25.01.2014 Views

Fundamentals of Lightweight Design Formulary - lehrstuhl und ...

Fundamentals of Lightweight Design Formulary - lehrstuhl und ...

Fundamentals of Lightweight Design Formulary - lehrstuhl und ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>F<strong>und</strong>amentals</strong> <strong>of</strong> <strong>Lightweight</strong><br />

<strong>Design</strong><br />

<strong>Formulary</strong><br />

Institut für Leichtbau, RWTH Aachen


Contents<br />

1 General Formulas 1<br />

2 Trusses 3<br />

3 Bending <strong>of</strong> Beams 4<br />

4 Transfer and Stiffness Matrices 10<br />

5 Beams Subjected to Transverse Shear Forces 12<br />

6 Torsion <strong>of</strong> Beams 18<br />

7 Stiffened Shear Webs 23


1 General Formulas<br />

1 General Formulas<br />

– numerical integration rule:<br />

f<br />

F i+1 =<br />

F i + 1 2 (f(z) i + f(z) i+1 ) · ∆z<br />

i i+1 z<br />

z<br />

– isotropic materials:<br />

– Hooke’s law (one-dimensional):<br />

G =<br />

E<br />

2(1+ν)<br />

σ x = ε x E<br />

– strain-deformation relation for a bar:<br />

ε x = du<br />

dx<br />

– standard box for the determination <strong>of</strong> cutting forces:<br />

– differential equations for the equilibrium <strong>of</strong> beams:<br />

dQ z<br />

dx = −p(x)<br />

dM y<br />

dx<br />

= Q z<br />

1


1 General Formulas<br />

– definition <strong>of</strong> Young’s moduli in the plastic range:<br />

· tangent modulus:<br />

E T = dσ<br />

dε<br />

· secant modulus<br />

E S = σ ε<br />

– stress-strain relation according to Ramberg-Osgood:<br />

· stress-strain relation:<br />

ε = σ 0,7<br />

E<br />

[ σ<br />

+ 3 ( ) σ n ]<br />

σ 0,7 7 σ 0,7<br />

; n =1+<br />

ln(<br />

17<br />

7 )<br />

ln( σ 0,7<br />

σ 0,85<br />

)<br />

· tangent modulus:<br />

E T =<br />

E<br />

1+ 3 7 n (<br />

σ<br />

σ 0,7<br />

) n−1<br />

· secant modulus:<br />

E S =<br />

1+ 3 7<br />

E<br />

( ) n−1 σ<br />

σ 0,7<br />

· σ 0,7 and σ 0,85 are defined as shown in the following figure:<br />

2


2 Trusses<br />

2 Trusses<br />

– degree <strong>of</strong> red<strong>und</strong>ancy:<br />

U = n + A − 2k<br />

U = n + A − 3k r − 2k e<br />

A: number <strong>of</strong> reaction forces<br />

n: number<strong>of</strong>bars<br />

k: number<strong>of</strong>nodes<br />

k r : number <strong>of</strong> three-dimensional nodes<br />

k e : number <strong>of</strong> two-dimensional nodes<br />

(two-dimensional)<br />

(three-dimensional)<br />

– equilibrium <strong>of</strong> nodes (two-dimensional):<br />

∑<br />

X = P cos(ϕ)+<br />

∑<br />

Ni cos(γ i )=0<br />

∑<br />

Y = P sin(ϕ)+<br />

∑<br />

Ni sin(γ i )=0<br />

– three-dimensional decomposition <strong>of</strong> a force / similarity <strong>of</strong> the bar force components<br />

(F ix , F iy , F iz ) to the bar lengths (l ix , l iy , l iz ):<br />

√<br />

l i = lix 2 + l2 iy + l2 iz<br />

cos α = F ix<br />

F i<br />

= l ix<br />

l i<br />

; cosβ = F iy<br />

F i<br />

= l iy<br />

; cosγ = F iz<br />

= l iz<br />

l i F i l i<br />

3


3 Bending <strong>of</strong> Beams<br />

3 Bending <strong>of</strong> Beams<br />

– statical moments <strong>of</strong> an area:<br />

∫<br />

S y =<br />

– moments <strong>of</strong> inertia <strong>of</strong> an area:<br />

∫<br />

I y =<br />

– product <strong>of</strong> inertia <strong>of</strong> an area:<br />

A<br />

A<br />

∫<br />

zdA S z =<br />

∫<br />

z 2 dA I z =<br />

∫<br />

I yz =<br />

A<br />

yz dA<br />

A<br />

A<br />

ydA<br />

y 2 dA<br />

– stress distribution for an arbitrary coordinate system in the center <strong>of</strong> gravity:<br />

σ x (z,y) = N A + M yI z + M z I yz<br />

I y I z − I 2 yz<br />

z − M zI y + M y I yz<br />

I y I z − Iyz<br />

2 y<br />

– stress distribution for a system <strong>of</strong> principal axes in the center <strong>of</strong> gravity:<br />

– section moduli:<br />

– polar moment <strong>of</strong> inertia:<br />

σ x (z,y) = N A + M y<br />

I y<br />

z − M z<br />

I z<br />

y<br />

W y =<br />

I y<br />

|z max |<br />

∫<br />

I p = I y + I z =<br />

– radii <strong>of</strong> gyration:<br />

i 2 y = I y<br />

A<br />

– location <strong>of</strong> the centroid <strong>of</strong> an area:<br />

∫<br />

A<br />

η s =<br />

ηdA<br />

A<br />

W z =<br />

A<br />

r 2 dA<br />

i 2 z = I z<br />

A<br />

ζ s =<br />

I z<br />

|y max |<br />

∫<br />

A ζdA<br />

A<br />

– coordinate transformation for a rotation <strong>of</strong> the coordinate system about ϕ:<br />

z = −y ′ sin ϕ + z ′ cos ϕ<br />

y = y ′ cos ϕ + z ′ sin ϕ<br />

4


3 Bending <strong>of</strong> Beams<br />

– theorem <strong>of</strong> Steiner:<br />

I η = I y ′ + ζ 2 s A I ζ = I z ′ + η 2 sA I ηζ = I y ′ z ′ + η sζ s A<br />

– change <strong>of</strong> the moments <strong>of</strong> inertia and <strong>of</strong> the product <strong>of</strong> inertia due to a rotation <strong>of</strong> the<br />

coordinate system:<br />

I y (ϕ) = 1 ( 1<br />

Iy ′ + I z ′)<br />

+<br />

2<br />

2<br />

I z (ϕ) = 1 ( 1<br />

Iy ′ + I z ′)<br />

−<br />

2<br />

2<br />

I yz (ϕ) = 1 (<br />

Iy ′ − I z ′<br />

2<br />

– location <strong>of</strong> the principal axes:<br />

– differential equation <strong>of</strong> the deflection line:<br />

( )<br />

Iy ′ − I z ′ cos 2ϕ − Iy ′ z ′ sin 2ϕ<br />

( )<br />

Iy ′ − I z ′ cos 2ϕ + Iy ′ z ′ sin 2ϕ<br />

)<br />

sin 2ϕ + Iy ′ z ′ cos 2ϕ<br />

tan 2α = − 2I y ′ z ′<br />

I y ′ − I z ′<br />

w ′′′′ I y E = p(x) ⇒ w ′′′ = − Q z<br />

I y E<br />

⇒<br />

w ′′ = − M y<br />

I y E<br />

Plastic Bending:<br />

– relation between longitudinal force and longitudinal stress:<br />

∫<br />

N = σ(z)dA<br />

– relation between bending moment and longitudinal stress:<br />

∫<br />

M = σ(z) · zdA<br />

A<br />

A<br />

– definitions:<br />

– interaction curves:<br />

ν =<br />

N<br />

µ = M<br />

A · σ B W · σ B<br />

· elastic material behaviour:<br />

ν + µ =1<br />

· ideal plastic material behaviour (valid only for a rectangular cross section):<br />

µ =6 ( κ − κ 2) }<br />

ν =(2κ − 1)<br />

⇒ µ =1.5 ( 1 − ν 2) 5


3 Bending <strong>of</strong> Beams<br />

– It applies for ν =0:<br />

· ideal plastic material behaviour:<br />

· Cozzone’s approximation:<br />

M plastic =<br />

M plastic = K · M elastic<br />

[<br />

1+(K − 1) σ ]<br />

o<br />

M elastic<br />

σ M<br />

· Values <strong>of</strong> K for some typical cross sections are given on page 9.<br />

6


3 Bending <strong>of</strong> Beams<br />

moments <strong>of</strong> inertia for typical cross sections:<br />

I y = ba3<br />

12<br />

I z = ab3<br />

12<br />

I y = ba3<br />

36<br />

I z = ab3<br />

48<br />

I y = I z = π 4<br />

( R<br />

4<br />

a − R 4 i<br />

)<br />

I y = π 4<br />

(<br />

aa b 3 a − a ib 3 i<br />

)<br />

I z = π 4<br />

(<br />

a<br />

3<br />

a b a − a 3 i b i)<br />

s<br />

thin-walled circle:<br />

y<br />

R<br />

I y = πR 3 s<br />

z<br />

I z = πR 3 s<br />

a<br />

thin-walled ellipse:<br />

y<br />

b<br />

I y = π 4 sb2 (b +3a)<br />

s<br />

z<br />

I z = π 4 sa2 (a +3b)<br />

7


3 Bending <strong>of</strong> Beams<br />

deflection lines for selected load cases:<br />

w =<br />

Fl<br />

6EI y<br />

x ( )<br />

2 3 − x l<br />

w = − M<br />

2EI y<br />

x 2<br />

(<br />

w =<br />

pl2<br />

24EI y<br />

x 2 6 − 4 x + ( ) )<br />

x 2<br />

l l<br />

w =<br />

(<br />

pl2<br />

120EI y<br />

x 2<br />

10 − 10 x l +5( x<br />

l<br />

) 2<br />

− ( ) )<br />

x 3<br />

l<br />

(<br />

x ≤ a : w = Flb<br />

6EI y<br />

x 1 − ( )<br />

b 2 (<br />

l − x<br />

) ) 2<br />

l<br />

(<br />

w = Fl2 a<br />

6EI y<br />

1 −<br />

x<br />

l<br />

x ≥ a :<br />

) ( 1 − ( a<br />

l<br />

) 2 ( ) )<br />

− 1 −<br />

x 2<br />

l<br />

w =<br />

pl3<br />

24EI y<br />

x ( 1 − x l<br />

) ( 1+ x − ( ) )<br />

x 2<br />

l l<br />

w =<br />

(<br />

pl3<br />

360EI y<br />

x<br />

7 − 10 ( x<br />

l<br />

) 2<br />

+3 ( ) )<br />

x 4<br />

l<br />

8


3 Bending <strong>of</strong> Beams<br />

values <strong>of</strong> K (plastic bending) for typical cross sections:<br />

sketch<br />

K<br />

thin web<br />

K =1.0<br />

[<br />

K =1.5<br />

]<br />

h 3 t 2 +4ht 1·(b−t 2 )(h−t 1 )<br />

h 3 t 2 +2t 1 (b−t 2 )(3h 2 −6ht 1 +4t 2 1 )<br />

K =1.5<br />

[ ]<br />

h 3 t 2 +ht 2 1 (b−t 2)<br />

h 3 t 2 +t 3 1 (b−t 2)<br />

K =1.5<br />

thin walled tubes<br />

K =1.27<br />

K =1.698 D(D3 −d 3 )<br />

D 4 −d 4<br />

K =1.698<br />

K =2.0<br />

9


4 Transfer and Stiffness Matrices<br />

4 Transfer and Stiffness Matrices<br />

Transfer Matrices {W } and State Vectors → u:<br />

– bar with a constant distributed longitudinal load:<br />

– shear-rigid beam:<br />

→<br />

u=<br />

⎡<br />

⎣<br />

u<br />

N<br />

1<br />

⎤<br />

⎧<br />

⎨<br />

⎦ {W } =<br />

⎩<br />

l<br />

1<br />

AE<br />

−p L l 2<br />

2AE<br />

0 1 −p L l<br />

0 0 1<br />

⎫<br />

⎬<br />

⎭<br />

⎡<br />

→ u= ⎢<br />

⎣<br />

w<br />

w ′<br />

M y<br />

Q z<br />

1<br />

⎤<br />

⎥<br />

⎦<br />

w = w B<br />

(a) transfer matrix for a constant distributed transverse load:<br />

⎧<br />

⎪⎩<br />

1 l<br />

−l 2<br />

2I yE<br />

0 1<br />

−l<br />

I yE<br />

−l 3<br />

6I yE<br />

−l 2<br />

2I yE<br />

⎪⎨<br />

{W } =<br />

0 0 1 l<br />

p 0 l 4<br />

24I yE<br />

p 0 l 3<br />

6I yE<br />

−p 0 l 2<br />

2<br />

0 0 0 1 −p 0 l<br />

0 0 0 0 1<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

(b) dot matrix {P } in order to consider the introduction <strong>of</strong> concentrated loads:<br />

⎧<br />

⎪⎨<br />

{P } =<br />

⎪⎩<br />

1 0 0 0 0<br />

0 1 0 0 0<br />

0 0 1 0 M<br />

0 0 0 1 −P<br />

0 0 0 0 1<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

10


4 Transfer and Stiffness Matrices<br />

– shear-flexible beam:<br />

⎡<br />

→ u= ⎢<br />

⎣<br />

w<br />

w ′ B<br />

M y<br />

Q z<br />

1<br />

⎤<br />

⎥<br />

⎦<br />

w = w B + w S<br />

⎧<br />

⎪⎩<br />

1 l<br />

−l 2<br />

2I yE<br />

0 1<br />

−l<br />

I yE<br />

(<br />

−l 3<br />

6I yE +<br />

⎪⎨<br />

{W } =<br />

0 0 1 l<br />

−l 2<br />

2I yE<br />

l<br />

A Qz G<br />

)<br />

(<br />

p 0 l 4<br />

I yE 24 − IyEl2<br />

2A Qz G<br />

p 0 l 3<br />

6I yE<br />

−p 0 l 2<br />

2<br />

0 0 0 1 −p 0 l<br />

0 0 0 0 1<br />

)<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

Stiffness Matrices:<br />

– shear-rigid beam with a constant distributed transverse load:<br />

⎡<br />

⎢<br />

⎣<br />

⎤<br />

Q 0<br />

M 0<br />

Q 1<br />

M 1<br />

⎥<br />

⎦ = EIy<br />

⎡<br />

⎧⎪<br />

12 −6l −12 −6l<br />

⎨<br />

⎫⎪<br />

−6l 4l 2 6l 2l 2 ⎬ ⎢<br />

l 3 ⎪ −12 6l 12 6l ⎣<br />

⎩ ⎪ ⎭<br />

−6l 2l 2 6l 4l 2<br />

w 0<br />

w ′ 0<br />

w 1<br />

w ′ 1<br />

⎤<br />

⎥<br />

⎦ + p 0l<br />

2<br />

⎡<br />

⎢<br />

⎣<br />

−1<br />

l<br />

6<br />

−1<br />

− l 6<br />

⎤<br />

⎥<br />

⎦<br />

11


5 Beams Subjected to Transverse Shear Forces<br />

5 Beams Subjected to Transverse Shear Forces<br />

Open Thin-Walled Sections:<br />

– shear flow formula:<br />

t = Q zS y<br />

I y<br />

– rules for a qualitative description <strong>of</strong> the shear flow distribution:<br />

(1) The shear flow is directly proportional to the statical moment.<br />

(2) At an open end the shear flow is equal to zero, as the statical moment is zero.<br />

(3) The shear flow behaves linearly along the section center line for center lines that<br />

are parallel to the line <strong>of</strong> zero stress.<br />

(4) The shear flow has a parabolic shape for center lines that are perpendicular to<br />

the line <strong>of</strong> zero stress, the slope<br />

· decreases for integration towards the line <strong>of</strong> zero stress (lever arm gets smaller)<br />

and<br />

· increases for integration away from the line <strong>of</strong> zero stress (lever arm gets<br />

larger).<br />

(5) If the cross section is symmetric to the line <strong>of</strong> zero stress, the shear flow will be<br />

symmetric as well.<br />

(6) The direction <strong>of</strong> the shear flow corresponds to the direction <strong>of</strong> the loading: theory<br />

<strong>of</strong> sources and drains.<br />

(7) At branching points use the correct signs when superposing the statical moments.<br />

12


5 Beams Subjected to Transverse Shear Forces<br />

– shear center:<br />

∫<br />

s<br />

resp.<br />

t(s)ρ(s)ds = Q z · e y<br />

e y = 1 I y<br />

∫<br />

s<br />

S y ρds<br />

Closed Thin-Walled Sections:<br />

– Bredt’s first formula:<br />

M t =2t 0 A<br />

– procedure for the shear flow calculation <strong>of</strong> closed sections (only valid, if there are no<br />

warping stresses, i.e. if the transverse force acts through the shear center or if the<br />

cross section is a cross section <strong>of</strong> zero warping):<br />

(1) The closed section is cut at any arbitrary point:<br />

⇒ open section: t ′ = QzSy<br />

I y<br />

(2) The shear flow t 0 is determined by the equality <strong>of</strong> twisting moments.<br />

∮<br />

Q z a = t ′ ρds +2At 0 = Q z e 1 +2At 0<br />

(3) The shear flows t ′ and t 0 are superposed.<br />

– condition for the determination <strong>of</strong> the shear center:<br />

ϑ ′ =0<br />

⇒<br />

∮ t<br />

′<br />

Q z<br />

∮ Sy<br />

+ t 0,SC<br />

I<br />

ds =0 ⇒ t 0,SC = −<br />

y Gh<br />

∮ ds<br />

Gh<br />

ds<br />

Gh<br />

13


5 Beams Subjected to Transverse Shear Forces<br />

– Using this relation, the shear center can be determined by the following equation:<br />

∮<br />

∮<br />

A Sy<br />

Q z e = t ′ I<br />

ρds +2t 0,SC A ⇒ e = e 1 − 2<br />

y Gh ds<br />

∮ ds<br />

Gh<br />

– condition for cross sections <strong>of</strong> zero warping:<br />

∫ 2<br />

1<br />

ds<br />

Gh = ∆A ∮<br />

A<br />

ds<br />

Gh<br />

Shear-Flexible Beams:<br />

– The deformation w B <strong>of</strong> shear-rigid beams is superposed by the shear deformation w S :<br />

w = w B + w S<br />

– Hooke’s law (dependence <strong>of</strong> the shear deformation on the shear stress):<br />

γ(z) = τ(z)<br />

G<br />

– average shear angle γ m and shear correction factor κ z :<br />

w ′ τ<br />

S = γ m = κ z<br />

G = κ Q z<br />

z<br />

AG<br />

– determination <strong>of</strong> κ z :<br />

κ z = A Iy<br />

2<br />

∫<br />

κ z = A I 2 y<br />

s<br />

∫<br />

z<br />

S 2 y<br />

B dz<br />

(solid cross sections)<br />

Sy<br />

2<br />

h ds (thin-walled cross sections) 14


5 Beams Subjected to Transverse Shear Forces<br />

– shear-bearing area:<br />

A Qz = A κ z<br />

– approximation for thin-walled cross sections:<br />

κ z =<br />

A<br />

∑<br />

Aweb<br />

– differential equation <strong>of</strong> shear-flexible beams:<br />

w ′′′′ = −<br />

p′′<br />

A Qz G + p<br />

I y E<br />

As bo<strong>und</strong>ary conditions the following expressions must be used:<br />

w or Q z = w ′ sA Qz G<br />

β = w ′ B = w′ − γ m or M y = −w ′′ B I yE<br />

15


5 Beams Subjected to Transverse Shear Forces<br />

shear center locations:<br />

e =<br />

3hb2<br />

ah s +6bh<br />

e = ab3 2<br />

b 3 1 + b3 2<br />

sin α − α cos α<br />

e =2R<br />

α − sin α cos α<br />

e =2R<br />

16


5 Beams Subjected to Transverse Shear Forces<br />

shear correction factors (η = a b ): κ z = κ y =1.11<br />

κ z = κ y =1.2<br />

κ z = η +2<br />

(6η + η 2 ) 2 (<br />

24 + 36η +12η 2 + 6 5 η3 )<br />

κ y =<br />

3(η +2) 3<br />

(2 + 5η +2η 2 ) 2 ( 1<br />

5 + 7<br />

10 η + 4 5 η2 + 1 4 η3 )<br />

κ z = η +2<br />

(6η + η 2 ) 2 (<br />

6+36η +12η 2 + 6 5 η3 )<br />

κ y = 3 (η +2)<br />

5<br />

κ z =<br />

12(η +1) 3<br />

η 2 (4 + 5η + η 2 ) 2 ( 1<br />

4 + 8 5 η + 7<br />

10 η2 + 1<br />

10 η3 )<br />

κ y = 6 (η +1)<br />

5<br />

y<br />

κ z = κ y =2.0<br />

z<br />

17


6 Torsion <strong>of</strong> Beams<br />

6 Torsion <strong>of</strong> Beams<br />

Twisting Moment:<br />

T = M t + Q y e z − Q z e y<br />

Saint Vénant’s torsion:<br />

– definitions:<br />

· torsional moment <strong>of</strong> an area:<br />

ϑ ′ =<br />

T<br />

GI T<br />

(I T ≠ I p )<br />

· torsional section modulus:<br />

– closed thin-walled sections:<br />

τ max =<br />

T W T<br />

· section modulus (h min : minimum wall thickness):<br />

W T =2Ah min<br />

· Bredt’s first formula:<br />

· Bredt’s second formula:<br />

M t =2t 0 A<br />

GI T = 4A2 ∮ ds<br />

Gh<br />

18


6 Torsion <strong>of</strong> Beams<br />

– prismatic bars <strong>of</strong> solid cross section:<br />

· circular solid section:<br />

· elliptical solid section:<br />

I T = π 2 R4<br />

W T = π 2 R3<br />

I T = π a3 b 3<br />

a 2 + b 2<br />

W T = πab2<br />

2<br />

· rectangular solid section:<br />

I T = η 1<br />

B 3 H<br />

3<br />

W T = η 2<br />

B 2 H<br />

3<br />

H/B η 1 η 2<br />

1 0.4217 0.6245<br />

1.25 0.5152 0.6636<br />

1.5 0.5873 0.6929<br />

2 0.6860 0.7376<br />

3 0.7900 0.8016<br />

4 0.8424 0.8450<br />

5 0.8745 0.8740<br />

6 0.8951 0.8950<br />

8 0.9212 0.9212<br />

10 0.9370 0.9370<br />

∞ 1.0000 1.0000<br />

19


6 Torsion <strong>of</strong> Beams<br />

– approximations:<br />

· narrow rectangular section:<br />

I T = 1 3 B3 H<br />

W T = B2 H<br />

3<br />

τ = τ max<br />

2y<br />

B<br />

· thin-walled open sections:<br />

1 ∑<br />

I T = η 3 h 3 i l i<br />

3<br />

W T = I t<br />

=<br />

h max η ∑<br />

3<br />

h 3 i l i<br />

3h max<br />

i<br />

i<br />

section shape L U Z T I X<br />

η 3 0.99 1.12 1.12 1.12 1.30 1.17<br />

· thick-walled hollow sections:<br />

ϑ ′ = ϑ ′ B = ϑ′ i<br />

T = T B + ∑ i<br />

T i<br />

⎫<br />

⎬<br />

⎭ ⇒ I T = I TB + ∑ i<br />

I Ti<br />

τ max,i =<br />

3T i<br />

η 2i h 2 i l i<br />

τ Bi =<br />

T B<br />

2HBh i<br />

20


6 Torsion <strong>of</strong> Beams<br />

Restrained-Warping Torsion<br />

– twisting moments due to Saint Venant’s torsion M SV and due to bending torsion M B :<br />

M SV = ϑ ′ GI T<br />

M B = −ϑ ′′′ C T E<br />

– differential equation <strong>of</strong> restrained-warping torsion:<br />

d 3 ϑ dϑ<br />

− α2<br />

dξ3 dξ = −µ<br />

with<br />

ξ = x l<br />

α 2 = GI T l 2<br />

EC T<br />

µ = Tl3<br />

EC T<br />

– solution for a clamped cantilever beam subjected to a constant twisting moment:<br />

with<br />

ϑ = A 1 + A 2 cosh αξ + A 3 sinh αξ + µ α 2 ξ<br />

A 1 = −A 2 = − µ α 3 tanh α A 3 = − µ α 3 21


6 Torsion <strong>of</strong> Beams<br />

warping resistance C T :<br />

C T = a 2 I F 1I F 2<br />

I F 1 + I F 2<br />

C T = a 2 b 2 A F<br />

( 1<br />

6 −<br />

)<br />

A F<br />

8A F +4A S<br />

(<br />

)<br />

C T = a 2 b 2 1<br />

A F<br />

6 − A F<br />

8A F + 4 3 A S<br />

22


7 Stiffened Shear Webs<br />

7 Stiffened Shear Webs<br />

Open Stiffened Shear Webs<br />

– shear flow:<br />

t = Q a<br />

– longitudinal force in the flanges:<br />

N = M y<br />

a<br />

A<br />

– shear center:<br />

Q<br />

a<br />

e = 2A a<br />

e<br />

Closed Stiffened Shear Webs with 2 Flanges<br />

– determination <strong>of</strong> the shear flow distribution<br />

· method 1:<br />

Q = Q 1 + Q 2 ; Qd = Q 1 e 1 − Q 2 e 2<br />

23


7 Stiffened Shear Webs<br />

· method 2:<br />

Two-Dimensional Stiffened Shear Webs<br />

– degree <strong>of</strong> red<strong>und</strong>ancy:<br />

U = S + B + A − 2k<br />

S: number<strong>of</strong>bars<br />

B: number<strong>of</strong>panels<br />

A: number <strong>of</strong> reaction forces<br />

k: number<strong>of</strong>nodes<br />

– determination <strong>of</strong> the longitudinal bar forces:<br />

N(x) =<br />

– rectangular webs:<br />

∫ x<br />

0<br />

tdx + N 0<br />

t = t 1 = t 2 =<br />

t 3 = t 4 =<br />

const.<br />

24


7 Stiffened Shear Webs<br />

– parallelogram webs:<br />

t = t 1 = t 2 =<br />

t 3 = t 4 =<br />

const.<br />

n x =2t tan ϕ<br />

– trapezoidal webs:<br />

· definition <strong>of</strong> mean shear flow:<br />

t =<br />

∫ l<br />

0 t(x)dx<br />

l<br />

· determination <strong>of</strong> the mean shear flows:<br />

t 3<br />

t 1<br />

=<br />

(<br />

a1<br />

a 3<br />

) 2<br />

t 1<br />

t 2<br />

= t 4<br />

t 3<br />

= a 3<br />

a 1<br />

t 2 = t 4<br />

· The shear flows along the edges 1 and 3 are constant:<br />

t 1 = t 1 = const.<br />

t 3 = t 3 = const.<br />

· shear flow distribution along the edges 2 and 4:<br />

( ) 2 ( )<br />

a3<br />

d<br />

2<br />

t(x) =t 3 = t 3<br />

a(x) d + x<br />

t(x) =t m<br />

a 1 a 3<br />

a(x) 2 t m = √ t 2 t 4 = √ t 1 t 3<br />

· longitudinal force in the bars 2 and 4:<br />

N 2 (x) =N 20 + t 3<br />

cos α<br />

1+ x l<br />

x<br />

( ) N 4 (x) =N 40 − t 3<br />

a1<br />

a 3<br />

− 1<br />

cos β<br />

1+ x l<br />

x<br />

( )<br />

a1<br />

a 3<br />

− 1<br />

25


7 Stiffened Shear Webs<br />

– general quadrangular webs:<br />

A = t 1 p A p B = t 2 p B p C =<br />

t 3 p C p D = t 4 p D p A<br />

t m = √ t 2 t 4 = √ t 1 t 3<br />

· shear flow along the edge i:<br />

t i (u i )=<br />

t i0<br />

[<br />

1+(<br />

pil<br />

p i0<br />

− 1<br />

) ] 2 ui<br />

l i<br />

t i0 = A p 2 i0<br />

· longitudinal force in the bar i:<br />

N i (u i )=N i0 +<br />

t i0 u i<br />

1+(<br />

pil<br />

p i0<br />

− 1<br />

)<br />

ui<br />

l i<br />

Three-Dimensional Stiffened Shear Webs<br />

– degree <strong>of</strong> red<strong>und</strong>ancy:<br />

U = S + B + A − 3k r − 2k e<br />

S: number<strong>of</strong>bars<br />

B: number<strong>of</strong>panels<br />

A: number <strong>of</strong> reaction forces<br />

k r : number <strong>of</strong> three-dimensional nodes<br />

k e : number <strong>of</strong> two-dimensional nodes<br />

26


7 Stiffened Shear Webs<br />

shear center locations for some web shapes:<br />

straight<br />

web<br />

arbitrary<br />

shape<br />

parabula semicircle large arc<br />

e =0 e =2 A H<br />

e = 4a 3<br />

e = π 2 R<br />

e = 2A<br />

H t<br />

Q = tH Q = tH Q = tH Q = tH Q = tH t<br />

M αt =0<br />

M αt = M αt = M αt =<br />

2At<br />

4<br />

3 Hat R 2 πt<br />

M αt =2At<br />

load bearing capabilities <strong>of</strong> stiffened shear webs:<br />

longitudinal force<br />

in the centroid <strong>of</strong><br />

the flanges<br />

transverse parallel to<br />

force in 1-1<br />

X<br />

X<br />

X X X X X<br />

X<br />

X X<br />

X<br />

the shear arbitrary<br />

center direction<br />

X X X X<br />

perpendicular<br />

to 1-1<br />

bending<br />

X X X<br />

moment arbitrary<br />

direction<br />

X X X X<br />

twisting moment X X X X X<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!