26.01.2014 Views

Multiple-Chip Embedded Wafer Level Packaging

Multiple-Chip Embedded Wafer Level Packaging

Multiple-Chip Embedded Wafer Level Packaging

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

IME Proprietary<br />

EPRC – 11<br />

Project Proposal<br />

<strong>Multiple</strong>-<strong>Chip</strong> l <strong>Embedded</strong> d <strong>Wafer</strong><br />

<strong>Level</strong> <strong>Packaging</strong><br />

9 th November 2010<br />

Slide 1


Motivation<br />

• High density packaging solution needed for mobile product<br />

→ Driver is Foot print, Thickness<br />

Ref: <strong>Chip</strong>works<br />

IME Proprietary<br />

“ Die / Board area ratio is 98 %<br />

Die/Package ratio is 160%. Packing<br />

density on the main board is the<br />

highest we’ve ever seen”.<br />

(Ref: <strong>Packaging</strong> for Portables; Going Vertical &<br />

Getting Small, David Carey)<br />

iPhone 4 main board : Component<br />

packing density<br />

Devices are today<br />

packaged in WLP<br />

Ref: Yole<br />

Slide 2<br />

Smart Phone IC <strong>Packaging</strong><br />

Ref: Global Semiconductor alliance


Technology Trend<br />

• Fan-out wafer level packaging: replacement of high pin-counts Pkg.<br />

→ Better electrical performance<br />

IME Proprietary<br />

Electrical parasitic fcBGA<br />

and eWLB @ 1GHz.<br />

Ref : Yole Development , 2010, <strong>Embedded</strong> <strong>Wafer</strong>-<strong>Level</strong>-<br />

Packages Fan-out WLP / <strong>Embedded</strong> die in PCB<br />

Ref : Seung Wook Yoon et al Thermal and<br />

Electrical l Characterization ti of eWLB<br />

(embedded <strong>Wafer</strong> <strong>Level</strong> BGA), ECTC2010<br />

Slide 3


Challenges to be addressed<br />

IME Proprietary<br />

Challenge<br />

12” wafer re-construction Die shift<br />

• .Material selection<br />

• Process control<br />

• Process modeling & prediction<br />

• Tape & mold material characterization<br />

Thin wafer handling<br />

• Warpage correction<br />

• Support wafer<br />

Approach<br />

Through Mold Connection<br />

• Wall smoothening<br />

• Electro-less less copper seed<br />

Printed Circuit Board<br />

Solder joint reliability<br />

<strong>Multiple</strong> layer RDL stress<br />

Power integrity<br />

• Stress isolation<br />

• Solder joint strengthening<br />

• Low temperature cure dielectric<br />

• Low stress material<br />

• De-coupling approach<br />

• <strong>Embedded</strong> / SMD passive<br />

Die 1 Die 2 Die 1 Die 2 Die 3<br />

Printed Circuit Board<br />

Printed Circuit Board<br />

Slide 4<br />

TV1 TV 2


Project Proposal<br />

IME Proprietary<br />

Objective: To develop embedded wafer packaging with multiple chip<br />

and discrete passive components involving<br />

• <strong>Wafer</strong> molding process modeling<br />

• 12” wafer re-construction process<br />

• Signal/power integrity it design<br />

• <strong>Multiple</strong> RDL Layer process<br />

• Through mold interconnection method<br />

• Solder joint reliability improvement<br />

Die 1 Die 2<br />

Die 1 Die 2 Die 3<br />

Printed Circuit Board<br />

TV 1 *:<br />

• Package size < 10mm<br />

• 2 chip with discrete passive<br />

• 2 RDL Layers<br />

Printed Circuit Board<br />

TV 2 *:<br />

• Package size > 10mm<br />

• 3 chip with discrete passive<br />

• 3 RDL layers<br />

Slide 5<br />

* To be finalized with members input


<strong>Wafer</strong> Molding Analysis<br />

IME Proprietary<br />

• Re-construction process modeling<br />

o Material characterization for<br />

modeling<br />

• Viscosity<br />

• Gel temperature<br />

• Mechanical properties<br />

o Cure kinetics<br />

• Degree of cure<br />

o Molding process simulation<br />

• Temperature, time, pressure<br />

Cure Cycle<br />

•Effect t of packaging density<br />

o Die layout<br />

o Die thickness<br />

o Number of die<br />

o Mold thickness<br />

Slide 6<br />

•Model validation<br />

o Warpage measurement<br />

o Die shift measurement<br />

Degree of Cure<br />

Ref: Min Woo Lee, Rheological Characterization and Full 3D<br />

Mold Flow Simulation in Multi-Die Stack CSP of <strong>Chip</strong> Array<br />

<strong>Packaging</strong>, ECTC2006


<strong>Wafer</strong> Re-construction<br />

• 300mm wafer level molding<br />

process<br />

o Evaluation of molding material<br />

• Liquid , Granular<br />

o Process condition<br />

• Temperature, time, pressure<br />

o Post mold treatment<br />

• Die shift analysis & control<br />

o Evaluation of re-configuration tape<br />

• Adhesion, temperature stability<br />

o Die pick & place tolerance<br />

o Mold material & Process<br />

o Minimum clearance between die<br />

• <strong>Wafer</strong> warpage control<br />

o Thermal treatment<br />

o Support system<br />

o Mold material<br />

Slide 7<br />

Mold process temperaturet<br />

IME Proprietary<br />

Ref: IME<br />

Die shift analysis<br />

Large Warpage<br />

Ref: IME<br />

Ref: IME


Re-distribution & Interconnection<br />

IME Proprietary<br />

• Re-distribution<br />

o <strong>Multiple</strong> layers of re-distribution metal<br />

layers<br />

• Sputtered seed, electro-less seed<br />

o Low temperate cure & low stress dielectric<br />

o Dielectric material adhesion on molded<br />

wafer<br />

o Cu seed adhesion on the mold material<br />

• Through Mold Interconnection<br />

o Via formation<br />

• Wall roughness conditioning<br />

o Electroplated /Electroless – Cu<br />

o Via filling methods<br />

<strong>Multiple</strong> layer<br />

RDL<br />

Ref: IME<br />

Through mold<br />

connection<br />

Slide 8


Electrical Design<br />

• Freq domain analysis / testing<br />

o Upto 20 GHz<br />

o TL from PCB to DIE<br />

• CPW and MSL benchmarking<br />

o <strong>Chip</strong> to chip connection (RDL)<br />

• Power Decoupling Networks (PDN) analysis / testing<br />

o DeCap location<br />

• Signal & Power integrity analysis<br />

o C2C interconnection ( Side by Side)<br />

• Electrical characterization of mold compound &<br />

Through mold connection<br />

o Dk, tanθ up to 10 GHz<br />

IME Proprietary<br />

Mold<br />

DeCap<br />

RD<br />

L<br />

IC#1<br />

IC#2<br />

PCB<br />

Slide 9


Package Reliability<br />

IME Proprietary<br />

• Solder joint reliability<br />

o Interconnect structure design and stress<br />

analysis<br />

o UBM, Pad finish<br />

o Stress isolation<br />

o Solder joint strengthening<br />

• Package reliability assessment<br />

o TCOB<br />

o MSL<br />

o HAST<br />

o Drop test<br />

• Failure Analysis<br />

o Mold void<br />

o Die stress<br />

o Dielectric delamination<br />

o Solder joint failure<br />

Slide 10


Project Flow<br />

IME Proprietary<br />

Members Input<br />

Test Vehicle definition<br />

<strong>Wafer</strong> – Reconstruction<br />

& Molding<br />

Mold and tape selection &<br />

characterization<br />

Compression molding<br />

process modeling<br />

<strong>Wafer</strong> re-construction<br />

experiments and die shift<br />

analysis<br />

Design & Analysis<br />

Signal & Power integrity<br />

it<br />

analysis<br />

Characterization of<br />

Through mold connection<br />

Package stress analysis<br />

and solder joint reliability<br />

improvements<br />

<strong>Wafer</strong> level & assembly<br />

Process<br />

Double side RDL, Dielectric<br />

material selection<br />

Warpage correction study<br />

Through- mold<br />

interconnection method<br />

Package assembly Process<br />

Project Time line and<br />

schedule :<br />

Feb 2011 to Aug 2012<br />

Slide 11<br />

Test Vehicles<br />

Fabrication & assembly<br />

Reliability Testing &<br />

Failure analysis


Research Outcome<br />

IME Proprietary<br />

• Design<br />

o Signal integrity analysis results and design guide line<br />

o Power integrity design and analysis results<br />

o Modeling approach for wafer re-construction process and die shift<br />

control guide line<br />

o Large package thermo-mechanical reliability improvement method<br />

•Process<br />

o 12” wafer re-construction process details and mold material<br />

characterization<br />

o <strong>Wafer</strong> warpage data and reduction methods<br />

o Dielectric material evaluation and adhesion characterization<br />

o <strong>Multiple</strong> layer RDL process details<br />

o Through mold interconnection method<br />

• Package assembly<br />

o Package age assembly process details<br />

•Package reliability evaluation<br />

o Package reliability evaluation results, failure identification and root<br />

cause analysis<br />

Slide 12


IME Proprietary<br />

Thanks for your attention<br />

Slide 13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!