22.01.2014 Views

Maria Dinescu - IFA

Maria Dinescu - IFA

Maria Dinescu - IFA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Maria</strong> <strong>Dinescu</strong><br />

National Institute for Lasers,<br />

Plasma and Radiation Physics<br />

(NILPRP)<br />

http://ppam.inflpr.ro


NILPRP (National Institute for Lasers, Plasma and<br />

Radiation Physics) Bucharest, Romania<br />

• In the top position in the country as importance (dimension and<br />

scientific contribution)<br />

• Main field: lasers and plasma physics and applications<br />

• 450 peoples: 235 scientists, 60 PhD students<br />

• Five departments<br />

• Laser Department (PPAM)<br />

• Laboratory of Solid State and Quantum Electronics<br />

• Plasma Physics and Nuclear Fusion Laboratory<br />

• Low Temperature Plasma Laboratory<br />

• Accelerators Laboratory<br />

• Laser Metrology<br />

• Involved in national and international (EURATOM, FP7, NATO SfP,<br />

EUREKA etc.) projects


NILPRP<br />

PHOTONIC PROCESSING OF ADVANCED MATERIALS<br />

Group (PPAM)<br />

http://ppam.inflpr.ro<br />

The group was organized starting with 1996 and in present contains 17 qualified scientists and 2 technicians.<br />

Topic<br />

The activity is focused on laser processing of matter, with applications in thin films and nanostructures with<br />

functional properties, functional polymers, protein and cell transfer for tissue engineering, chemical sensors for the<br />

detection of warfare agents.<br />

Expertise:<br />

Thin films and heterostructures obtained by PLD and RF-PLD for different electronic applications :<br />

-Ferroelectrics, piezoelectrics and relaxors for electronic, microwave and optoelectronic applications: titanates (PZT,<br />

La doped PZT, BTO, BST, etc), niobites ( SBN, PMN, NKN), tantalates (SBT, BZT, NBT).<br />

-Zinc oxide (ZnO): piezoelectric, n-type semiconductor, p-type semiconductor- ZnO/MgxZn1-xO and<br />

MgxZn1-x/ ZnO /MgxZn1-x<br />

-III-V compounds: AlN, InN, GaN and their combinations.<br />

-Heterostructures: PMN/LSCO; PZT/TiN; CN/SiCN/SiC; SBN/STON.<br />

-High-k dielectric materials: ZrO2, ZrSixOy, HfO2, HfSixOy, Nb2O5, NbSixOy, Ta2O5, TaSixOy.<br />

-Wide band gap semiconductor metallic oxide: WOx.<br />

Nanomaterials for catalytic and biological applications:<br />

- catalytic systems and porous materials fabrication by laser and conventional techniques.<br />

- nanomaterials for drug delivery.


International Projects<br />

1999-2011<br />

• Romanian Coordinator of FP 7, FP7-ICT-2009-4-247868, e-LIFT “Laser printing of<br />

organic/inorganic material for the fabrication of electronic devices” project, (2010-2012)<br />

• NATO-SfP Project Co-Director 982671 project, Polymers based piezoelectric sensor array for<br />

chemical warfare agents detection, (2007-2011)<br />

• Romanian Coordinator of FP 6, NMP3-CT-2006-033297, 3D-DEMO, Single step 3D Deposition of<br />

complex nanopatterned Multifunctional Oxides thin films, project (2006-2010) Priority 3<br />

– NMP research area: 3.4.2.2-2 “Multifunctional ceramic thin films with radically new<br />

properties”<br />

• Romanian Coordinator of FP 5 IST –2001-33326 “Piezoelectric sensor arrays for<br />

biomolecular interactions and gas monitoring” (PISARRO) project (2002-2004)<br />

• NATO Linkage grant "Growth of Ferroelectric Thin Films by fs Pulsed Laser Deposition"<br />

(2003-2005)<br />

• NATO SfP Co-Director of the Project 97-1934, “ Laser Based Clean Technologies for Smart<br />

Sensor Applications”, (1999-2002)


RF Assisted Pulsed Laser Deposition<br />

Experimental set-up


Fundamentals of the MAPLE process<br />

Most of the laser energy is absorbed by the volatile matrix:<br />

• photochemical decomposition can be minimized<br />

Frozen<br />

target<br />

Laser<br />

light<br />

Thin film<br />

of<br />

polymer/<br />

protein<br />

Target<br />

holder,<br />

frozen<br />

Solvent<br />

molecules,<br />

pumped away<br />

Substrate<br />

The solvent and the solute concentration are chosen that<br />

• the solute can be dissolved without formation of clusters<br />

• no chemical or photochemical reactions between the solvent and<br />

solute


X-Y-Z processing system


X-Y-Z processing system


PPAM<br />

Processing<br />

Laboratory<br />

PHOTONIC PROCESSING OF ADVANCED MATERIALS Group (PPAM)<br />

Processing Equipments<br />

PLD and RF-PLD deposition systems<br />

12 cm<br />

x-y-z laser<br />

processing<br />

system<br />

(LIFT)


NILPRP<br />

Morphological analysis<br />

PHOTONIC PROCESSING OF ADVANCED MATERIALS Group (PPAM)<br />

Characterization Equipments<br />

Structural analysis<br />

AFM<br />

XRD<br />

Optical analysis<br />

Spectroellipsometer<br />

Dielectric and ferroelectric analysis<br />

Impedance analyzer<br />

Chemical analysis<br />

SIMS


Other equipments-INFLPR<br />

• SEM (Scanning Electron Microscope)<br />

• X-Ray diffractometer for powders, with<br />

temperature chamber<br />

• FTIR (Fourier Transform Infrared<br />

Spectroscopy)<br />

• Contact Angle Measurements<br />

• Plasma Spectroscopy<br />

• ….


Laser Induced Forward Transfer (LIFT)<br />

Laser light is focused on<br />

the target interface<br />

An expelling process<br />

takes place<br />

Ejected material is deposited<br />

on the receiving substrate<br />

• Precise and high density patterns<br />

• High spatial resolution<br />

• Contact or Non-contact, rapid, automated method<br />

• Flexibility as working distances, target material, size of the transferred droplets<br />

• No significant damage to transferred material under specific conditions …


OUR APPROACH: LIFT using a sacrificial release layer (TP)<br />

/Polymer<br />

TRIAZENE POLYMER<br />

Advantages<br />

Target<br />

(Nagel et al., Macromolecular Chemistry and Physics, 2007)<br />

•Avoid direct irradiation of sensitive<br />

material<br />

•After laser radiation large amount<br />

of gaseous products that acts as<br />

carrier for larger ablation products


Printing on sensor matrices<br />

Polymer λ Ф<br />

[mJ/cm 2 ]<br />

Bck<br />

pressure<br />

[mbar]<br />

Film<br />

thickne<br />

ss [nm]<br />

PIB 266 nm 0.2 ~ 10 -4 ~ 60<br />

PEI 0.4<br />

PECH 0.6<br />

XeCl, 308 nm, 1 Hz, Ф=400-500 mJ/cm 2 , TP 100nm<br />

PIB PEI<br />

PEI PECH<br />

DONOR<br />

DONOR<br />

DONOR<br />

RECEIVER<br />

400 µm 400 µm 400 µm<br />

15


Sensor array responses to simulant DMMP and EA<br />

2-port SAW resonators operating at 392 MHz.<br />

The interdigital transducers were shaped<br />

with a Gaussian apotization, with a wavelength<br />

of 8 and fingers overlap of 450µm, while the cavity<br />

length was 1276 µm.<br />

Frequency response against time of PEI, PIB and PECH<br />

polymers to different concentrations of DMMP.<br />

The frequency shift normalized to the central frequency<br />

(about 392 MHZ).


Sensor array responses to sarin nerve agent<br />

Tests carried aut at CBRN military base (Bucharest)<br />

The testing setup of SAW sensors with sarin gas<br />

Time response of a PIB coated sensor to<br />

4.6 ppm of Sarin/<br />

1.78 ppm of Sarin<br />

Response curve for PEI, PIB and PECH<br />

coated SAW sensors to<br />

different concentrations of Sarin<br />

17


NOT limited to polymer materials<br />

Examples of various materials<br />

Quantum dots, Xu et al,<br />

Nanotech (2007)<br />

Functional OLEDs, R. Fardel et al,<br />

Appl. Phys. Lett. (2007)<br />

Al, R. Fardel et al,<br />

Appl. Surf. Sci. (2007)<br />

GdGaO, Banks et al., (2008)<br />

Polystyrene microbeads, A. Palla-Papavlu et<br />

al., JAP (2010)<br />

Mammalian cells,<br />

Doraiswamy et al., Appl.Surf. Sci.(2006)<br />

Liposomes, A. Palla-Papavlu et al, Appl. Phys. A (2011)<br />

18


Furthermore: Polymer micropatterning for cellular behavior studies<br />

KEY PATTERNING PARAMETERS<br />

Laser fluence – 350 – 550 mJ/cm 2<br />

Thickness ratio PEI to TP – 150 nm TP/100 nm PEI<br />

(PEI thickness > TP thickness)<br />

Transfer distance – contact<br />

Minimum thickness of the TP layer – 100 nm<br />

Laser fluence mJ/cm 2<br />

550 500 450 400 350<br />

MATERIALS<br />

Polyethilene glycol (PEG)-Repellent for cells<br />

Polyethileneimine (PEI)-attachment vector<br />

Growth medium: 10 % FCS and 0.1 %<br />

penicilin/steptomicin<br />

Trypsyn-EDTA solution 0.25 and 0.02 in PBS<br />

DMEM with phenol red<br />

SH-SY5Y human neuroblastoma cells cultured in<br />

FCS-DMEM<br />

DONOR<br />

RECEIVER<br />

20 µm 20 µm<br />

Polymer spatially controlled micro patterning for cellular behavior study, V.<br />

Dinca et al, APA, 2011


Microfabrication of polystyrene microbead arrays by laser induced forward transfer, A. Palla-Papavlu et al, JAP, 2010<br />

Other polymers: Polystyrene microbeads<br />

(PS-µbead) microarrays<br />

Applications:<br />

Biosensing<br />

Bioseparation<br />

Biomolecule screening<br />

Experimental:<br />

Donor: PS-microbeads (size: 8 µm)<br />

Receiver: Thermanox coverslips<br />

Patterning system: XeCl, 308 nm,<br />

30ns, 1Hz<br />

Fluence: 80 mJ/cm 2 – 3.5 J/cm 2<br />

100 nm thick TP film as DRL<br />

Scale bar is 100 µm.


Polymer micropatterning for cellular behavior studies: Parameters optimization<br />

a) PEI array in cell medium<br />

b) SH-SY5Y distribution on patterned surfaces after one hour<br />

c) After one day in vitro. A clear clustering of neurons into aggregates is visible on the PEI pixel<br />

Average number of observed<br />

interconnecting neurite fascicles vs.<br />

the separation distance between the<br />

transferred PEI-pixels.<br />

a) PEI array in cell culture medium<br />

b) Neural cells attached on the substrate<br />

after 3 days in vitro. (scale bar is 200 µm)<br />

Polymer spatially controlled micro patterning for cellular behavior study, V. Dinca et al., submitted 2010


Liquid printing<br />

Liquid printing


1. Influence of DRL thickness – 60 nm, 150 nm and 350 nm<br />

2. Laser fluence<br />

3. Different glycerol concentrations (10 – 70 %)<br />

4. Time resolved imaging for 308 nm and 193 nm<br />

– laser fluences and glycerol concentration<br />

water + glycerol (50:50)<br />

scale bar is 40 µm.


International Cooperations<br />

• PSI Villigen –Thomas Lippert (ETH<br />

Zurich)<br />

• “OMCorbino” Institute for Acoustics and<br />

Sensors-CNR, Italy<br />

• Naval Research Laboratory, USA<br />

• FORTH-IESL Crete


http:ppam.inflpr.ro

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!