23.01.2014 Views

Positron annihilation in a strong magentic field.

Positron annihilation in a strong magentic field.

Positron annihilation in a strong magentic field.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<<strong>strong</strong>>Positron</<strong>strong</strong>> <<strong>strong</strong>>annihilation</<strong>strong</strong>> <<strong>strong</strong>>in</<strong>strong</strong>><br />

a <strong>strong</strong> magnetic <strong>field</strong><br />

Jerzy Dryzek 1,2 , Sylwia Lewicka 2<br />

1)<br />

Opole University, Poland<br />

2)<br />

Institute of Nuclear Physics PAN, Poland<br />

<<strong>strong</strong>>Positron</<strong>strong</strong>>s <<strong>strong</strong>>in</<strong>strong</strong>> Astrophysics – March 2012<br />

1/37


Strong magnetice <strong>field</strong>, it means close to the value<br />

equal to:<br />

B<br />

c<br />

3 2<br />

0<br />

13<br />

0<br />

≡ = 4.414×<br />

10 G<br />

e<br />

m<br />

<br />

In that <strong>field</strong> several <<strong>strong</strong>>in</<strong>strong</strong>>terest<<strong>strong</strong>>in</<strong>strong</strong>>g phenomena occur:<br />

- the electron mas is affected by the <strong>strong</strong> magnetic <strong>field</strong>,<br />

as B <<strong>strong</strong>>in</<strong>strong</strong>>creases first it is gett<<strong>strong</strong>>in</<strong>strong</strong>>g slightly lower than m 0<br />

,<br />

then slightly higher.<br />

-magneic <strong>field</strong> distorts atoms <<strong>strong</strong>>in</<strong>strong</strong>>to long, th<<strong>strong</strong>>in</<strong>strong</strong>> cyl<<strong>strong</strong>>in</<strong>strong</strong>>ders and<br />

molecules <<strong>strong</strong>>in</<strong>strong</strong>>to <strong>strong</strong>, polymer-like cha<<strong>strong</strong>>in</<strong>strong</strong>>s.<br />

-photons can rapidly split and merge with each other.<br />

- vacuume itself is unstable, at extremely large B~10 51 -10 53 G.<br />

Duncan, arXiv:astro-ph/0002442v1 (2000)<br />

2/37


Outl<<strong>strong</strong>>in</<strong>strong</strong>>e<br />

1. Introduction,<br />

2. Cross section for s<<strong>strong</strong>>in</<strong>strong</strong>>gle and two-photon <<strong>strong</strong>>annihilation</<strong>strong</strong>> proceses<br />

3. <<strong>strong</strong>>Positron</<strong>strong</strong>>ium atom <<strong>strong</strong>>in</<strong>strong</strong>> <strong>strong</strong> magnetic <strong>field</strong>.<br />

4. Summary<br />

3/37


Classical electron gyrat<<strong>strong</strong>>in</<strong>strong</strong>>g <<strong>strong</strong>>in</<strong>strong</strong>> a magnetic <strong>field</strong>, satify<<strong>strong</strong>>in</<strong>strong</strong>>g<br />

the equation: <br />

dp e <br />

= v × B<br />

dt c<br />

where<br />

<br />

p = m v<br />

0<br />

Cyklotron frequency:<br />

ϖ =<br />

C<br />

e B<br />

cm<br />

a<br />

0<br />

gyr<br />

agyr<br />

=<br />

3 2<br />

2 c m0<br />

13<br />

ϖ<br />

C<br />

= mc<br />

0<br />

⇒ B0 = = 4.414×<br />

10 G<br />

e <br />

cp<br />

eB<br />

p <br />

critical magnetic <strong>field</strong> straight<br />

radius of gyration:<br />

B<br />

1<br />

0.386[pm]<br />

mc B b<br />

0<br />

⇒ agyr<br />

= =<br />

0<br />

b<br />

=<br />

B<br />

B<br />

0<br />

4/37


Pulsars and magnetars:<br />

Magnetic <strong>field</strong><br />

SGR 1806-20 8x10 14 G<br />

PSR J1846-0258 4.9x10 13 G<br />

SGR 0418+5729 < 7.5x10 12 G<br />

SGR 1900+14 7x10 14 G<br />

Swift J1834.9-0846 1.4x10 14 G<br />

SGR 0501+4516 1.9x10 14 G<br />

CXO J164710.2-455216 [Wd 1]


<<strong>strong</strong>>Positron</<strong>strong</strong>> <<strong>strong</strong>>annihilation</<strong>strong</strong>> or <<strong>strong</strong>>Positron</<strong>strong</strong>>ium <<strong>strong</strong>>in</<strong>strong</strong>> a <strong>strong</strong> magnetic<br />

<strong>field</strong> have been considered by many authors:<br />

-Kroupa and Robl (1954)<br />

-Ternov et aL, 1968<br />

-Wunner (1979)<br />

-Daugherty and Bussard (1980)<br />

-Kam<<strong>strong</strong>>in</<strong>strong</strong>>ker et al,1987, 1990<br />

-Herold, Ruder and Wunner (1985)<br />

-Le<<strong>strong</strong>>in</<strong>strong</strong>>son and A. Perez (2000)<br />

6/37


The Dirac equation <<strong>strong</strong>>in</<strong>strong</strong>> a magnetic <strong>field</strong><br />

µ ( ) ν<br />

⎡<br />

⎣−γ ( i∂ µ<br />

+ qAµ<br />

) − m ⎤<br />

0 ⎦ψ ± ( x ) = 0,<br />

u<br />

↑<br />

n<br />

ψ<br />

E + m<br />

( x) exp( iE t) u ( x)<br />

( + )<br />

( + ) n 0<br />

( + ) ↑↓<br />

= −<br />

( + )<br />

n n<br />

2En<br />

⎛<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎞<br />

n−1<br />

⎟<br />

⎟<br />

⎟<br />

0 ⎟<br />

⎟<br />

p<br />

⎟<br />

( + ) ⎟<br />

I<br />

( + ) n−1<br />

⎟<br />

n<br />

+ m ⎟<br />

0 ⎟<br />

⎟<br />

2nb m<br />

⎟<br />

0 ( )<br />

( ) I<br />

+ ⎟<br />

+ n ⎟<br />

En<br />

+ m<br />

0<br />

⎟<br />

⎠<br />

⎜<br />

( x)<br />

= ⎜<br />

,<br />

⎜ E<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

−<br />

I<br />

= c = 1<br />

<br />

µ<br />

A ( x) = (0, A) = (0,0, xB,0)<br />

( We adopted <<strong>strong</strong>>in</<strong>strong</strong>> many equations that follow)<br />

Solution for electrons<br />

u<br />

0<br />

⎛<br />

⎞<br />

⎜<br />

⎟<br />

⎜<br />

⎟<br />

⎜ ( + )<br />

I<br />

⎟<br />

⎜ n ⎟<br />

⎜<br />

⎟<br />

⎜<br />

⎟<br />

↓ ⎜ 2nb m0<br />

( )<br />

n<br />

( x)<br />

( ) I<br />

+ ⎟<br />

= ⎜−<br />

+ n−1<br />

⎟<br />

⎜ En<br />

+ m ⎟<br />

⎜<br />

0 ⎟<br />

⎜<br />

⎟<br />

⎜ p<br />

⎟<br />

⎜−<br />

I<br />

( + ) ⎟<br />

⎜ ( + ) n ⎟<br />

⎜ En<br />

+ m<br />

0<br />

⎟<br />

⎝<br />

⎠<br />

n<br />

2<br />

i ⎡ b( x−a)<br />

⎤ ⎛ x−a⎞<br />

⎛ iayb⎞<br />

In<br />

= exp ⎢− H exp exp( )<br />

1/4<br />

2 ⎥ n<br />

ipz<br />

n<br />

⎜ ⎟ ⎜−<br />

2 ⎟<br />

L( πλ / b) 2 n!<br />

⎣ 2λC<br />

⎦ ⎝ λ ⎠ ⎝ λC<br />

⎠<br />

C<br />

Johonsn and Lippmann, PR, 76 (1949) 828,<br />

Bhattacharya, arXiv:0705.4275v2 [hep-th]<br />

7/37


Solution for positrons<br />

ψ<br />

E + m<br />

( x) exp( iE t) v ( x)<br />

( −)<br />

( −) n 0<br />

( −)<br />

↑↓<br />

=<br />

( −)<br />

n n<br />

2En<br />

v<br />

⎛<br />

⎜<br />

E<br />

⎜<br />

⎜ −<br />

( −)<br />

n<br />

− p<br />

+ m<br />

0<br />

n−1<br />

2nb m I<br />

↑<br />

0<br />

n<br />

( x) = ⎜ ,<br />

( −)<br />

n ⎟<br />

En<br />

+ m0<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

I<br />

n−1<br />

0<br />

I<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

v<br />

⎛<br />

⎞<br />

⎜ 2nb m ⎟<br />

⎜<br />

0<br />

−<br />

( ) I ⎟<br />

⎜ −<br />

n−1<br />

⎟<br />

⎜ En<br />

+ m0<br />

⎟<br />

⎜<br />

⎟<br />

⎜<br />

⎟<br />

↓ ⎜ p<br />

⎟<br />

n<br />

( x)<br />

⎜<br />

I<br />

( −)<br />

n ⎟<br />

⎜ En<br />

+ m ⎟<br />

⎜<br />

0 ⎟<br />

⎜<br />

⎟<br />

⎜ 0 ⎟<br />

⎜<br />

⎟<br />

( −)<br />

⎜ I<br />

⎝ n<br />

⎟⎠<br />

= ,<br />

n<br />

2<br />

i ⎡ b( x−a)<br />

⎤ ⎛ x−a⎞<br />

⎛ iayb⎞<br />

In<br />

= exp ⎢− H exp exp( )<br />

1/4<br />

2 ⎥ n<br />

ipz<br />

n<br />

⎜ ⎟ ⎜−<br />

2 ⎟<br />

L( πλ / b) 2 n!<br />

⎣ 2λC<br />

⎦ ⎝ λ ⎠ ⎝ λC<br />

⎠<br />

C<br />

8/37


Landau levels<br />

The transverse motion of the positron (e+) and<br />

electron (e‐) is quantized, they energy obeys<br />

the relation :<br />

m0 1+<br />

4b<br />

m0 1+<br />

2b<br />

∆ E > m 0<br />

E = m + ( p ) + 2 n bm<br />

( ± ) 2 ( ± ) 2 2<br />

n<br />

0 ± 0<br />

n<br />

±<br />

=<br />

0,1,2,...<br />

is the number of the Landau level,<br />

m 0<br />

p - is the longitud<<strong>strong</strong>>in</<strong>strong</strong>>al momentum, along<br />

the magnetic <strong>field</strong> l<<strong>strong</strong>>in</<strong>strong</strong>>e.<br />

In calculations it is sufficient to assume: n=0<br />

9/37


Two-photon <<strong>strong</strong>>annihilation</<strong>strong</strong>><br />

<<strong>strong</strong>>Positron</<strong>strong</strong>> annhilation is related to two photons emission<br />

.<br />

γ( , ε )<br />

k 1 1<br />

γ( k 2 , ε 2 )<br />

γ( k 1 , ε 1 ) γ( k 2 , ε 2 )<br />

e - ( p )<br />

( q ) e +<br />

e - ( p)<br />

( q)<br />

e +<br />

.<br />

cross section<br />

2<br />

≈ α<br />

10/37


S<<strong>strong</strong>>in</<strong>strong</strong>>gle photon <<strong>strong</strong>>annihilation</<strong>strong</strong>><br />

In a <strong>field</strong> B close to B 0<br />

the s<<strong>strong</strong>>in</<strong>strong</strong>>gle photon <<strong>strong</strong>>annihilation</<strong>strong</strong>> is possible:<br />

.<br />

γ( k, ε)<br />

e - () p () q e +<br />

.<br />

cross section<br />

≈ α<br />

(In free space this process is forbidden.)<br />

11/37


Differential cross section for s<<strong>strong</strong>>in</<strong>strong</strong>>gle photon <<strong>strong</strong>>annihilation</<strong>strong</strong>><br />

(In the center of mass (CM) system)<br />

2 2 2<br />

2<br />

2<br />

d σ1 γ αλC<br />

m0<br />

ϖ ⎡<br />

2 (1 − cos θ)<br />

⎛ ϖ ⎞ ⎤<br />

= (1 −cos θ )exp ⎢− ⎜ ⎟ ⎥δϖ ( cos θ) δ(2 E0<br />

−ϖ)<br />

dΩdω<br />

2 2 2<br />

E b 2b m<br />

0<br />

− m0E<br />

⎢<br />

0<br />

⎣<br />

⎝ 0 ⎠ ⎥<br />

⎦<br />

For <<strong>strong</strong>>annihilation</<strong>strong</strong>> at rest,<br />

due to the delta function, it <<strong>strong</strong>>in</<strong>strong</strong>>dicates<br />

the l<<strong>strong</strong>>in</<strong>strong</strong>>e of emission of the photon<br />

perpendicular to the magnetic <strong>field</strong><br />

l<<strong>strong</strong>>in</<strong>strong</strong>>e.<br />

E 0<br />

is the total energy of e + −12<br />

λ C<br />

= 2.426×<br />

10 m<br />

is the Compton wavelenght<br />

B<br />

<<strong>strong</strong>>in</<strong>strong</strong>> CM θ = π /2<br />

θ<br />

ϖ<br />

a fan beam<br />

Daugherty and Bussard, The Astrophysical Journal, 238 (1980) 296<br />

12/37


Differential cross section for s<<strong>strong</strong>>in</<strong>strong</strong>>gle photon <<strong>strong</strong>>annihilation</<strong>strong</strong>><br />

direction of magnetic l<<strong>strong</strong>>in</<strong>strong</strong>>e<br />

d σ αλ m ⎡ θ E ⎤ m<br />

dΩ b ⎢ b m<br />

⎣<br />

⎥<br />

⎦ ⎣ ⎦<br />

2 2<br />

2<br />

2<br />

1γ<br />

0<br />

2s<<strong>strong</strong>>in</<strong>strong</strong>> ⎛ ⎞<br />

C<br />

0 ⎡ 2<br />

0 ⎤ 2<br />

= exp ⎢− ⎜ ⎟ ⎥Θ 2E0<br />

s<<strong>strong</strong>>in</<strong>strong</strong>><br />

2 2 2<br />

⎢ −<br />

E0 m0E0<br />

0<br />

s<<strong>strong</strong>>in</<strong>strong</strong>>θ<br />

⎥<br />

− ⎝ ⎠<br />

θ<br />

b=1<br />

E = 1.1m<br />

0 0<br />

E = 2m<br />

0 0<br />

E = 1.4m<br />

0 0<br />

0<br />

Ω= π −2arcs<<strong>strong</strong>>in</<strong>strong</strong>> m E 0<br />

13/37


Differential cross section for s<<strong>strong</strong>>in</<strong>strong</strong>>gle photon <<strong>strong</strong>>annihilation</<strong>strong</strong>><br />

direction of magnetic l<<strong>strong</strong>>in</<strong>strong</strong>>e<br />

d σ αλ m ⎡ θ E ⎤ m<br />

dΩ b ⎢ b m<br />

⎣<br />

⎥<br />

⎦ ⎣ ⎦<br />

2 2<br />

2<br />

2<br />

1γ<br />

0<br />

2s<<strong>strong</strong>>in</<strong>strong</strong>> ⎛ ⎞<br />

C<br />

0 ⎡ 2<br />

0 ⎤ 2<br />

= exp ⎢− ⎜ ⎟ ⎥Θ 2E0<br />

s<<strong>strong</strong>>in</<strong>strong</strong>><br />

2 2 2<br />

⎢ −<br />

E0 m0E0<br />

0<br />

s<<strong>strong</strong>>in</<strong>strong</strong>>θ<br />

⎥<br />

− ⎝ ⎠<br />

θ<br />

b=10<br />

E = 2m<br />

0 0<br />

E = 1.4m<br />

0 0<br />

E = 1.1m<br />

0 0<br />

0<br />

Ω= π −2arcs<<strong>strong</strong>>in</<strong>strong</strong>> m E 0<br />

14/37


Total cross section for<br />

s<<strong>strong</strong>>in</<strong>strong</strong>>gle photon <<strong>strong</strong>>annihilation</<strong>strong</strong>>.<br />

1e+5<br />

1e+4<br />

1e+3<br />

σ<br />

1γ<br />

2 2<br />

αλ m 0 1 ⎡ 2⎛<br />

0<br />

exp<br />

E ⎞<br />

= C ⎢− ⎜ ⎟<br />

2 2 2<br />

E b b m<br />

0<br />

− m0E<br />

⎢<br />

0 ⎣ ⎝ 0 ⎠<br />

2<br />

⎤<br />

⎥<br />

⎥<br />

⎦<br />

(n=0, lowest Landau level)<br />

E 0<br />

is the total energy of e +<br />

σ 1γ<br />

(b) (barn)<br />

1e+2<br />

1e+1<br />

1e+0<br />

1e-1<br />

1e-2<br />

1e-3<br />

⎛ E<br />

2⎜<br />

⎝mc<br />

0<br />

2<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

λ C<br />

= ×<br />

−12<br />

2.426 10 m<br />

is the Compton wavelenght<br />

1e-4<br />

1e-5<br />

1e-6<br />

E<br />

= 3m c<br />

0 0<br />

2<br />

1e-7<br />

0.1 1 10 100 1000<br />

b magnetic <strong>field</strong> (<<strong>strong</strong>>in</<strong>strong</strong>> B 0<br />

)<br />

Wunner PRL 42 (1979) 82.<br />

15/37


The s<<strong>strong</strong>>in</<strong>strong</strong>>gle photon <<strong>strong</strong>>annihilation</<strong>strong</strong>> spectra for different<br />

angles related to the direction of a magnetic <strong>field</strong>.<br />

Annihilation rate<br />

Annihilation rate (cm 3 s -1 MeV -1 srad -1 )<br />

p<br />

p<br />

λ ∼ nn dpη p dpη p dσ<br />

1e-12<br />

1e-13<br />

1e-14<br />

1e-15<br />

1e-16<br />

1e-17<br />

1e-18<br />

+ −<br />

+ − + + − −<br />

0 0∫<br />

( ) ∫ ( )<br />

+<br />

1γ<br />

+ 2 2 − 2 2<br />

( p ) + m0 ( p ) + m0<br />

θ=π/2<br />

mc<br />

0<br />

2 s<<strong>strong</strong>>in</<strong>strong</strong>><br />

2<br />

θ<br />

θ=π/4<br />

θ=π/6<br />

b=1<br />

B<br />

e +<br />

e-<br />

θ<br />

1e-19<br />

1.0 1.5 2.0 2.5 3.0<br />

photon energy (MeV)<br />

16/37


The s<<strong>strong</strong>>in</<strong>strong</strong>>gle photon <<strong>strong</strong>>annihilation</<strong>strong</strong>> spectra for different<br />

magnetic <strong>field</strong> strength.<br />

1e-11<br />

1e-12<br />

Annihilation rate (cm 3 s -1 MeV -1 srad -1 )<br />

1e-13<br />

1e-14<br />

1e-15<br />

1e-16<br />

1e-17<br />

1e-18<br />

1e-19<br />

1e-20<br />

1e-21<br />

100<br />

b=0.1<br />

10<br />

1<br />

1e-22<br />

1e-23<br />

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4<br />

photon energy (MeV)<br />

17/37


Total cross section for<br />

two-photon <<strong>strong</strong>>annihilation</<strong>strong</strong>>.<br />

σ<br />

σ<br />

2γ<br />

limit for small E 0<br />

2 2 3 2<br />

2<br />

C mE<br />

0 0 1 ⎡ 1⎛ E ⎞ ⎤ ⎡<br />

0 1 ⎛ E ⎞⎤<br />

0<br />

exp ⎢ ⎜ ⎟ ⎥Erfi<br />

⎜ ⎟<br />

2 2<br />

E b b m<br />

0<br />

− m ⎢<br />

0<br />

⎝ 0 ⎠ ⎥ ⎢⎣<br />

b ⎝m0<br />

⎠⎥⎦<br />

πα λ<br />

= − ⎢ ⎥<br />

2<br />

⎣ ⎦<br />

Total cross section for two-photon <<strong>strong</strong>>annihilation</<strong>strong</strong>> for<br />

free particles(Dirac formula) :<br />

2 2<br />

2 2<br />

1 αλm<br />

0 0 0 2 2<br />

2γ<br />

= E0 − m0 E0 + m0 − E0 + m0 E0 −m0<br />

4π<br />

σ<br />

⎡<br />

⎛ E + E −m<br />

C<br />

0<br />

⎢<br />

( )( ) ( )( 5 ) ln⎜<br />

⎟ ( 3 )<br />

2 2<br />

E + m E −m<br />

⎢<br />

⎜ m ⎟<br />

0<br />

0 0 0 0<br />

2λ<br />

⎣<br />

≅<br />

αλ<br />

2 2<br />

m C 0<br />

E<br />

− m<br />

2 2<br />

0 0<br />

⎝<br />

(n=0, lowest Landau level)<br />

problem for small b or b=0<br />

⎞<br />

⎠<br />

⎤<br />

⎥<br />

⎥<br />

⎦<br />

limit for small E 0<br />

:<br />

σ<br />

2λ<br />

≅<br />

1<br />

4π<br />

αλ<br />

2 2<br />

m C 0<br />

E<br />

− m<br />

2 2<br />

0 0<br />

18/37


Total cross section for<br />

two-photon <<strong>strong</strong>>annihilation</<strong>strong</strong>>.<br />

1e+2<br />

E 0<br />

=1.1m 0<br />

c 2<br />

1e+1<br />

σ 2γ<br />

(barn)<br />

1e+1<br />

1e+0<br />

1e-1<br />

1e-2<br />

1e-3<br />

Dirac dependency<br />

0.1<br />

1<br />

5<br />

2 m 0<br />

c 2<br />

3 m 0<br />

c 2<br />

1e+0<br />

1e-1<br />

1e-2<br />

1e-3<br />

σ 2γ<br />

(barn)<br />

1e-4<br />

1e-5<br />

b=10<br />

1e-4<br />

1e-6<br />

1 2 3 4 5 6<br />

total positron energy <<strong>strong</strong>>in</<strong>strong</strong>> (m 0<br />

c 2 )<br />

1e-5<br />

0.01 0.1 1 10<br />

magnetic <strong>field</strong> (<<strong>strong</strong>>in</<strong>strong</strong>> B 0 )<br />

19/37


Differential cross section for two-photon <<strong>strong</strong>>annihilation</<strong>strong</strong>> <<strong>strong</strong>>in</<strong>strong</strong>> CM<br />

(n=0, lowest Landau level)<br />

2 2 3 2 2<br />

dσ<br />

αλC Em<br />

0 0<br />

1 ⎛ E0<br />

2<br />

⎞<br />

=<br />

2 exp ⎜−<br />

2 s<<strong>strong</strong>>in</<strong>strong</strong>> θ ⎟<br />

dΩ π p E + b ⎝ bm0<br />

⎠<br />

2 2<br />

( 0<br />

2bm0)<br />

CM<br />

E = p + m<br />

B<br />

e +<br />

e-<br />

2 2<br />

0 0<br />

p<br />

p<br />

θ<br />

Dirac (Heitler) formula for free <<strong>strong</strong>>annihilation</<strong>strong</strong>>:<br />

.<br />

dσ<br />

αλC m ⎡ E + p + p s<<strong>strong</strong>>in</<strong>strong</strong>> θ 2p<br />

s<<strong>strong</strong>>in</<strong>strong</strong>> θ<br />

dΩ E p ⎣ E − p E − p<br />

2 2 2 2 2 2 2 4 4<br />

0 0<br />

= ⎢<br />

−<br />

2 2 2 2 2 2 2<br />

D,CM<br />

16π 0 0<br />

cos θ (<br />

0<br />

cos θ)<br />

⎤<br />

⎥<br />

⎦<br />

20/37


Differential cross section for two-photon <<strong>strong</strong>>annihilation</<strong>strong</strong>><br />

<<strong>strong</strong>>in</<strong>strong</strong>> CM system.<br />

Free particles <<strong>strong</strong>>in</<strong>strong</strong>> CM (Dirac formula)<br />

direction of motion of positron<br />

and electron.<br />

b=0.1<br />

direction of magnetic l<<strong>strong</strong>>in</<strong>strong</strong>>e<br />

E=1.5m 0<br />

2m 0<br />

3m 0<br />

E=1.5m 0<br />

2m 0<br />

3m 0<br />

21/37


Differential cross section for two-photon <<strong>strong</strong>>annihilation</<strong>strong</strong>><br />

<<strong>strong</strong>>in</<strong>strong</strong>> CM system.<br />

E=1.5m 0<br />

Dirac formula <<strong>strong</strong>>in</<strong>strong</strong>> CM<br />

b=10<br />

3m 0<br />

2m 0<br />

3m 0<br />

2m 0<br />

direction of magnetic l<<strong>strong</strong>>in</<strong>strong</strong>>e<br />

E=1.5m 0<br />

22/37


Differential cross section for two-photon <<strong>strong</strong>>annihilation</<strong>strong</strong>><br />

<<strong>strong</strong>>in</<strong>strong</strong>> CM system.<br />

E=1.5m 0<br />

Dirac formula <<strong>strong</strong>>in</<strong>strong</strong>> CM<br />

direction of motion of positron<br />

and electron <<strong>strong</strong>>in</<strong>strong</strong>> CM<br />

b=100<br />

3m 0<br />

2m 0<br />

3m 0<br />

direction of magnetic l<<strong>strong</strong>>in</<strong>strong</strong>>e<br />

2m 0<br />

E=1.5m 0<br />

23/37


Differential cross section for two-photon <<strong>strong</strong>>annihilation</<strong>strong</strong>><br />

<<strong>strong</strong>>in</<strong>strong</strong>> Laboratory system.<br />

Dirac formula <<strong>strong</strong>>in</<strong>strong</strong>> Lab<br />

direction of motion of positron<br />

and electron <<strong>strong</strong>>in</<strong>strong</strong>> Lab<br />

b=0.1<br />

direction of magnetic l<<strong>strong</strong>>in</<strong>strong</strong>>e<br />

3m 0 3m 0<br />

2m 0<br />

E=1.5m 0<br />

2m 0<br />

E=1.5m 0<br />

24/37


Differential cross section for two-photon <<strong>strong</strong>>annihilation</<strong>strong</strong>><br />

<<strong>strong</strong>>in</<strong>strong</strong>> laboratory system<br />

Free particles <<strong>strong</strong>>in</<strong>strong</strong>> Lab (Dirac formula)<br />

direction of motion of positron<br />

and electron <<strong>strong</strong>>in</<strong>strong</strong>> Lab<br />

b=10<br />

direction of magnetic l<<strong>strong</strong>>in</<strong>strong</strong>>e<br />

3m 0<br />

3m 0<br />

2m 0<br />

2m 0<br />

E=1.5m 0<br />

E=1.5m 0<br />

25/37


The spectrum of the <<strong>strong</strong>>annihilation</<strong>strong</strong>> l<<strong>strong</strong>>in</<strong>strong</strong>>e (511 keV) for<br />

<<strong>strong</strong>>annihilation</<strong>strong</strong>> at rest as seen perpendicular to<br />

the magnetic <strong>field</strong> direction.<br />

B<br />

π/2<br />

e + e-<br />

ω<br />

26/37


Comparison<br />

1e+5<br />

1e+4<br />

E 0<br />

=3m 0<br />

c 2<br />

σ 1γ<br />

σ 2γ<br />

1e+3<br />

total cross section (barn)<br />

1e+2<br />

1e+1<br />

1e+0<br />

1e-1<br />

1e-2<br />

1e-3<br />

1e-4<br />

1e-5<br />

Dirac dependency<br />

1e-6<br />

1e-7<br />

0.1 1 10<br />

magnetic <strong>field</strong> (<<strong>strong</strong>>in</<strong>strong</strong>> B 0 )<br />

27/37


Daugherty and Bussard, The Astrophysical Journal, 238 (1980) 296<br />

28/37


In „<<strong>strong</strong>>annihilation</<strong>strong</strong>> <<strong>strong</strong>>in</<strong>strong</strong>> flight” process positron or electron<br />

contributs to the energy of emitted photons<br />

hν 1<br />

p<br />

hν m<<strong>strong</strong>>in</<strong>strong</strong>><br />

p<br />

hν max<br />

hν 2<br />

Free particles <<strong>strong</strong>>in</<strong>strong</strong>> Lab (From Dirac formula)<br />

2<br />

dσ 2γ<br />

2π rm ⎡<br />

o 0<br />

1 1 E+ 3m0 1 E+<br />

m ⎤<br />

0<br />

=− ⎢ − +<br />

2 2⎥<br />

dEγ E − m0 ⎢⎣<br />

E + m0 2 Eγ( E + m0 − Eγ) 2 Eγ ( E+ m0<br />

−Eγ)<br />

⎥⎦<br />

,<br />

E<br />

=<br />

(m<<strong>strong</strong>>in</<strong>strong</strong>>) 0 0<br />

γ<br />

2 2<br />

E+ m0 + E −m0<br />

dσ/dEγ (barn/MeV)<br />

( E+<br />

m ) m 1<br />

m<br />

2<br />

0<br />

( E+<br />

m ) m 1<br />

(max) 0 0<br />

Eγ<br />

= E+<br />

m0<br />

2 2<br />

E+ m 2<br />

0<br />

− E −m0<br />

0.4<br />

E +<br />

=0.2 MeV<br />

0.3<br />

0.2<br />

0.5 MeV<br />

0.1<br />

1 MeV<br />

1.5 MeV<br />

2 MeV<br />

2.5 MeV<br />

Kontrovich et al., The 10th International Symposium<br />

on Orig<<strong>strong</strong>>in</<strong>strong</strong>> of Matter and Evolution of Galaxis (OMEG-2010)<br />

0.0<br />

0 1 2 3 4<br />

E γ<br />

(MeV)<br />

255.5 keV<br />

Spectra of <<strong>strong</strong>>annihilation</<strong>strong</strong>> <<strong>strong</strong>>in</<strong>strong</strong>> flight photon<br />

29/37


<<strong>strong</strong>>Positron</<strong>strong</strong>>ium Ps <<strong>strong</strong>>in</<strong>strong</strong>> a <strong>strong</strong> magnetic <strong>field</strong>. The<br />

problem can be attacked by solution of the Bethe-<br />

Salpeter equation.<br />

(Le<<strong>strong</strong>>in</<strong>strong</strong>>son and Perez: JHEP11(2000)039 )<br />

The <<strong>strong</strong>>Positron</<strong>strong</strong>>ium wave function:<br />

⎛0⎞<br />

2 2<br />

⎜ ⎟<br />

mb ⎧ mb<br />

⎫ 1<br />

φ00l<br />

=<br />

↓↑ 0 ⎨− + ⎜ ⎟<br />

0<br />

+ ⎬<br />

2π<br />

⎩ 4<br />

⎭ ⎜ 0 ⎟<br />

⎜ 0⎟<br />

⎝ ⎠<br />

2<br />

1 ∂ (0, l) ↓↑<br />

(0, l) l (0, l)<br />

− f (, zx<br />

2<br />

0) + V (, zx0) f (, zx0) = ε00( x0) f (, zx0)<br />

↓↑ ↓↑ ↓↑ ↓↑<br />

2µ<br />

∂z<br />

( )<br />

0<br />

ˆ P2<br />

(0, l ) 0 0<br />

2 2<br />

( r) f ( z, x ) exp [( x x ) y ] 0 0 0 1<br />

00<br />

where V 00<br />

(z, x 0<br />

) is an effective potential<br />

expressed by the elliptic <<strong>strong</strong>>in</<strong>strong</strong>>tegral of the first k<<strong>strong</strong>>in</<strong>strong</strong>>d<br />

0 2<br />

and x0 = P2 m0b<br />

(P 20<br />

- is the transverse momentum<br />

characteriz<<strong>strong</strong>>in</<strong>strong</strong>>g the motion of the mass center across<br />

the magnetic <strong>field</strong>)<br />

30/37


The case of small x 0<br />

means the small distances<br />

between the centers of Landau orbits <<strong>strong</strong>>in</<strong>strong</strong>> the plane<br />

orthogonal to the magnetic <strong>field</strong>, then the effective<br />

2<br />

potential reads:<br />

e<br />

V00<br />

( z)<br />

≅<br />

2b<br />

z +<br />

2<br />

π m<br />

0<br />

( δ )<br />

(0,0) 2<br />

f( z) ≡ f ( z,0) = δ exp − z<br />

↓↑<br />

ρ( P, P , P ) =Φ ˆ ( P, P , P ) =<br />

x y u x y u<br />

2 2 2<br />

( − Px<br />

+ Py<br />

m b)<br />

4δα<br />

exp 2( ) /<br />

π b (( P mα) + δ )<br />

2<br />

6 2<br />

0<br />

2 2 4 2<br />

u<br />

m ⎛<br />

0<br />

22 b ⎞<br />

δ ≡ α ln<br />

2 ⎜<br />

π α ⎟<br />

⎝ ⎠<br />

The momentum spectrum of <<strong>strong</strong>>annihilation</<strong>strong</strong>> radiation<br />

∫<br />

∫<br />

N( P) = dP dP ρ( P, P , P ); i, j, k∈{ x, y, z}<br />

i j≠i, k k≠i,<br />

j i j k<br />

2 6<br />

2 ⎧⎪<br />

2P<br />

⎫<br />

xy , ⎪<br />

2δ<br />

N( Pxy<br />

,<br />

) = exp , ( ) .<br />

2 ⎨− 2 ⎬ N Pz<br />

=<br />

4 2 2<br />

πmb 0 ⎪⎩<br />

mb<br />

0 ⎪⎭<br />

π( δ + Pz<br />

)<br />

31/37


Intensity of the <<strong>strong</strong>>annihilation</<strong>strong</strong>> l<<strong>strong</strong>>in</<strong>strong</strong>>e versus the photon energy<br />

c<br />

1e+1<br />

1e+0<br />

1e-1<br />

(a)<br />

α 1<br />

ξ<br />

0<br />

= =<br />

b 137.04b<br />

small x 0<br />

, ξ 0<br />

= 0.01<br />

large x 0<br />

, ξ 0<br />

= 0.01<br />

small x 0<br />

, ξ 0<br />

= 0.1<br />

large x 0<br />

, ξ 0<br />

= 0.1<br />

small x 0<br />

, ξ 0<br />

= 1.0<br />

large x 0<br />

, ξ 0<br />

= 1.0<br />

10<br />

(b)<br />

0.13<br />

FWHM[keV] = 14.9×<br />

b<br />

Intensity [arb.u.]<br />

1e-2<br />

1e-3<br />

1e-4<br />

FWHM (keV)<br />

1<br />

FWHM[keV] = 14.1×<br />

b<br />

0.39<br />

1e-5<br />

x 0<br />

large<br />

1e-6<br />

0.1<br />

x 0<br />

small<br />

1e-7<br />

515 520 525 530 535 0.001 0.01 0.1 1<br />

Energy [keV]<br />

b = B/B 0<br />

Lewicka and Dryzek, Materials Sciene Forum, 666 (2011) 31<br />

32/37


The case of large x 0<br />

. The created <<strong>strong</strong>>Positron</<strong>strong</strong>>ium has a quasi<br />

momentum of the order of 2m 0<br />

, moreover, a typical pulsar<br />

magnetic <strong>field</strong> b ≤ 0.1 giv<<strong>strong</strong>>in</<strong>strong</strong>>g the limit of large x 0<br />

. In such a<br />

case the effective potential V 00<br />

(z) takes on the analytical form:<br />

1<br />

V00<br />

( u = mα<br />

z)<br />

=−<br />

2 2<br />

( x mα)<br />

+ u<br />

0 0<br />

Ground states of <<strong>strong</strong>>Positron</<strong>strong</strong>>ium <<strong>strong</strong>>in</<strong>strong</strong>> <strong>strong</strong> magnetic <strong>field</strong> as a<br />

function of b, calculated from the Schröd<<strong>strong</strong>>in</<strong>strong</strong>>ger-like equation<br />

<<strong>strong</strong>>in</<strong>strong</strong>> the case of large x 0<br />

.<br />

Magnetic <strong>field</strong><br />

<<strong>strong</strong>>in</<strong>strong</strong>> b unit<br />

Bound<<strong>strong</strong>>in</<strong>strong</strong>>g energy E b<br />

(eV)<br />

0 (vacuum) 6.80<br />

0.0073 9.13<br />

0.073 51.9<br />

0.73 197.2<br />

33/37


Annihilation rate of positronium dependent on the<br />

magnetic <strong>field</strong> b (compared to the values obta<<strong>strong</strong>>in</<strong>strong</strong>>ed by<br />

Wunner and Herold [3] <<strong>strong</strong>>in</<strong>strong</strong>> the non-relativistic regime).<br />

B [G]<br />

λ[s -1 ]<br />

λ (for small x 0<br />

)<br />

λ[s -1 ]<br />

(Wunner and<br />

Herold results)<br />

1∙10 12 7.40∙10 11 7.2∙10 12 0.729927<br />

(ξ 0<br />

=0.01)<br />

3∙10 12 2.53∙10 12 2.5∙10 13 0.226552<br />

(B=10 13 G)<br />

5∙10 12 4.46∙10 12 4.2∙10 13 0.243309<br />

(ξ 0<br />

=0.03)<br />

1∙10 13 9.56∙10 12 7.9∙10 13 0.145985<br />

(ξ 0<br />

=0.05)<br />

b = B/B 0<br />

λ[s -1 ]<br />

λ (for large x 0<br />

)<br />

3.8457∙10 11<br />

τ = 0.003 ns<br />

1.81645∙10 8<br />

τ = 5.5 ns<br />

3.57567∙10 8<br />

τ = 2.8ns<br />

7.22707∙10 5<br />

τ = 1.4 µ s<br />

<<strong>strong</strong>>in</<strong>strong</strong>> vaccum<br />

Wunner and Herold: Astrophys. Space Sci. 63 (1979) p. 503<br />

( → γ ) = ( ± )<br />

λ 1 S 2 7.9909 0.0017 10<br />

1 9<br />

exp 0<br />

τ = 0.125 ns<br />

34/37


Daugherty and Bussard suggested to us<<strong>strong</strong>>in</<strong>strong</strong>>g the narrow widths of<br />

the <<strong>strong</strong>>annihilation</<strong>strong</strong>> l<<strong>strong</strong>>in</<strong>strong</strong>>e (two photons <<strong>strong</strong>>annihilation</<strong>strong</strong>>) to place an upper<br />

limit on the magnetic <strong>field</strong> strength.<br />

∆E<br />

E<br />

γ<br />

γ<br />

FWHM<br />

~0.35b<br />

In the case of <<strong>strong</strong>>Positron</<strong>strong</strong>>ium formation it could be as follows:<br />

0.13<br />

FWHM[keV] = 14.9×<br />

b<br />

FWHM[keV] = 14.1×<br />

b<br />

0.39<br />

35/37


Summary<br />

Ω hν= −m c 2 0<br />

1<br />

2<br />

B<br />

p-Ps<br />

Possible <<strong>strong</strong>>annihilation</<strong>strong</strong>> channels<br />

<<strong>strong</strong>>in</<strong>strong</strong>> a <strong>strong</strong> magnetic <strong>field</strong>:<br />

-s<<strong>strong</strong>>in</<strong>strong</strong>>gle photon (most important<br />

signature the l<<strong>strong</strong>>in</<strong>strong</strong>>e of 1022 keV)<br />

-two-photon (not important for b>1)<br />

-<<strong>strong</strong>>annihilation</<strong>strong</strong>> <<strong>strong</strong>>in</<strong>strong</strong>> flight<br />

(signature the l<<strong>strong</strong>>in</<strong>strong</strong>>e of 255,5 keV)<br />

-<<strong>strong</strong>>Positron</<strong>strong</strong>>ium lifetime is much longer<br />

than free particle.<br />

Cross sections depends<br />

on the magnetic <strong>field</strong> strength.<br />

ω<br />

pulsar polar cap surface<br />

Possible use for determ<<strong>strong</strong>>in</<strong>strong</strong>>ation<br />

of the upper limit of the magnetic<br />

<strong>field</strong> strenght.<br />

36/37


Thank you for your attention<br />

37/37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!