14.01.2014 Views

R - Fachgebiet Hochspannungstechnik

R - Fachgebiet Hochspannungstechnik

R - Fachgebiet Hochspannungstechnik

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The Electric Field - Fundamentals<br />

Maxwell's Equations<br />

Continuity equations ("Auxiliary equations")<br />

Continuity equation<br />

of magnetic flux density<br />

Continuity equation of current and<br />

dielectric displacement density<br />

Current density<br />

Enveloping<br />

surface A<br />

Dielectric<br />

displacement<br />

density<br />

Enveloping<br />

surface A<br />

Magnetic flux density<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 1 -


The Electric Field - Fundamentals<br />

Maxwell's Equations<br />

Continuity equations ("Auxiliary equations")<br />

Continuity equation of current<br />

and dielectric displacement<br />

density:<br />

∫∫<br />

A<br />

⎛<br />

⎜J<br />

⎝<br />

∂D<br />

⎞<br />

+ ⎟dA=<br />

∂t<br />

⎠<br />

0<br />

Conversion:<br />

∫∫<br />

A<br />

∂D d A =− ∫∫<br />

J d A = i()<br />

t<br />

∂t<br />

A<br />

Integration over time:<br />

∫∫<br />

DA d = ∫i()<br />

t dt = Q<br />

A<br />

Gauss's law<br />

∫∫ DA= d<br />

A<br />

Q<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 2 -


The Electric Field - Fundamentals<br />

Maxwell's Equations<br />

Continuity equations ("Auxiliary equations")<br />

Gauss's law:<br />

∫∫ DA= d<br />

A<br />

Q<br />

Enveloping<br />

surface A<br />

The charge Q equals the integral<br />

over the spatial charge density η in the<br />

volume V that is enclosed<br />

by the enveloping surface.<br />

Dielectric<br />

displacement<br />

density<br />

∫∫<br />

DA d<br />

A<br />

=<br />

∫∫∫<br />

V<br />

ηdV<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 3 -


Analytical Solution of Gauss's Law<br />

The electric field of some simple basic geometrical<br />

configurations (e.g. spherical- or cylindrical-symmetric<br />

ones), may easily be evaluated by solution of the<br />

Gauss's law.<br />

Many of the more complex real configurations in highvoltage<br />

technology may be referred back to these basic<br />

configurations.<br />

DA= d<br />

Q<br />

A<br />

Four-step procedure (sometimes five-step procedure)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 4 -


Analytical Solution of Gauss's Law<br />

1 st step<br />

Resolution of Gauss's Law<br />

∫∫<br />

D d A<br />

A<br />

= Q<br />

to the absolute value of D<br />

Interdependence of charge (that causes the electric field) and<br />

local distribution of absolute value of electric field strength E = D/ε<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 5 -


Analytical Solution of Gauss's Law<br />

2 nd step<br />

Evaluating the voltage difference by integration<br />

of the electric field strength along the path<br />

U<br />

21<br />

1<br />

= ∫ E ds<br />

2<br />

Interdependence of charge Q (that causes the electric field) and<br />

voltage U: Q = f(U)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 6 -


Analytical Solution of Gauss's Law<br />

3 rd step<br />

Evaluating the capacitance of the configuration<br />

Q<br />

C = U<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 7 -


Analytical Solution of Gauss's Law<br />

4 th step<br />

Evaluating the interdependence of electric field strength E<br />

and voltage U from the results of 1 st and 2 nd step: E = f(U)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 8 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 9 -


Analytical Solution of Gauss's Law<br />

Sphere in free space<br />

Point charge with opposite charge at infinity<br />

Enveloping<br />

surface A<br />

D is of same absolute value D(r) at any point<br />

in space at distance r (for reasons of symmetry)<br />

Vectors of D and A have the same<br />

direction at any point in space<br />

D·dA = D·dA<br />

Dielectric<br />

displacement<br />

density D<br />

Electric<br />

field<br />

strength E<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 10 -


Analytical Solution of Gauss's Law<br />

1 st step<br />

Resolution of Gauss's Law<br />

∫∫<br />

D d A<br />

A<br />

= Q<br />

to the absolute value of D<br />

∫∫<br />

A<br />

DA<br />

2<br />

d = Dr () ∫∫<br />

dA= Dr () ⋅ Ar () = Dr ()4 ⋅ π r = Q<br />

A<br />

Dr () =<br />

Er () =<br />

Q<br />

2<br />

4π<br />

r<br />

Q<br />

4πε<br />

r<br />

2<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 11 -


Analytical Solution of Gauss's Law<br />

2 nd step<br />

Evaluating the voltage difference by integration<br />

of the electric field strength along the path<br />

U<br />

21<br />

1<br />

2<br />

ds<br />

= ∫ E 2<br />

∞<br />

Q 1 Q ⎡ 1⎤<br />

Q<br />

U<br />

R∞<br />

= ∫E()<br />

r dr = ∫ dr = ⋅<br />

4πε r 4πε ⎢<br />

− =<br />

⎣ r⎥⎦<br />

4πεR<br />

R<br />

∞<br />

R<br />

∞<br />

R<br />

Q = 4πεRU<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 12 -


Analytical Solution of Gauss's Law<br />

3 rd step<br />

Evaluating the capacitance of the configuration<br />

Q<br />

C = U<br />

C<br />

Q<br />

= =<br />

U<br />

4πε<br />

R<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 13 -


Analytical Solution of Gauss's Law<br />

4 th step<br />

Evaluating the interdependence of electric field strength E<br />

and voltage U from the results of 1 st and 2 nd step: E = f(U)<br />

Q = 4πεRU<br />

Er ()<br />

=<br />

Q<br />

4πεr<br />

2<br />

1<br />

Enveloping<br />

surface A<br />

Er ()<br />

R<br />

= U⋅<br />

r<br />

2<br />

Dielectric<br />

displacement<br />

density D<br />

Electric<br />

field<br />

strength E<br />

E/E max<br />

0<br />

R<br />

r<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 14 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

R<br />

U<br />

Emax = E( R)<br />

= U = R<br />

2 R<br />

1<br />

E/E max<br />

0<br />

R<br />

r<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 15 -


Capacitive Loading by Shielding Electrodes<br />

Sphere electrode for 1 MV alternating voltage<br />

Goal: to chose the radius<br />

such that there are no<br />

partial discharges.<br />

Maximum elctric field strength<br />

on the electrode surface:<br />

E<br />

max<br />

U<br />

=<br />

r<br />

K<br />

K<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 16 -


Capacitive Loading by Shielding Electrodes<br />

Maximum allowed electric field<br />

strength in air to achieve freedom<br />

from partial discharges:<br />

E max = 25 kV/cm<br />

Required sphere radius:<br />

r<br />

K<br />

U<br />

1,4 MV<br />

K<br />

= = =<br />

Emax<br />

25 kV/cm<br />

56 cm<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 17 -


Capacitive Loading by Shielding Electrodes<br />

Capacitance of a sphere to ground<br />

(ground at infinity):<br />

C K = 4 πε 0 ε r r k<br />

ε 0 = 8,86 pF/m<br />

C K = 1,11 r K = 62 pF<br />

⇒ Capacitive current: 20 mA<br />

⇒ Reactive power: 20 kVA<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 18 -


Analytical Solution of Gauss's Law<br />

Concentric Spheres (Spheric Capacitor)<br />

Point charge with opposite charge at infinity<br />

Enveloping<br />

surface A<br />

D is of same absolute value D(r) at any point<br />

in space at distance r (for reasons of symmetry)<br />

Vectors of D and A have the same<br />

direction at any point in space<br />

D·dA = D·dA<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 19 -


Analytical Solution of Gauss's Law<br />

1 st step<br />

Resolution of Gauss's Law<br />

∫∫<br />

D d A<br />

A<br />

= Q<br />

to the absolute value of D<br />

∫∫<br />

A<br />

DA<br />

∫∫<br />

2<br />

d = D() r dA= D() r ⋅ A() r = D()4<br />

r ⋅ π r = Q<br />

A<br />

Dr () =<br />

Er () =<br />

Q<br />

2<br />

4π<br />

r<br />

Q<br />

4πε<br />

r<br />

2<br />

same procedure as for sphere in free space<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 20 -


Analytical Solution of Gauss's Law<br />

2 nd step<br />

Evaluating the voltage difference by integration<br />

of the electric field strength along the path<br />

1<br />

U<br />

21<br />

2<br />

ds<br />

= ∫ E Enveloping<br />

R<br />

R<br />

2 2<br />

2<br />

Q 1 Q ⎡ 1⎤<br />

Q ⎛ 1 1 ⎞ Q R − R<br />

URR<br />

= E()<br />

r dr dr<br />

1 2 ∫ = ∫ = ⋅ − = ⋅ − = ⋅<br />

R<br />

⎣ ⎦ ⎝ ⎠<br />

1 1<br />

R<br />

2 1<br />

2<br />

4πε r 4πε ⎢ r⎥ ⎜ ⎟<br />

R<br />

4πε R1 R2 4πε<br />

R<br />

R<br />

1⋅<br />

R2<br />

1<br />

R1⋅<br />

R2<br />

Q = 4πεU ⋅ R − R<br />

2 1<br />

surface A<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 21 -


Analytical Solution of Gauss's Law<br />

3 rd step<br />

Evaluating the capacitance of the configuration<br />

Q<br />

C = U<br />

Q R1⋅<br />

R2<br />

C = = 4πε<br />

⋅ U R − R<br />

2 1<br />

Gap spacing: s = R 2 - R 1<br />

s<br />

Enveloping<br />

surface A<br />

C<br />

= 4πε<br />

R ⋅<br />

1<br />

s<br />

+ R<br />

s<br />

1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 22 -


Analytical Solution of Gauss's Law<br />

Concentric spheres<br />

Sphere in free space<br />

C<br />

= 4πε<br />

R ⋅<br />

1<br />

s<br />

+ R<br />

s<br />

1<br />

C<br />

Q<br />

= =<br />

U<br />

4πε<br />

R<br />

s<br />

Enveloping<br />

surface A<br />

Enveloping<br />

surface A<br />

Dielectric<br />

displacement<br />

density D<br />

Electric<br />

field<br />

strength E<br />

⎛<br />

Cconc. = Cfree ⋅ ⎜1+<br />

R<br />

⎝ s<br />

1<br />

⎞<br />

⎟<br />

⎠<br />

C conc. always larger than C free<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 23 -


Analytical Solution of Gauss's Law<br />

4 th step<br />

Evaluating the interdependence of electric field strength E<br />

and voltage U from the results of 1 st and 2 nd step: E = f(U)<br />

R1⋅<br />

R2<br />

Q= 4πεU⋅<br />

R − R<br />

2 1<br />

1<br />

Er ()<br />

=<br />

Q<br />

4πεr<br />

2<br />

E/E max<br />

R<br />

⋅ R<br />

1<br />

1 2<br />

Er () = U⋅ ⋅ R<br />

2<br />

2<br />

− R<br />

1 r<br />

0<br />

R<br />

r<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 24 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

R<br />

⋅ R<br />

1<br />

1 2<br />

Er () = U⋅ ⋅ R<br />

2<br />

2<br />

− R<br />

1 r<br />

1<br />

E max for r = R 1<br />

E<br />

max<br />

U R2<br />

= ⋅<br />

R R − R<br />

1 2 1<br />

E/E max<br />

0<br />

R 1<br />

r<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 25 -


Analytical Solution of Gauss's Law<br />

Concentric spheres<br />

Spheres in free space<br />

E<br />

max<br />

U R2<br />

= ⋅<br />

R R − R<br />

1 2 1<br />

Emax = E( R)<br />

=<br />

U<br />

R<br />

E<br />

max<br />

= E ⋅<br />

max, free<br />

R<br />

R2<br />

− R<br />

2 1<br />

E max, conc. always larger than E max, free<br />

Example.... R 2 = 5·R 1<br />

E max, conc = 1.25·E max, free<br />

Further example.....<br />

Transformer shielding sphere<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 26 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

E<br />

max<br />

U R2<br />

= ⋅<br />

R R − R<br />

1 2 1<br />

R 1 = 0<br />

R 1 = R 2<br />

E max →∞<br />

E max →∞<br />

(at R 2 unchanged)<br />

There must be a minimum of maximum field strength!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 27 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

Putting the derivative<br />

∂E<br />

max<br />

∂R<br />

1<br />

to zero<br />

......<br />

R =<br />

1, opt<br />

R<br />

2<br />

2<br />

E<br />

max, opt<br />

=<br />

4U<br />

R<br />

2<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 28 -


Analytical Solution of Gauss's Law<br />

E max /E max, min<br />

Krümmungseffekt<br />

Abstandseffekt<br />

E<br />

max, opt<br />

=<br />

4U<br />

R<br />

2<br />

R 1 /R 2 = 0,5<br />

R 1 /R 2<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 29 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

Further considerations:<br />

E<br />

max<br />

U R2<br />

= ⋅<br />

R R − R<br />

1 2 1<br />

Gap spacing: s = R 2 - R 1<br />

E<br />

max<br />

U R U U<br />

R R − R R s<br />

2<br />

= ⋅ = +<br />

1 2 1 1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 30 -


Analytical Solution of Gauss's Law<br />

E<br />

max<br />

U R U U<br />

R R − R R s<br />

2<br />

= ⋅ = +<br />

1 2 1 1<br />

Maximum electric field strength<br />

of a sphere in free space<br />

Electric field strength of an homogeneous<br />

configuration of gap spacing s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 31 -


Analytical Solution of Gauss's Law<br />

E<br />

max<br />

U R U U<br />

R R − R R s<br />

2<br />

= ⋅ = +<br />

1 2 1 1<br />

Curvature effect:<br />

U U U<br />

R > → E ≈<br />

1 max<br />

R1 s R1<br />

• Electric field strength governed by sphere radius<br />

• Increase of gap spacing of virtually no impact<br />

on maximum electric field strength<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 32 -


Analytical Solution of Gauss's Law<br />

E<br />

max<br />

U R U U<br />

R R − R R s<br />

2<br />

= ⋅ = +<br />

1 2 1 1<br />

Distance effect:<br />

U U U<br />

R >> s →


Analytical Solution of Gauss's Law<br />

E max /E max, min<br />

Distance-<br />

Krümmungseffekt<br />

Curvatureeffect<br />

Abstandseffekeffect<br />

R 1 /R 2 = 0,5 0.5<br />

R 1 /R 2<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 34 -<br />

l


Analytical Solution of Gauss's Law<br />

Configurations similar to "sphere in free space" and<br />

"concentric sphere"-configuration<br />

Connector of<br />

high-voltage leads<br />

Shielding electrode<br />

in the corner of an<br />

high-voltage lab<br />

Shielding electrode<br />

in free space<br />

Elbow of<br />

a GIS<br />

Pressurized gas<br />

capacitor<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 35 -


Analytical Solution of Gauss's Law<br />

Coaxial cylinders<br />

Coaxial configuration of length z<br />

Enveloping<br />

surface A<br />

Stray effects at the edges neglected<br />

D is of same absolute value D(r) at any point<br />

in space at distance r (for reasons of symmetry)<br />

Vectors of D and A have the same<br />

direction at any point in space<br />

D·dA = D·dA<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 36 -


Analytical Solution of Gauss's Law<br />

1 st step<br />

Resolution of Gauss's Law<br />

∫∫<br />

D d A<br />

A<br />

= Q<br />

to the absolute value of D<br />

∫∫<br />

A<br />

∫∫<br />

DA d = Dr () dA= Dr () ⋅ Ar () = Dr ()2 ⋅ π rz=<br />

Q<br />

A<br />

Dr () =<br />

Er () =<br />

Q<br />

2π<br />

rz<br />

Q<br />

2πε<br />

rz<br />

similar dependencies as for concentric spheres (but decrease with 1/r)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 37 -


Analytical Solution of Gauss's Law<br />

2 nd step<br />

Evaluating the voltage difference by integration<br />

of the electric field strength along the path<br />

1<br />

U<br />

21<br />

= ∫ E ds<br />

2<br />

R<br />

2 2<br />

Q 1 Q R2<br />

Q R<br />

URR<br />

= () [ ln ] ln<br />

1 2 ∫ E r dr = dr r<br />

R1<br />

2πε z∫<br />

= ⋅ = ⋅<br />

r 2πε z 2πε<br />

z R<br />

R<br />

1 1<br />

R<br />

R<br />

2<br />

1<br />

Q<br />

2πε<br />

z<br />

= ⋅U<br />

R2<br />

ln<br />

R<br />

1<br />

Enveloping<br />

surface A<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 38 -


Analytical Solution of Gauss's Law<br />

3 rd step<br />

Evaluating the capacitance of the configuration<br />

Q<br />

C = U<br />

C<br />

Q<br />

= =<br />

U<br />

2πε<br />

z<br />

R2<br />

ln<br />

R<br />

1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 39 -


Analytical Solution of Gauss's Law<br />

4 th step<br />

Evaluating the interdependence of electric field strength E<br />

and voltage U from the results of 1 st and 2 nd step: E = f(U)<br />

Q<br />

2πε<br />

z<br />

= ⋅U<br />

R2<br />

ln<br />

R<br />

1<br />

Er ()<br />

=<br />

Q<br />

2πεrz<br />

Er ()<br />

=<br />

r<br />

U<br />

⋅ln<br />

R<br />

R<br />

2<br />

1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 40 -


Analytical Solution of Gauss's Law<br />

E<br />

U/R 1<br />

1<br />

konzentrische Concentric spheres Kugeln<br />

Kugel Sphere frei in im free Raum space<br />

koaxiale Coaxial cylinders Zylinder<br />

Sphere in free space<br />

Er ()<br />

R<br />

= U⋅<br />

r<br />

2<br />

Concentric spheres<br />

R<br />

⋅ R<br />

1<br />

1 2<br />

Er () = U⋅ ⋅ R<br />

2<br />

2<br />

− R<br />

1 r<br />

r/R 1<br />

(R 5·R 1 = 1) (R 2 = 1 )<br />

Relative electric field distributions in comparison: sphere in free space,<br />

concentric spheres, coaxial cylinders<br />

Coaxial cylinders<br />

U<br />

Er () =<br />

R2<br />

r ⋅ln<br />

R<br />

1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 41 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Er () =<br />

U<br />

r ⋅ln<br />

R<br />

2<br />

R1<br />

E max for r = R 1<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

E<br />

= E =<br />

max 1<br />

R<br />

1<br />

U<br />

⋅ln<br />

R<br />

R<br />

2<br />

1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 42 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

E<br />

max 1<br />

R 1 = 0<br />

= E =<br />

R<br />

1<br />

U<br />

⋅ln<br />

R<br />

R<br />

2<br />

1<br />

E max →∞<br />

R 1 = R 2<br />

E max →∞<br />

There must be a minimum of maximum field strength!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 43 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

E<br />

∂Emax<br />

Putting the derivative to zero ......<br />

⎛R<br />

⎞<br />

2<br />

∂ ⎜ ⎟<br />

⎝ R1<br />

⎠<br />

U U R<br />

= E = = ⋅<br />

R<br />

R1<br />

⋅ln<br />

R<br />

ln<br />

R<br />

max 1<br />

R<br />

R<br />

R<br />

2 1<br />

2 2 2<br />

1 1<br />

u<br />

v<br />

What is needed?<br />

' ' '<br />

⎛u⎞ uv − uv<br />

Quotientenregel : ⎜ ⎟ =<br />

2<br />

⎝v<br />

⎠ v<br />

d ( ln x)=<br />

1<br />

dx<br />

x<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 44 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

max<br />

Putting the derivative to zero ......<br />

⎛ R<br />

⎜<br />

⎝ R<br />

R<br />

2<br />

1<br />

⎞<br />

⎟<br />

⎠<br />

opt<br />

= e =<br />

2<br />

1, opt 2<br />

∂E<br />

⎛R<br />

∂ ⎜<br />

⎝ R<br />

2,718<br />

Optimized maximum el. field strength:<br />

R<br />

= = 0,368⋅R<br />

Emax, opt<br />

e<br />

2<br />

1<br />

⎞<br />

⎟<br />

⎠<br />

U U e⋅U<br />

= = =<br />

⎛ R ⎞ R<br />

2<br />

1, opt<br />

R2<br />

R1, opt<br />

ln ⎜ ⎟<br />

⎝ R ⎠<br />

1 opt<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 45 -


Analytical Solution of Gauss's Law<br />

Concentric spheres<br />

Coaxial cylinders<br />

E<br />

max, opt<br />

4U<br />

R<br />

= max, opt<br />

2<br />

E<br />

=<br />

eU ⋅<br />

R<br />

2<br />

E max for concentric spheres always larger than for coaxial cylinders<br />

Reason: Curvature in further dimension of space (z-direction)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 46 -


Analytical Solution of Gauss's Law<br />

E 1<br />

E 1, opt R 1 = R 2 /e<br />

E 1, opt<br />

R 1 /R 2<br />

But: û d,max at smaller ratio of radii than 1/e<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 47 -


Analytical Solution of Gauss's Law<br />

Homogeneous field (plate capacitor)<br />

Stray effects at the edges neglected<br />

D is of same absolute value D at any point<br />

of enveloping surface A<br />

Vectors of D and A have the same<br />

direction at any point in space<br />

D·dA = D·dA<br />

Enveloping<br />

surface A<br />

s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 48 -


Analytical Solution of Gauss's Law<br />

1 st step<br />

Resolution of Gauss's Law<br />

∫∫<br />

D d A<br />

A<br />

= Q<br />

to the absolute value of D<br />

∫∫<br />

A<br />

∫∫<br />

DA d = D dA= D⋅ A=<br />

Q<br />

A<br />

Q<br />

Dx ( ) = = const.<br />

A<br />

Q<br />

Ex ( ) = = const.<br />

= E<br />

ε A<br />

0<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 49 -


Analytical Solution of Gauss's Law<br />

2 nd step<br />

Evaluating the voltage difference by integration<br />

of the electric field strength along the path<br />

1<br />

U<br />

21<br />

= ∫ E ds<br />

2<br />

s<br />

Q s<br />

U = ⋅<br />

∫ E( x)<br />

dx = E ⋅ s = ε ⋅ A<br />

0<br />

Q<br />

=<br />

ε ⋅<br />

A⋅U<br />

s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 50 -


Analytical Solution of Gauss's Law<br />

3 rd step<br />

Evaluating the capacitance of the configuration<br />

Q<br />

C = U<br />

Q<br />

=<br />

ε ⋅<br />

A⋅U<br />

s<br />

Q ε ⋅ A<br />

C = = U s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 51 -


Analytical Solution of Gauss's Law<br />

4 th step<br />

Evaluating the interdependence of electric field strength E<br />

and voltage U from the results of 1 st and 2 nd step: E = f(U)<br />

Q<br />

ε ⋅A⋅U<br />

s<br />

Q<br />

Ex ( ) = = const.<br />

= E<br />

ε A<br />

=<br />

0<br />

Q U<br />

Ex ( ) = = = const.<br />

ε ⋅ A s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 52 -


Analytical Solution of Gauss's Law<br />

Borda profile (left) and Rogowski profile (right)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 53 -


Analytical Solution of Gauss's Law<br />

Electric field at the edge of a plate capacitor of Borda profile<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 54 -


Utilization Factors according to Schwaiger<br />

Utilization factor<br />

η =<br />

E<br />

E<br />

0<br />

max<br />

Degree of inhomogenity<br />

1 E<br />

E<br />

max<br />

0<br />

E<br />

0<br />

U<br />

=<br />

s<br />

Electric field of an homogeneous<br />

configuration of same spacing<br />

"average electric field strength"<br />

η = 1 1<br />

η ≤ 1<br />

and<br />

η ≥ , resp.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 55 -


Utilization Factors according to Schwaiger<br />

η is a function of the geometrical characteristic, i.e. of variables p and q:<br />

p<br />

=<br />

s<br />

+<br />

r<br />

r<br />

2r<br />

2R<br />

2r<br />

s<br />

2r<br />

s<br />

2R<br />

q<br />

=<br />

R<br />

r<br />

2R<br />

2r<br />

s<br />

q = ∞<br />

r ... radius of electrode of more pronounced curvature<br />

R ... radius of electrode of less pronounced curvature<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 56 -


Utilization Factors according to Schwaiger<br />

Tables ......<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 57 -


Utilization Factors according to Schwaiger<br />

... or curves<br />

Spheres<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 58 -


Utilization Factors according to Schwaiger<br />

Breakdown voltage<br />

Û d = Ê d·s·η<br />

But.....<br />

Ê d depends on<br />

geometry!<br />

Breakdown electric field strength of air<br />

at 1013 hPa, 20 °C<br />

acc. to W. O. Schumann: "Elektrische Durchbruchfeldstärke von<br />

Gasen", Springer 1923<br />

for cylinders<br />

for spheres<br />

for plates<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 59 -


Rules for 2D Graphical Electric Field Evaluation<br />

z: length of configuration<br />

Field lines and equipotential lines are perpendicular to each other.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 60 -


Rules for 2D Graphical Electric Field Evaluation<br />

z: length of configuration<br />

Electrode surface lines are equipotential lines.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 61 -


Rules for 2D Graphical Electric Field Evaluation<br />

High-voltage potential<br />

Reference potential<br />

z: length of configuration<br />

The potential distribution is given in percentage values.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 62 -


Rules for 2D Graphical Electric Field Evaluation<br />

ΔU = a·E<br />

z: length of configuration<br />

Distance a between two equiquipotential lines is equal to<br />

always the same potential difference ΔU.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 63 -


Rules for 2D Graphical Electric Field Evaluation<br />

ΔQ = D·ΔA = ε·E·ΔA = ε·E·b·z<br />

z: length of configuration<br />

Distance b between two field lines is equal to<br />

always the same charge difference ΔQ on the electrode surfaces.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 64 -


Rules for 2D Graphical Electric Field Evaluation<br />

Rectangular mesh at<br />

edge lengths a and b<br />

Capacitance per mesh cell<br />

at edge lengths a and b:<br />

ΔQ ε ⋅E⋅b⋅z b<br />

Δ C = = = ε ⋅z⋅ = const.<br />

ΔU a⋅E a<br />

z: length of configuration<br />

Thus, also b/a = const.<br />

Appropriate choice:<br />

b/a = 1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 65 -


Rules for 2D Graphical Electric Field Evaluation<br />

z: length of configuration<br />

b/a = 1<br />

All four edges of a mesh cell must touch inscribed circles.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 66 -


Rules for 2D Graphical Electric Field Evaluation<br />

Total capacitance:<br />

np<br />

C = ⋅Δ C = ε ⋅z⋅<br />

n<br />

s<br />

n<br />

n<br />

p<br />

s<br />

z: length of configuration<br />

n p … number of cells in parallel<br />

n s … number of cells in series<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 67 -


Rules for 2D Graphical Electric Field Evaluation<br />

Example: Electric field at the edge of a plate capacitor<br />

Rough approximation of field and potential distribution<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 68 -


Rules for 2D Graphical Electric Field Evaluation<br />

Example: Electric field at the edge of a plate capacitor<br />

Improved field and potential distribution<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 69 -


Rules for 2D Graphical Electric Field Evaluation<br />

Example: Electric field at the edge of a plate capacitor<br />

Further improved field and potential distribution<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 70 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!