22.01.2014 Views

Association EURATOM - MEdC - IFA

Association EURATOM - MEdC - IFA

Association EURATOM - MEdC - IFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Tokamak neutron diagnostics based<br />

on the superheated fluid detector<br />

(SHFD)<br />

Vasile (Liviu) Zoita<br />

National Institute for Laser, Plasma and Radiation Physics<br />

(NILPRP)<br />

Plasma Physics and Nuclear Fusion Department<br />

Dense Magnetised Plasmas Laboratory<br />

Magurele - Bucharest<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Outline<br />

• The superheated fluid detectors (SHFD’s)<br />

- principle of operation<br />

- characteristics<br />

- applications<br />

• Use of the SHFD’s in fusion neutron diagnostics<br />

• Proposals for SHFD application for neutron diagnostics<br />

on EU tokamaks<br />

• Proposals for SHFD neutron measurements on JET<br />

• Proposals for SHFD neutron measurements on FTU<br />

• Neutron diagnostics for dense magnetised plasmas<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Superheated fluid detectors (SHFD’s)<br />

Suspensions of metastable droplets which readily vaporise into bubbles<br />

when they are nucleated by radiation interactions.<br />

SHFD’s:<br />

• Superheated drop detectors (1979)<br />

• Superheated emulsion detectors<br />

• Bubble detectors (1984)<br />

Mixture of<br />

• Nuclear interactions<br />

• Thermodynamic behaviour<br />

• Mechanical response<br />

Neutron dosemeters: SHFD’s with volumetric, optical and acoustical<br />

counting<br />

The characteristics and advantages of SHFD’s neutron dosemeters:<br />

• Immediate, real time, visible response to neutrons<br />

• High neutron sensitivity<br />

• (Practically) Zero gamma sensitivity<br />

• Lightweight, rugged and compact<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

[1]<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Characteristics of the neutron detection process<br />

• SHFD’s –microscopic bubble chambers<br />

- Energy transfer<br />

- Recoil nucleus range<br />

• Threshold energies depending on:<br />

- droplet composition<br />

- operating temperature<br />

- operating pressure<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Bubble formation in SHFD’s<br />

[2]<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Table 1 SHFD’s characteristics<br />

(Commercially available bubble detectors)<br />

Shape and<br />

dimensions of<br />

detector<br />

Energy range of<br />

detector<br />

Energy thresholds<br />

Detector sensitivity<br />

(n/cm 2 )/count<br />

Standard SHFD Spectrometer<br />

SHFD<br />

Cylinder,<br />

Cylinder,<br />

length/diameter length/diameter<br />

(mm): (approx.) (mm): (approx.)<br />

150/20<br />

80/15<br />

200 keV – 15 MeV 10 keV, 100 keV,<br />

600 keV, 1.0 MeV,<br />

2.5 MeV, 10.0<br />

MeV<br />

10 3 - 10 5 10 4<br />

Advanced SHFD (*) Remarks<br />

Disc,<br />

diameter/thickness<br />

(mm): (approx.)<br />

100/10<br />

100 keV – 20 MeV<br />

(**) Detectors with<br />

(**)<br />

10 2 - 10 3<br />

various customerselected<br />

energy<br />

thresholds can be<br />

constructed<br />

(*) All parameters represent design data<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

[1]<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Control of the response function of the SHFD’s<br />

>continuously variable energy threshold<br />

[3]<br />

Effective neutron thresholds for various superheated emulsions<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

[1]<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

[1]<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

[2]<br />

Energy thresholds for a two-fluid SHFD spectrometer<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

[2]<br />

Reconstructed AmBe neutron spectrum<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Bubble detector calibration [1]<br />

(PND detector type)<br />

Am-Be neutron source<br />

-Strength = 1.13 x 10 7 n/s<br />

-Fluence weighted average energy = 4.15 MeV<br />

>Compare with D-D fusion spectrum: ~2.5 MeV<br />

A conversion factor of 3.70 x 10 -5 mrem/n cm -2 for the Am-Be source<br />

is used (as calculated from dose equivalent defined in NCRP Report<br />

No. 38).<br />

The conversion factor can be used to convert sensitivities in<br />

bubbles/mrem to bubbles/ n cm -2 if desired.<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

SHFD’s for fusion neutron measurements<br />

1992, Kurchatov Institute, Moscow<br />

- Superheated Dispersed System (SDS)<br />

JET<br />

- T10 and T15 tokamaks<br />

- Plasma focus device<br />

> personal dosimetry on fusion devices<br />

Inertial confinement fusion<br />

- neutron imaging<br />

Knock-on tail energy spectrum<br />

DMPLab, NILPRP, Bucharest, on DMP devices in<br />

-Romania<br />

- Germany<br />

- Poland<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

JET: Knock on tail diagnostics (R. Fisher et all, 2001)<br />

[4]<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

[4]<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

The “Knock-on tail diagnostics”: analysis of Fisher’s measurements<br />

- Used Standard type BD’s (though improved selected)<br />

- Obtained ~100s counts<br />

- statistical error ~10% at best<br />

- With new SHFD’s: ~1000s counts<br />

- Statistical error in the few % range<br />

> simply from new, higher quality, customer-built detectors<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Proposals for SHFD application on EU tokamaks<br />

(A stage-by-stage approach)<br />

Stage 1<br />

Neutron fluence measurements at a specific location on the tokamak<br />

Location: near or at the place of the activation detectors<br />

Expected results<br />

- Time-integrated (over one tokamak shot, or a series of JET discharges),<br />

energy-integrated (above the detector threshold) value of the neutron<br />

fluence (n/cm2) at that location.<br />

- Comparison of the two methods based on very different neutron<br />

interaction processes.<br />

- Improvement in the accuracy of the measurement of the neutron yield<br />

per discharge.<br />

>A first step towards a new calibration technique => ITER<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Stage 2<br />

Spatial distribution of the neutron fluence around the tokamak<br />

(Stage 1 done simultaneously, on one discharge, at various locations<br />

around tokamak installation)<br />

Expected results<br />

- Evaluation of the neutron dose around the tokamak machine<br />

- Analysis of the effects of non-thermal components of the reacting<br />

deuteron population in a tokamak plasma<br />

- Comparison with neutron transport calculations. Code validation.<br />

Stage 3<br />

Determination of the neutron energy spectrum (time-integrated over<br />

one or a few tokamak shots)<br />

Expected results<br />

-Information about the spectral characteristics of the neutron field<br />

around the tokamak (i.e., including scattered neutrons and non-fusion<br />

neutrons).<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Neutron spectrum at<br />

a tokamak machine<br />

Fusion and non-fusion neutrons<br />

Neutron producing reactions<br />

[5]<br />

• Nuclear fusion<br />

•Deuteron disintegration by high energy<br />

electrons<br />

- Direct reaction: D(e, e’n)H<br />

- Indirect reaction (photo-disintegration):<br />

D(γ, n)H<br />

•Photonuclear reactions within the walls of<br />

the fusion device<br />

W(γ, n)W<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Proposal for JET diagnostics<br />

Time-integrated enhanced resolution threshold<br />

spectrometer (TIER-TS)<br />

Rationale<br />

•The non-fusion neutron emission associated with disruption dominated<br />

tokamak discharges can be successfully addressed.<br />

•The SHFD technique is able to measure directly the neutron dose around<br />

the machine. No other fast neutron detection technique is capable of<br />

providing such information.<br />

•SHFD neutron diagnostics techniques have been evaluated and found to<br />

be of particular interest for the characterisation of the fast neutron field of<br />

the JET tokamak machine.<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

Proposal for JET diagnostics<br />

SHFD neutron diagnostics<br />

Time-integrated enhanced resolution threshold<br />

spectrometer (TIER-TS)<br />

General Proposal<br />

It is proposed to:<br />

•Develop a time-integrated enhanced (energy) resolution threshold<br />

spectrometer (TIER-TS) by modifying a commercially available dosespectrum<br />

detector set<br />

•Increase the number of energy thresholds and improve the spectrum<br />

unfolding technique in order to increase the accuracy of the spectrum<br />

reconstruction<br />

•Perform neutron spectrum measurements in the range 10 keV –1 MeV<br />

using the TIER-TS device on JET during Campaigns C16 and C17<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

Proposal for JET diagnostics<br />

SHFD neutron diagnostics<br />

Time-integrated enhanced resolution threshold<br />

spectrometer (TIER-TS)<br />

Acceptance criteria<br />

•High scientific importance: it addresses by means of a new approach a key<br />

issue related to the neutron field of the JET machine: the spectral<br />

characteristics of the non-fusion neutron component.<br />

•TIER-TS device is a stand-alone equipment, implementation on JET with<br />

no interference with other machine components.<br />

•No impact on the shutdown, preliminary tests can be accommodated within<br />

planned neutron diagnostics tests during JET restart operations.<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

Proposal for JET diagnostics<br />

Time-integrated enhanced resolution threshold<br />

spectrometer (TIER-TS)<br />

SHFD neutron diagnostics<br />

Technical details: TIER-TS structure & characteristics<br />

-36 detectors (4 detectors for each energy threshold)<br />

-Very broad energy range: 10 keV – 10 MeV<br />

-Nine energy thresholds: 10 keV, 50 keV, 100 keV, 300 keV, 600 keV,<br />

1MeV, 1.8 MeV, 3.7 MeV, 10 MeV<br />

-Energy resolution in the range 40-65% for the energy range 10 keV –1 MeV<br />

-Overall dimensions: approximately 500x 250x100 mm3<br />

Initial configuration (2005): integrate the one-day JET neutron emission<br />

Upgrade: (data acquisition components) integrate the neutron emission on<br />

a single JET discharge<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

Proposal for JET diagnostics<br />

SHFD neutron diagnostics<br />

Time-integrated enhanced resolution threshold<br />

spectrometer (TIER-TS)<br />

Work plan<br />

-Technical specification and launch of order: February 2005<br />

-Purchase of the TIER-TS detectors and accessories: April 2005<br />

-Operational tests of TIER-TS on JET: May-June 2005<br />

-Development of data acquisition and processing techniques: August 2005<br />

-Neutron spectrum measurements on JET: campaigns C16 or C17<br />

(September 2005)<br />

-Analysis and interpretation of the TIER-TS data: November 2005<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Proposal for JET diagnostics<br />

Threshold SHFD Stacks (TSS)<br />

Aim<br />

Cross-calibration of foil activation neutron diagnostics<br />

Use foil activation capsules at four out of six irradiation ends<br />

Workplan for 2005<br />

Develop diagnostics method (including neutron transport<br />

calculations)<br />

Perform a benchmark experiment<br />

Carry out measurements on JET (campaign C16 or C17)<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Proposal for FTU diagnostics<br />

High sensitivity SHFD set (four new detectors) and standard SHFD<br />

set (4-6 detectors)<br />

Time-integrated Enhanced Resolution Threshold Spectrometer<br />

(TIER-TS)<br />

Aims<br />

Neutron fluence measurements (on single shot FTU discharges)<br />

-at former foil activation locations<br />

-at various locations around the machine<br />

Neutron spectrum measurements (on single shot FTU discharges)<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Proposal for FTU diagnostics<br />

Workplan<br />

Experimental setup evaluation: February 2005<br />

Neutron fluence measurements (I): March 2005<br />

Neutron fluence measurements (II): June-July 2005<br />

Neutron spectrum measurements: August/December 2005<br />

Install TSS at former foil activation irradiation ends?<br />

Re-activate pneumatic system?<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Neutron diagnostics: methods and techniques for dense<br />

magnetised plasmas (plasma focus)<br />

Developed by the DMP Laboratory, NILPRP, Bucharest, in<br />

collaboration with:<br />

Institute for Physics and Nuclear Engineering (IFIN-HH),<br />

Magurele, Bucharest<br />

Institute for Nuclear Reactor Engineering, Colibasi, Pitesti<br />

Faculty of Physics, University of Bucharest<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Neutron diagnostics developed for the Plasma Focus<br />

Devices at NILPRP, Bucharest<br />

Multichannel silver activation system<br />

- Neutron yield<br />

- Time integrated neutron anisotropy<br />

Multichannel fast scintillator-photomultiplier<br />

- Modified time of flight<br />

-Time resolved neutron spectrum<br />

- Time resolved neutron anisotropy<br />

Solid state track detectors<br />

- Neutron yield<br />

- Time integrated neutron spectrum<br />

- Anisotropy (fluence, spectrum)<br />

Nuclear emulsions<br />

- Neutron yield<br />

- Time integrated neutron spectrum<br />

- Anisotropy (fluence, spectrum)<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Neutron diagnostics methods developed and devices constructed for<br />

• standard, capacitive driven plasma focus devices (three machines with stored<br />

energies between 4 and 50 kJ)<br />

• unconventional (single-shot) inductive storage devices<br />

Examples:<br />

•Six-channel silver activation system for time-integrated fluence anisotropy and<br />

a single channel indium activation detector for neutron yield measurement<br />

•Five-channel fast scintillator-photomultiplier system used mainly for timeresolved<br />

neutron spectroscopy (modified time-of-flight technique), but also for<br />

time-resolved neutron fluence anisotropy<br />

•Solid state track recorders (fissionable deposits: Al alloys (containing 20% or<br />

10% U235 and 10% or 5% Pu239) and pure metal disks of depleted uranium)<br />

and nuclear emulsions mainly used for time-integrated neutron spectrum<br />

absolute measurements, as well as for time-integrated fluence and spectrum<br />

anisotropy investigations<br />

Particular attention was paid to absolute measurements (e.g., neutron yield)<br />

and the associated calibration techniques<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

SHFD neutron diagnostics on the PF-1000 DMP facility<br />

at IPPLM, Warsaw<br />

Fluence measurements<br />

Measurements of the neutron fluence spatial distribution<br />

Neutron detector calibration<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Detector locations on the PF-1000 machine<br />

Ag<br />

In<br />

BD<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

Cross-calibration<br />

SHFD neutron diagnostics<br />

250<br />

225<br />

200<br />

shot 2530 (all detectors) new<br />

average: 128<br />

st. dev: 21%<br />

normal (33) bubbles<br />

175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0<br />

0 1 2 3 4 5 6 7 8 9<br />

detector number<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

shot 2530 (no det 6) new<br />

200<br />

175<br />

average: 120<br />

st. dev: 15%<br />

150<br />

normal (33) bubbles<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0<br />

0 1 2 3 4 5 6 7 8 9<br />

detector number<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Bubble detector vs. Ag activation (90 0 )<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Bubble detector vs. Ag activation (90 0 )<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Other DMP neutron diagnostics<br />

• BD neutron collimator for PF-1000<br />

• Neutron pinhole camera for PF-1000<br />

• Neutron detection and analysis for explosive<br />

detection<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

Conclusions<br />

SHFD’s provide new posibilities for tokamak neutron<br />

diagnostics<br />

SHFD’s can be used during next year (2005)<br />

experimental campaigns on JET and FTU<br />

SHFD’s have been successfuly used on pulsed fusion<br />

plasmas<br />

A R&D programme during the next 3 years could lead<br />

to the development of a complex, versatile neutron<br />

diagnostics system with applications to EU tokamaks<br />

and ITER<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004


<strong>Association</strong> <strong>EURATOM</strong> - <strong>MEdC</strong><br />

SHFD neutron diagnostics<br />

References<br />

(Only references to non-NILPRP, Bucharest work are included in this list)<br />

[1] Bubble Technology Industries, Chalk River, Ontario, Canada,<br />

(2002)<br />

[2] F. d’Errico and M. Matzke, Rad. Prot. Dosimetry, Vol. 107, pp.<br />

111-124 (2003)<br />

[3] F. d’Errico, Rad. Prot. Dosimetry, Vol. 84, pp. 55-62 (1999)<br />

[4] R.K. Fisher et all., Rev.Sci.Instrum., Vol. 72, pp. 796-800<br />

(2001)<br />

[5] J. Strachan and D. Jassby, Trans. Am. Nucl. Soc., Vol. 26, p.<br />

509 (1977)<br />

1st <strong>Association</strong> Day, Institute of Atomic Physics, Magurele - Bucharest, 11 November 2004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!