> optimization is shown in Fig. 2. As it is seen, <strong>the</strong> 4 th<br />

eigenfrequency was tuned to <strong>the</strong> frequency <strong>of</strong> <strong>the</strong> 5 th partial,<br />

which was amplified by 15 dB relative to <strong>the</strong> original<br />

setup. A very good match between <strong>the</strong> calculated input<br />

admittance <strong>and</strong> <strong>the</strong> base line <strong>of</strong> <strong>the</strong> steady state <strong>sound</strong><br />

spectrum is also observed.<br />

Simulation <strong>of</strong> <strong>the</strong> <strong>tuning</strong> slot<br />

Tuning slots are <strong>tuning</strong> devices most <strong>of</strong>ten used on open<br />

straight metal pipes. By opening <strong>the</strong> resonator with


Sound pressure measured at mouth [dBSPL]<br />

Table 1: Dimensions <strong>of</strong> <strong>the</strong> example <strong>chimney</strong> pipe<br />

Parameters<br />

Values [mm]<br />

Original Optimized<br />

Chimney length 180.0 56.0<br />

Chimney diameter 19.0 29.3<br />

Resonator length 600.0 852.5<br />

Resonator diameter 79.0<br />

Mouth width 19.0<br />

Mouth height 60.0<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

SPL measured at mouth<br />

Calculated admittance<br />

Fundamental: 131 Hz<br />

Fifth partial: 655 Hz<br />

0<br />

0 500 1000 1500<br />

Frequency [Hz]<br />

Figure 2: Comparison <strong>of</strong> SPL measured at pipe mouth <strong>and</strong><br />

optimized input admittance <strong>of</strong> <strong>the</strong> example <strong>chimney</strong> pipe.<br />

a slot, <strong>the</strong> geometry becomes irregular <strong>and</strong> <strong>the</strong> onedimensional<br />

pipe model has to be extended to treat this<br />

discontinuity. Several models were developed <strong>and</strong> applied<br />

to model <strong>the</strong> similar case <strong>of</strong> woodwind instrument<br />

tone holes with success. However, <strong>tuning</strong> slots differ from<br />

<strong>the</strong>m by <strong>the</strong>ir non-circular shape <strong>and</strong> <strong>the</strong> thin pipe walls.<br />

Due to <strong>the</strong>se dissimilarities tone hole models can only be<br />

applied <strong>for</strong> <strong>tuning</strong> slots as a rough approximation.<br />

Recently, Lefebvre & Scavone [5] proposed a simulation<br />

method to investigate properties <strong>of</strong> woodwind tone holes<br />

with improved accuracy. Their technique can be interpreted<br />

to <strong>tuning</strong> slot simulation, as shown in Fig. 3. The<br />

basis <strong>of</strong> <strong>the</strong> method is to identify <strong>the</strong> transfer matrix<br />

(TM) <strong>of</strong> <strong>the</strong> <strong>tuning</strong> slot separate from <strong>the</strong> pipe by placing<br />

it into a symmetrical cylindrical section, <strong>for</strong> which<br />

<strong>the</strong> TM is known. Then <strong>the</strong> equivalent conentrated parameter<br />

circuit <strong>of</strong> <strong>the</strong> slot can be determined <strong>and</strong> used in<br />

<strong>the</strong> one-dimensional model.<br />

Validations per<strong>for</strong>med on experimental <strong>tuning</strong> slot pipes<br />

have shown good correspondence <strong>of</strong> <strong>the</strong> simulated input<br />

admittance <strong>and</strong> measured <strong>sound</strong> pressure, as displayed in<br />

Fig. 4. These results can serve as <strong>the</strong> basis <strong>of</strong> <strong>the</strong> development<br />

<strong>of</strong> an optimization method <strong>for</strong> <strong>the</strong> <strong>sound</strong> <strong>design</strong><br />

<strong>of</strong> <strong>tuning</strong> slot organ pipes, similar to <strong>the</strong> one presented<br />

<strong>for</strong> <strong>chimney</strong> pipes.<br />

Acknowledgments<br />

The financial support <strong>of</strong> <strong>the</strong> research by <strong>the</strong> European<br />

Commission (Grant Agreement Ref# 222104) is grate-<br />

60<br />

40<br />

20<br />

0<br />

−20<br />

−40<br />

Input admittance [dB re. 1/Z P0<br />

]<br />

Sound pressure measured at mouth [dBSPL]<br />

Symmetry plane A<br />

Symmetry plane B<br />

Tuning slot<br />

Domain extension<br />

(PML on surface)<br />

Input plane y<br />

z<br />

x<br />

Figure 3: Arrangement <strong>for</strong> numerical simulations<br />

110<br />

100<br />

SPL measured at mouth 70<br />

Simulated admittance<br />

90<br />

60<br />

80<br />

50<br />

70<br />

40<br />

60<br />

30<br />

50<br />

20<br />

40<br />

10<br />

30<br />

0<br />

20<br />

−10<br />

10<br />

−20<br />

0<br />

−30<br />

0 500 1000 1500<br />

Frequency [Hz]<br />

Figure 4: Validation <strong>of</strong> <strong>tuning</strong> slot simulation by comparison<br />

to measurement<br />

fully acknowledged. P. Rucz acknowledges <strong>the</strong> support<br />

<strong>of</strong> <strong>the</strong> Hungarian research grant TÁMOP - 4.2.2.B-10/1–<br />

2010-0009.<br />

References<br />

[1] H. Levine <strong>and</strong> J. Schwinger. On <strong>the</strong> radiation <strong>of</strong><br />

<strong>sound</strong> from an unflanged circular pipe. Physical Review,<br />

73(4):383–406, 1948.<br />

[2] N. H. Fletcher <strong>and</strong> T. D. Rossing. The physics <strong>of</strong><br />

musical instruments, page 475. Springer, 1991.<br />

[3] J. A. Nelder <strong>and</strong> R. Mead. A simplex method <strong>for</strong> function<br />

minimalization. The Computer Journal, 7:308–<br />

313, 1965.<br />

[4] J. C. Lagarias, J. A. Reed, M. H. Wright, <strong>and</strong> P. E.<br />

Wright. Convergence properties <strong>of</strong> <strong>the</strong> Nelder-Mead<br />

simplex method in low dimensions. SIAM Journal <strong>of</strong><br />

<strong>Optimization</strong>, 9(1):112–147, 1998.<br />

[5] A. Lefebvre <strong>and</strong> G. P. Scavone. Refinements to <strong>the</strong><br />

model <strong>of</strong> a single woodwind instrument tonehole. In<br />

Proceedings <strong>of</strong> 20th International Symposium on Music<br />

Acoustics, Sydney <strong>and</strong> Katoomba, Australia, August<br />

2010.<br />

Input admittance [dB re. 1/Z P0<br />

]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!