14.01.2014 Views

R - Fachgebiet Hochspannungstechnik

R - Fachgebiet Hochspannungstechnik

R - Fachgebiet Hochspannungstechnik

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Electric Field - Fundamentals<br />

Maxwell's Equations<br />

Continuity equations ("Auxiliary equations")<br />

Continuity equation<br />

of magnetic flux density<br />

Continuity equation of current and<br />

dielectric displacement density<br />

Current density<br />

Enveloping<br />

surface A<br />

Dielectric<br />

displacement<br />

density<br />

Enveloping<br />

surface A<br />

Magnetic flux density<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 1 -


The Electric Field - Fundamentals<br />

Maxwell's Equations<br />

Continuity equations ("Auxiliary equations")<br />

Continuity equation of current<br />

and dielectric displacement<br />

density:<br />

∫∫<br />

A<br />

⎛<br />

⎜J<br />

⎝<br />

∂D<br />

⎞<br />

+ ⎟dA=<br />

∂t<br />

⎠<br />

0<br />

Conversion:<br />

∫∫<br />

A<br />

∂D d A =− ∫∫<br />

J d A = i()<br />

t<br />

∂t<br />

A<br />

Integration over time:<br />

∫∫<br />

DA d = ∫i()<br />

t dt = Q<br />

A<br />

Gauss's law<br />

∫∫ DA= d<br />

A<br />

Q<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 2 -


The Electric Field - Fundamentals<br />

Maxwell's Equations<br />

Continuity equations ("Auxiliary equations")<br />

Gauss's law:<br />

∫∫ DA= d<br />

A<br />

Q<br />

Enveloping<br />

surface A<br />

The charge Q equals the integral<br />

over the spatial charge density η in the<br />

volume V that is enclosed<br />

by the enveloping surface.<br />

Dielectric<br />

displacement<br />

density<br />

∫∫<br />

DA d<br />

A<br />

=<br />

∫∫∫<br />

V<br />

ηdV<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 3 -


Analytical Solution of Gauss's Law<br />

The electric field of some simple basic geometrical<br />

configurations (e.g. spherical- or cylindrical-symmetric<br />

ones), may easily be evaluated by solution of the<br />

Gauss's law.<br />

Many of the more complex real configurations in highvoltage<br />

technology may be referred back to these basic<br />

configurations.<br />

DA= d<br />

Q<br />

A<br />

Four-step procedure (sometimes five-step procedure)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 4 -


Analytical Solution of Gauss's Law<br />

1 st step<br />

Resolution of Gauss's Law<br />

∫∫<br />

D d A<br />

A<br />

= Q<br />

to the absolute value of D<br />

Interdependence of charge (that causes the electric field) and<br />

local distribution of absolute value of electric field strength E = D/ε<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 5 -


Analytical Solution of Gauss's Law<br />

2 nd step<br />

Evaluating the voltage difference by integration<br />

of the electric field strength along the path<br />

U<br />

21<br />

1<br />

= ∫ E ds<br />

2<br />

Interdependence of charge Q (that causes the electric field) and<br />

voltage U: Q = f(U)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 6 -


Analytical Solution of Gauss's Law<br />

3 rd step<br />

Evaluating the capacitance of the configuration<br />

Q<br />

C = U<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 7 -


Analytical Solution of Gauss's Law<br />

4 th step<br />

Evaluating the interdependence of electric field strength E<br />

and voltage U from the results of 1 st and 2 nd step: E = f(U)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 8 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 9 -


Analytical Solution of Gauss's Law<br />

Sphere in free space<br />

Point charge with opposite charge at infinity<br />

Enveloping<br />

surface A<br />

D is of same absolute value D(r) at any point<br />

in space at distance r (for reasons of symmetry)<br />

Vectors of D and A have the same<br />

direction at any point in space<br />

D·dA = D·dA<br />

Dielectric<br />

displacement<br />

density D<br />

Electric<br />

field<br />

strength E<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 10 -


Analytical Solution of Gauss's Law<br />

1 st step<br />

Resolution of Gauss's Law<br />

∫∫<br />

D d A<br />

A<br />

= Q<br />

to the absolute value of D<br />

∫∫<br />

A<br />

DA<br />

2<br />

d = Dr () ∫∫<br />

dA= Dr () ⋅ Ar () = Dr ()4 ⋅ π r = Q<br />

A<br />

Dr () =<br />

Er () =<br />

Q<br />

2<br />

4π<br />

r<br />

Q<br />

4πε<br />

r<br />

2<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 11 -


Analytical Solution of Gauss's Law<br />

2 nd step<br />

Evaluating the voltage difference by integration<br />

of the electric field strength along the path<br />

U<br />

21<br />

1<br />

2<br />

ds<br />

= ∫ E 2<br />

∞<br />

Q 1 Q ⎡ 1⎤<br />

Q<br />

U<br />

R∞<br />

= ∫E()<br />

r dr = ∫ dr = ⋅<br />

4πε r 4πε ⎢<br />

− =<br />

⎣ r⎥⎦<br />

4πεR<br />

R<br />

∞<br />

R<br />

∞<br />

R<br />

Q = 4πεRU<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 12 -


Analytical Solution of Gauss's Law<br />

3 rd step<br />

Evaluating the capacitance of the configuration<br />

Q<br />

C = U<br />

C<br />

Q<br />

= =<br />

U<br />

4πε<br />

R<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 13 -


Analytical Solution of Gauss's Law<br />

4 th step<br />

Evaluating the interdependence of electric field strength E<br />

and voltage U from the results of 1 st and 2 nd step: E = f(U)<br />

Q = 4πεRU<br />

Er ()<br />

=<br />

Q<br />

4πεr<br />

2<br />

1<br />

Enveloping<br />

surface A<br />

Er ()<br />

R<br />

= U⋅<br />

r<br />

2<br />

Dielectric<br />

displacement<br />

density D<br />

Electric<br />

field<br />

strength E<br />

E/E max<br />

0<br />

R<br />

r<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 14 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

R<br />

U<br />

Emax = E( R)<br />

= U = R<br />

2 R<br />

1<br />

E/E max<br />

0<br />

R<br />

r<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 15 -


Capacitive Loading by Shielding Electrodes<br />

Sphere electrode for 1 MV alternating voltage<br />

Goal: to chose the radius<br />

such that there are no<br />

partial discharges.<br />

Maximum elctric field strength<br />

on the electrode surface:<br />

E<br />

max<br />

U<br />

=<br />

r<br />

K<br />

K<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 16 -


Capacitive Loading by Shielding Electrodes<br />

Maximum allowed electric field<br />

strength in air to achieve freedom<br />

from partial discharges:<br />

E max = 25 kV/cm<br />

Required sphere radius:<br />

r<br />

K<br />

U<br />

1,4 MV<br />

K<br />

= = =<br />

Emax<br />

25 kV/cm<br />

56 cm<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 17 -


Capacitive Loading by Shielding Electrodes<br />

Capacitance of a sphere to ground<br />

(ground at infinity):<br />

C K = 4 πε 0 ε r r k<br />

ε 0 = 8,86 pF/m<br />

C K = 1,11 r K = 62 pF<br />

⇒ Capacitive current: 20 mA<br />

⇒ Reactive power: 20 kVA<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 18 -


Analytical Solution of Gauss's Law<br />

Concentric Spheres (Spheric Capacitor)<br />

Point charge with opposite charge at infinity<br />

Enveloping<br />

surface A<br />

D is of same absolute value D(r) at any point<br />

in space at distance r (for reasons of symmetry)<br />

Vectors of D and A have the same<br />

direction at any point in space<br />

D·dA = D·dA<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 19 -


Analytical Solution of Gauss's Law<br />

1 st step<br />

Resolution of Gauss's Law<br />

∫∫<br />

D d A<br />

A<br />

= Q<br />

to the absolute value of D<br />

∫∫<br />

A<br />

DA<br />

∫∫<br />

2<br />

d = D() r dA= D() r ⋅ A() r = D()4<br />

r ⋅ π r = Q<br />

A<br />

Dr () =<br />

Er () =<br />

Q<br />

2<br />

4π<br />

r<br />

Q<br />

4πε<br />

r<br />

2<br />

same procedure as for sphere in free space<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 20 -


Analytical Solution of Gauss's Law<br />

2 nd step<br />

Evaluating the voltage difference by integration<br />

of the electric field strength along the path<br />

1<br />

U<br />

21<br />

2<br />

ds<br />

= ∫ E Enveloping<br />

R<br />

R<br />

2 2<br />

2<br />

Q 1 Q ⎡ 1⎤<br />

Q ⎛ 1 1 ⎞ Q R − R<br />

URR<br />

= E()<br />

r dr dr<br />

1 2 ∫ = ∫ = ⋅ − = ⋅ − = ⋅<br />

R<br />

⎣ ⎦ ⎝ ⎠<br />

1 1<br />

R<br />

2 1<br />

2<br />

4πε r 4πε ⎢ r⎥ ⎜ ⎟<br />

R<br />

4πε R1 R2 4πε<br />

R<br />

R<br />

1⋅<br />

R2<br />

1<br />

R1⋅<br />

R2<br />

Q = 4πεU ⋅ R − R<br />

2 1<br />

surface A<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 21 -


Analytical Solution of Gauss's Law<br />

3 rd step<br />

Evaluating the capacitance of the configuration<br />

Q<br />

C = U<br />

Q R1⋅<br />

R2<br />

C = = 4πε<br />

⋅ U R − R<br />

2 1<br />

Gap spacing: s = R 2 - R 1<br />

s<br />

Enveloping<br />

surface A<br />

C<br />

= 4πε<br />

R ⋅<br />

1<br />

s<br />

+ R<br />

s<br />

1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 22 -


Analytical Solution of Gauss's Law<br />

Concentric spheres<br />

Sphere in free space<br />

C<br />

= 4πε<br />

R ⋅<br />

1<br />

s<br />

+ R<br />

s<br />

1<br />

C<br />

Q<br />

= =<br />

U<br />

4πε<br />

R<br />

s<br />

Enveloping<br />

surface A<br />

Enveloping<br />

surface A<br />

Dielectric<br />

displacement<br />

density D<br />

Electric<br />

field<br />

strength E<br />

⎛<br />

Cconc. = Cfree ⋅ ⎜1+<br />

R<br />

⎝ s<br />

1<br />

⎞<br />

⎟<br />

⎠<br />

C conc. always larger than C free<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 23 -


Analytical Solution of Gauss's Law<br />

4 th step<br />

Evaluating the interdependence of electric field strength E<br />

and voltage U from the results of 1 st and 2 nd step: E = f(U)<br />

R1⋅<br />

R2<br />

Q= 4πεU⋅<br />

R − R<br />

2 1<br />

1<br />

Er ()<br />

=<br />

Q<br />

4πεr<br />

2<br />

E/E max<br />

R<br />

⋅ R<br />

1<br />

1 2<br />

Er () = U⋅ ⋅ R<br />

2<br />

2<br />

− R<br />

1 r<br />

0<br />

R<br />

r<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 24 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

R<br />

⋅ R<br />

1<br />

1 2<br />

Er () = U⋅ ⋅ R<br />

2<br />

2<br />

− R<br />

1 r<br />

1<br />

E max for r = R 1<br />

E<br />

max<br />

U R2<br />

= ⋅<br />

R R − R<br />

1 2 1<br />

E/E max<br />

0<br />

R 1<br />

r<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 25 -


Analytical Solution of Gauss's Law<br />

Concentric spheres<br />

Spheres in free space<br />

E<br />

max<br />

U R2<br />

= ⋅<br />

R R − R<br />

1 2 1<br />

Emax = E( R)<br />

=<br />

U<br />

R<br />

E<br />

max<br />

= E ⋅<br />

max, free<br />

R<br />

R2<br />

− R<br />

2 1<br />

E max, conc. always larger than E max, free<br />

Example.... R 2 = 5·R 1<br />

E max, conc = 1.25·E max, free<br />

Further example.....<br />

Transformer shielding sphere<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 26 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

E<br />

max<br />

U R2<br />

= ⋅<br />

R R − R<br />

1 2 1<br />

R 1 = 0<br />

R 1 = R 2<br />

E max →∞<br />

E max →∞<br />

(at R 2 unchanged)<br />

There must be a minimum of maximum field strength!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 27 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

Putting the derivative<br />

∂E<br />

max<br />

∂R<br />

1<br />

to zero<br />

......<br />

R =<br />

1, opt<br />

R<br />

2<br />

2<br />

E<br />

max, opt<br />

=<br />

4U<br />

R<br />

2<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 28 -


Analytical Solution of Gauss's Law<br />

E max /E max, min<br />

Krümmungseffekt<br />

Abstandseffekt<br />

E<br />

max, opt<br />

=<br />

4U<br />

R<br />

2<br />

R 1 /R 2 = 0,5<br />

R 1 /R 2<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 29 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

Further considerations:<br />

E<br />

max<br />

U R2<br />

= ⋅<br />

R R − R<br />

1 2 1<br />

Gap spacing: s = R 2 - R 1<br />

E<br />

max<br />

U R U U<br />

R R − R R s<br />

2<br />

= ⋅ = +<br />

1 2 1 1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 30 -


Analytical Solution of Gauss's Law<br />

E<br />

max<br />

U R U U<br />

R R − R R s<br />

2<br />

= ⋅ = +<br />

1 2 1 1<br />

Maximum electric field strength<br />

of a sphere in free space<br />

Electric field strength of an homogeneous<br />

configuration of gap spacing s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 31 -


Analytical Solution of Gauss's Law<br />

E<br />

max<br />

U R U U<br />

R R − R R s<br />

2<br />

= ⋅ = +<br />

1 2 1 1<br />

Curvature effect:<br />

U U U<br />

R > → E ≈<br />

1 max<br />

R1 s R1<br />

• Electric field strength governed by sphere radius<br />

• Increase of gap spacing of virtually no impact<br />

on maximum electric field strength<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 32 -


Analytical Solution of Gauss's Law<br />

E<br />

max<br />

U R U U<br />

R R − R R s<br />

2<br />

= ⋅ = +<br />

1 2 1 1<br />

Distance effect:<br />

U U U<br />

R >> s →


Analytical Solution of Gauss's Law<br />

E max /E max, min<br />

Distance-<br />

Krümmungseffekt<br />

Curvatureeffect<br />

Abstandseffekeffect<br />

R 1 /R 2 = 0,5 0.5<br />

R 1 /R 2<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 34 -<br />

l


Analytical Solution of Gauss's Law<br />

Configurations similar to "sphere in free space" and<br />

"concentric sphere"-configuration<br />

Connector of<br />

high-voltage leads<br />

Shielding electrode<br />

in the corner of an<br />

high-voltage lab<br />

Shielding electrode<br />

in free space<br />

Elbow of<br />

a GIS<br />

Pressurized gas<br />

capacitor<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 35 -


Analytical Solution of Gauss's Law<br />

Coaxial cylinders<br />

Coaxial configuration of length z<br />

Enveloping<br />

surface A<br />

Stray effects at the edges neglected<br />

D is of same absolute value D(r) at any point<br />

in space at distance r (for reasons of symmetry)<br />

Vectors of D and A have the same<br />

direction at any point in space<br />

D·dA = D·dA<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 36 -


Analytical Solution of Gauss's Law<br />

1 st step<br />

Resolution of Gauss's Law<br />

∫∫<br />

D d A<br />

A<br />

= Q<br />

to the absolute value of D<br />

∫∫<br />

A<br />

∫∫<br />

DA d = Dr () dA= Dr () ⋅ Ar () = Dr ()2 ⋅ π rz=<br />

Q<br />

A<br />

Dr () =<br />

Er () =<br />

Q<br />

2π<br />

rz<br />

Q<br />

2πε<br />

rz<br />

similar dependencies as for concentric spheres (but decrease with 1/r)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 37 -


Analytical Solution of Gauss's Law<br />

2 nd step<br />

Evaluating the voltage difference by integration<br />

of the electric field strength along the path<br />

1<br />

U<br />

21<br />

= ∫ E ds<br />

2<br />

R<br />

2 2<br />

Q 1 Q R2<br />

Q R<br />

URR<br />

= () [ ln ] ln<br />

1 2 ∫ E r dr = dr r<br />

R1<br />

2πε z∫<br />

= ⋅ = ⋅<br />

r 2πε z 2πε<br />

z R<br />

R<br />

1 1<br />

R<br />

R<br />

2<br />

1<br />

Q<br />

2πε<br />

z<br />

= ⋅U<br />

R2<br />

ln<br />

R<br />

1<br />

Enveloping<br />

surface A<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 38 -


Analytical Solution of Gauss's Law<br />

3 rd step<br />

Evaluating the capacitance of the configuration<br />

Q<br />

C = U<br />

C<br />

Q<br />

= =<br />

U<br />

2πε<br />

z<br />

R2<br />

ln<br />

R<br />

1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 39 -


Analytical Solution of Gauss's Law<br />

4 th step<br />

Evaluating the interdependence of electric field strength E<br />

and voltage U from the results of 1 st and 2 nd step: E = f(U)<br />

Q<br />

2πε<br />

z<br />

= ⋅U<br />

R2<br />

ln<br />

R<br />

1<br />

Er ()<br />

=<br />

Q<br />

2πεrz<br />

Er ()<br />

=<br />

r<br />

U<br />

⋅ln<br />

R<br />

R<br />

2<br />

1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 40 -


Analytical Solution of Gauss's Law<br />

E<br />

U/R 1<br />

1<br />

konzentrische Concentric spheres Kugeln<br />

Kugel Sphere frei in im free Raum space<br />

koaxiale Coaxial cylinders Zylinder<br />

Sphere in free space<br />

Er ()<br />

R<br />

= U⋅<br />

r<br />

2<br />

Concentric spheres<br />

R<br />

⋅ R<br />

1<br />

1 2<br />

Er () = U⋅ ⋅ R<br />

2<br />

2<br />

− R<br />

1 r<br />

r/R 1<br />

(R 5·R 1 = 1) (R 2 = 1 )<br />

Relative electric field distributions in comparison: sphere in free space,<br />

concentric spheres, coaxial cylinders<br />

Coaxial cylinders<br />

U<br />

Er () =<br />

R2<br />

r ⋅ln<br />

R<br />

1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 41 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Er () =<br />

U<br />

r ⋅ln<br />

R<br />

2<br />

R1<br />

E max for r = R 1<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

E<br />

= E =<br />

max 1<br />

R<br />

1<br />

U<br />

⋅ln<br />

R<br />

R<br />

2<br />

1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 42 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

E<br />

max 1<br />

R 1 = 0<br />

= E =<br />

R<br />

1<br />

U<br />

⋅ln<br />

R<br />

R<br />

2<br />

1<br />

E max →∞<br />

R 1 = R 2<br />

E max →∞<br />

There must be a minimum of maximum field strength!<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 43 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

E<br />

∂Emax<br />

Putting the derivative to zero ......<br />

⎛R<br />

⎞<br />

2<br />

∂ ⎜ ⎟<br />

⎝ R1<br />

⎠<br />

U U R<br />

= E = = ⋅<br />

R<br />

R1<br />

⋅ln<br />

R<br />

ln<br />

R<br />

max 1<br />

R<br />

R<br />

R<br />

2 1<br />

2 2 2<br />

1 1<br />

u<br />

v<br />

What is needed?<br />

' ' '<br />

⎛u⎞ uv − uv<br />

Quotientenregel : ⎜ ⎟ =<br />

2<br />

⎝v<br />

⎠ v<br />

d ( ln x)=<br />

1<br />

dx<br />

x<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 44 -


Analytical Solution of Gauss's Law<br />

5 th step<br />

Evaluation of maximum electric field strength E max<br />

Optimization (e.g. minimization of electrical field strength E max )<br />

max<br />

Putting the derivative to zero ......<br />

⎛ R<br />

⎜<br />

⎝ R<br />

R<br />

2<br />

1<br />

⎞<br />

⎟<br />

⎠<br />

opt<br />

= e =<br />

2<br />

1, opt 2<br />

∂E<br />

⎛R<br />

∂ ⎜<br />

⎝ R<br />

2,718<br />

Optimized maximum el. field strength:<br />

R<br />

= = 0,368⋅R<br />

Emax, opt<br />

e<br />

2<br />

1<br />

⎞<br />

⎟<br />

⎠<br />

U U e⋅U<br />

= = =<br />

⎛ R ⎞ R<br />

2<br />

1, opt<br />

R2<br />

R1, opt<br />

ln ⎜ ⎟<br />

⎝ R ⎠<br />

1 opt<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 45 -


Analytical Solution of Gauss's Law<br />

Concentric spheres<br />

Coaxial cylinders<br />

E<br />

max, opt<br />

4U<br />

R<br />

= max, opt<br />

2<br />

E<br />

=<br />

eU ⋅<br />

R<br />

2<br />

E max for concentric spheres always larger than for coaxial cylinders<br />

Reason: Curvature in further dimension of space (z-direction)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 46 -


Analytical Solution of Gauss's Law<br />

E 1<br />

E 1, opt R 1 = R 2 /e<br />

E 1, opt<br />

R 1 /R 2<br />

But: û d,max at smaller ratio of radii than 1/e<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 47 -


Analytical Solution of Gauss's Law<br />

Homogeneous field (plate capacitor)<br />

Stray effects at the edges neglected<br />

D is of same absolute value D at any point<br />

of enveloping surface A<br />

Vectors of D and A have the same<br />

direction at any point in space<br />

D·dA = D·dA<br />

Enveloping<br />

surface A<br />

s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 48 -


Analytical Solution of Gauss's Law<br />

1 st step<br />

Resolution of Gauss's Law<br />

∫∫<br />

D d A<br />

A<br />

= Q<br />

to the absolute value of D<br />

∫∫<br />

A<br />

∫∫<br />

DA d = D dA= D⋅ A=<br />

Q<br />

A<br />

Q<br />

Dx ( ) = = const.<br />

A<br />

Q<br />

Ex ( ) = = const.<br />

= E<br />

ε A<br />

0<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 49 -


Analytical Solution of Gauss's Law<br />

2 nd step<br />

Evaluating the voltage difference by integration<br />

of the electric field strength along the path<br />

1<br />

U<br />

21<br />

= ∫ E ds<br />

2<br />

s<br />

Q s<br />

U = ⋅<br />

∫ E( x)<br />

dx = E ⋅ s = ε ⋅ A<br />

0<br />

Q<br />

=<br />

ε ⋅<br />

A⋅U<br />

s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 50 -


Analytical Solution of Gauss's Law<br />

3 rd step<br />

Evaluating the capacitance of the configuration<br />

Q<br />

C = U<br />

Q<br />

=<br />

ε ⋅<br />

A⋅U<br />

s<br />

Q ε ⋅ A<br />

C = = U s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 51 -


Analytical Solution of Gauss's Law<br />

4 th step<br />

Evaluating the interdependence of electric field strength E<br />

and voltage U from the results of 1 st and 2 nd step: E = f(U)<br />

Q<br />

ε ⋅A⋅U<br />

s<br />

Q<br />

Ex ( ) = = const.<br />

= E<br />

ε A<br />

=<br />

0<br />

Q U<br />

Ex ( ) = = = const.<br />

ε ⋅ A s<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 52 -


Analytical Solution of Gauss's Law<br />

Borda profile (left) and Rogowski profile (right)<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 53 -


Analytical Solution of Gauss's Law<br />

Electric field at the edge of a plate capacitor of Borda profile<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 54 -


Utilization Factors according to Schwaiger<br />

Utilization factor<br />

η =<br />

E<br />

E<br />

0<br />

max<br />

Degree of inhomogenity<br />

1 E<br />

E<br />

max<br />

0<br />

E<br />

0<br />

U<br />

=<br />

s<br />

Electric field of an homogeneous<br />

configuration of same spacing<br />

"average electric field strength"<br />

η = 1 1<br />

η ≤ 1<br />

and<br />

η ≥ , resp.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 55 -


Utilization Factors according to Schwaiger<br />

η is a function of the geometrical characteristic, i.e. of variables p and q:<br />

p<br />

=<br />

s<br />

+<br />

r<br />

r<br />

2r<br />

2R<br />

2r<br />

s<br />

2r<br />

s<br />

2R<br />

q<br />

=<br />

R<br />

r<br />

2R<br />

2r<br />

s<br />

q = ∞<br />

r ... radius of electrode of more pronounced curvature<br />

R ... radius of electrode of less pronounced curvature<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 56 -


Utilization Factors according to Schwaiger<br />

Tables ......<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 57 -


Utilization Factors according to Schwaiger<br />

... or curves<br />

Spheres<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 58 -


Utilization Factors according to Schwaiger<br />

Breakdown voltage<br />

Û d = Ê d·s·η<br />

But.....<br />

Ê d depends on<br />

geometry!<br />

Breakdown electric field strength of air<br />

at 1013 hPa, 20 °C<br />

acc. to W. O. Schumann: "Elektrische Durchbruchfeldstärke von<br />

Gasen", Springer 1923<br />

for cylinders<br />

for spheres<br />

for plates<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 59 -


Rules for 2D Graphical Electric Field Evaluation<br />

z: length of configuration<br />

Field lines and equipotential lines are perpendicular to each other.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 60 -


Rules for 2D Graphical Electric Field Evaluation<br />

z: length of configuration<br />

Electrode surface lines are equipotential lines.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 61 -


Rules for 2D Graphical Electric Field Evaluation<br />

High-voltage potential<br />

Reference potential<br />

z: length of configuration<br />

The potential distribution is given in percentage values.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 62 -


Rules for 2D Graphical Electric Field Evaluation<br />

ΔU = a·E<br />

z: length of configuration<br />

Distance a between two equiquipotential lines is equal to<br />

always the same potential difference ΔU.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 63 -


Rules for 2D Graphical Electric Field Evaluation<br />

ΔQ = D·ΔA = ε·E·ΔA = ε·E·b·z<br />

z: length of configuration<br />

Distance b between two field lines is equal to<br />

always the same charge difference ΔQ on the electrode surfaces.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 64 -


Rules for 2D Graphical Electric Field Evaluation<br />

Rectangular mesh at<br />

edge lengths a and b<br />

Capacitance per mesh cell<br />

at edge lengths a and b:<br />

ΔQ ε ⋅E⋅b⋅z b<br />

Δ C = = = ε ⋅z⋅ = const.<br />

ΔU a⋅E a<br />

z: length of configuration<br />

Thus, also b/a = const.<br />

Appropriate choice:<br />

b/a = 1<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 65 -


Rules for 2D Graphical Electric Field Evaluation<br />

z: length of configuration<br />

b/a = 1<br />

All four edges of a mesh cell must touch inscribed circles.<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 66 -


Rules for 2D Graphical Electric Field Evaluation<br />

Total capacitance:<br />

np<br />

C = ⋅Δ C = ε ⋅z⋅<br />

n<br />

s<br />

n<br />

n<br />

p<br />

s<br />

z: length of configuration<br />

n p … number of cells in parallel<br />

n s … number of cells in series<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 67 -


Rules for 2D Graphical Electric Field Evaluation<br />

Example: Electric field at the edge of a plate capacitor<br />

Rough approximation of field and potential distribution<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 68 -


Rules for 2D Graphical Electric Field Evaluation<br />

Example: Electric field at the edge of a plate capacitor<br />

Improved field and potential distribution<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 69 -


Rules for 2D Graphical Electric Field Evaluation<br />

Example: Electric field at the edge of a plate capacitor<br />

Further improved field and potential distribution<br />

<strong>Fachgebiet</strong><br />

<strong>Hochspannungstechnik</strong><br />

High-Voltage Technology / Chapter 6 - 70 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!