03.02.2014 Views

transparencies

transparencies

transparencies

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

World-sheet supersymmetry and<br />

supertargets<br />

Peter Browne Rønne<br />

University of the Witwatersrand, Johannesburg<br />

Chapel Hill, August 19, 2010<br />

arXiv:1006.5874 Thomas Creutzig, PR


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Sigma-models on supergroups/cosets<br />

The Wess-Zumino-Novikov-Witten (WZNW) model of a Lie<br />

supergroup is a CFT with additional affine Lie superalgebra<br />

symmetry.<br />

Important role in physics<br />

• Statistical systems<br />

• String theory, AdS/CFT<br />

Notoriously hard: Deformations away from WZNW-point<br />

Use and explore the rich structure of dualities and<br />

correspondences in 2d field theories


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Sigma models on supergroups: AdS/CFT<br />

The group of global symmetries of the gauge theory and also of<br />

the dual string theory is a Lie supergroup G.<br />

The dual string theory is described by a two-dimensional sigma<br />

model on a superspace.<br />

AdS 5 × S 5 PSU(2, 2|4)<br />

SO(4, 1) × SO(5)<br />

AdS 2 × S 2 PSU(1, 1|2)<br />

U(1) × U(1)<br />

supercoset<br />

supercoset<br />

AdS 3 × S 3 PSU(1, 1|2) supergroup<br />

AdS 3 × S 3 × S 3 D(2, 1; α) supergroup<br />

Obtained using GS or hybrid formalism. What about RNS<br />

formalism? And what are the precise relations?


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

AdS 3 × S 3 × T 4<br />

D1-D5 brane system on T 4 with near-horizon limit<br />

AdS 3 × S 3 × T 4 . After S-duality we have N = (1, 1) WS SUSY<br />

WZNW model on SL(2) × SU(2) × U 4 . It has N = (2, 2)<br />

superconformal symmetry (as we will see).<br />

Hybrid formalism of string theory on AdS 3 × S 3 gives a sigma<br />

model on PSU(1,1|2) .<br />

RR-flux is deformation away from WZ-point.<br />

[Berkovits, Vafa, Witten]<br />

Dual 2-dimensional CFT is deformation of symmetric orbifold<br />

Sym N (T 4 ) = (T 4 ) N /S N . It has N = (4, 4) superconformal<br />

symmetry.


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Recent progress: Chiral ring<br />

[Kirsch, Gaberdiel][Dabholkar, Pakman]<br />

Computed chiral ring in the NS-formulation.<br />

Results match the boundary computations, but at a different<br />

point in moduli space.<br />

Correlators are very simple<br />

〈O 1 (z 1 , ¯z 1 )O 2 (z 2 , ¯z 2 )O 3 (z 3 , ¯z 3 )〉 =<br />

C 123<br />

∏ |zi − z j | ∆ ij<br />

where C 123 = 0 or C 123 = 1.<br />

• Why?


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Correspondence<br />

S N =(2,2)<br />

GL(N)×GL(N) + 1 ∫<br />

2π<br />

dτdσ Φ<br />

G + (z)<br />

G − (z)<br />

U(z)<br />

Def. + B-twist<br />

−→<br />

Def. + B-twist<br />

−→<br />

Def. + B-twist<br />

−→<br />

S GL(N|N)<br />

Def. + B-twist<br />

−→<br />

J B (z) .<br />

J F (z)<br />

∑<br />

J F (z)J B (z) + ∂J F


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Motivation<br />

Motivation<br />

Outline<br />

World-Sheet SUSY<br />

N = (1, 1) world-sheet SUSY<br />

N = (2, 2) world-sheet SUSY<br />

Lie superalgebras<br />

Superalgebras and supergroups<br />

Free fermion resolution<br />

From World-Sheet SUSY to Supertargets<br />

Twisting and TCFT<br />

Relation for GL(N|N)<br />

Deformations<br />

String theory on AdS 3 × S 3 × T 4<br />

Outlook<br />

Outlook


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

N = (1, 1) world-sheet SUSY WZNW model<br />

[di Vecchia, Knizhnik, Petersen, Rossi]<br />

• Bosonic Lie group H<br />

• Introduce superspace in 2d: θ 1 , θ 2<br />

• Map G : Σ 2|2 ↦→ H<br />

• Components<br />

G(z, ¯z, θ α ) = g + i ¯θψ + 1 2 i ¯θθF<br />

• N = (1, 1) WZNW Lagrangian<br />

S N =(1,1)<br />

WZNW [G] = 1 ∫<br />

4λ 2 d 2 zd 2 θ tr( ¯DG −1 DG)<br />

+ k ∫<br />

d 2 xd 2 θdt tr(G −1 ∂ t G<br />

16π<br />

¯DG −1 γ 5 DG)


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

• N = (1, 1) for all λ, k<br />

Decoupling the fermions<br />

• Enhanced affine symmetry at the WZNW point<br />

λ 2 = 8π<br />

k<br />

• WZNW model is “rigid”: Fermions decouple<br />

• {t a } basis for g<br />

• Redefine ψ ↦→ χ<br />

χ = χ a t a ,<br />

¯χ = ¯χ a t a<br />

G = exp(iθχ) g exp(−i ¯θ ¯χ)<br />

S N =(1,1)<br />

WZNW [G] = S′ WZNW [g] + 1 ∫<br />

2π<br />

d 2 z (χ, ¯∂χ) + (¯χ, ∂ ¯χ)


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Quantum measure<br />

• ( , ) non-degenerate, invariant bi-linear form<br />

• Absorbed k into ( , )<br />

• Quantum measure effect from chiral decoupling of<br />

fermions: S<br />

WZNW ′ [g] has bilinear form<br />

( , ) ↦→ ( , ) + 1 2 < , > Killing


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

• Ĝ × Ĝ affine algebra<br />

Current symmetries<br />

J a (z)J b (w) ∼ (ta , t b ) + 1 2 < ta , t b > Killing<br />

(z − w) 2 + f ab cJ c (w)<br />

(z − w)<br />

¯J a (¯z)¯J b ( ¯w) ∼ (ta , t b ) + 1 2 < ta , t b > Killing<br />

(¯z − ¯w) 2<br />

• Free fermions<br />

χ a (z)χ b (w) ∼ (ta , t b )<br />

(z − w)<br />

+ f ab c¯J c ( ¯w)<br />

(¯z − ¯w)<br />

¯χ a (¯z)¯χ b ( ¯w) ∼ (ta , t b )<br />

(¯z − ¯w)<br />

• Implies N = (1, 1) superconformal symmetry<br />

(schematically)<br />

T (z) = (J(z), J(z)) + (χ(z), ∂χ(z))<br />

G(z) = (J(z), χ(z)) + ([χ(z), χ(z)], χ(z))


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

N = (2, 2) superconformal symmetry<br />

• When can we construct the N = (2, 2) current algebra?<br />

G + (z)G − (w) ∼<br />

G ± (z)G ± (w) ∼ 0<br />

U(z)G ± (w) ∼ ±G± (w)<br />

(z − w)<br />

c/3<br />

U(z)U(w) ∼<br />

(z − w) 2<br />

• Fermionic currents G ± , ∆(G ± ) = 3/2<br />

• Bosonic U(1) current U, ∆(U) = 1<br />

c/3<br />

(z − w) 3 + U(w)<br />

(z − w) 2 + T (w) + 1 2 ∂U(w)<br />

(z − w)


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

[Getzler]<br />

Manin decomposition<br />

• Current construction possible if algebra has Manin<br />

decomposition<br />

g = a + ⊕ a −<br />

• a ± isotropic Lie subalgebras<br />

• {x i } basis a +<br />

• {x i } dual basis a −<br />

(x i , x j ) = δ j i<br />

[x i , x j ] = c k ij x k<br />

[x i , x j ] = f ij kx k<br />

[x i , x j ] = c j ki x k + f jk ix k<br />

• Fermions now ( 1 2 , 1 2<br />

) ghost systems<br />

χ j (z)χ i (w) ∼ δj i /(z − w)


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

N = (2, 2) construction<br />

• Sugawara Virasoro tensor<br />

T (z) = 1 2 (:Ji J i : + :J i J i : + :∂χ i χ i : − :χ i ∂χ i :)<br />

• Fermionic currents<br />

G + (z) = J i χ i − 1 2 c ij k :χ i χ j χ k :<br />

G − (z) = J i χ i − 1 2 f ij k :χ i χ j χ k :<br />

• U(1) current<br />

U(z) = :χ i χ i : +ρ k J k + ρ k J k + c i mn f mn j :χ j χ i : .<br />

where<br />

ρ = −[x i , x i ]


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Deformations<br />

• Wide range of deformations with background charges<br />

• Define a 0<br />

a 0 = {x ∈ g | (x, y) = 0 ∀ y ∈ [a + , a + ] ⊕ [a − , a − ]}<br />

• a = p i x i + q i x i ∈ a 0<br />

G a<br />

+ = G + + q i ∂χ i<br />

• Implies<br />

G − a<br />

= G − + p i ∂χ i<br />

U a (z) = U(z) + p i I i (z) − q i I i (z)<br />

T a (z) = T (z) + 1 2 (pi ∂I i (z) + q i ∂I i (z))<br />

• Super-version of affine currents<br />

I i = J i − c k ij :χ j χ k : − 1 2 f jk i :χ j χ k :<br />

I i = J i − f ij k :χ j χ k : − 1 2 c jk i :χ j χ k :


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Deformations<br />

• Chiral ring unchanged as vector space<br />

• Actually, unchanged as ring: Deformation acts as spectral<br />

flow on the zero modes<br />

• Does change conformal dimension<br />

c a = c − 6q i p i


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Lie superalgebras and supergroups<br />

• Lie Superalgebra G = G 0 ⊕ G 1<br />

• Z 2 graded product<br />

[G 0 , G 0 ] ⊂ G 0 ( subalgebra)<br />

[G 0 , G 1 ] ⊂ G 1<br />

[G 1 , G 1 ] ⊂ G 0<br />

• Graded anti-symmetry<br />

[X, Y ] = −[Y , X]<br />

[X, Y ] = −[Y , X]<br />

[X, Y ] = [Y , X]<br />

• Generalised Jacobi identity


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Lie superalgebras and supergroups<br />

• Fundamental supermatrix representation, gl(M|N)<br />

( ) A B<br />

M =<br />

C D<br />

• Supertrace (invariant, supersymmetric bilinear form)<br />

strM = tr(A) − tr(D)<br />

• Grassmann envelope η (0)<br />

a T (0)<br />

a + η (1)<br />

b T (1)<br />

b<br />

η (0)<br />

a , η (1)<br />

b<br />

Grassmann elements<br />

T (0)<br />

a , T (1)<br />

b<br />

basis for G = G 0 ⊕ G 1<br />

• Supergroup<br />

(<br />

)<br />

exp η (0)<br />

a T (0)<br />

a + η (1)<br />

b T (1)<br />

b


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Free fermion resolution<br />

[Quella, Schomerus]<br />

• Introduce generators for super Lie algebra<br />

( K<br />

i<br />

S a 1<br />

S 2a K i )<br />

• Non-degenerate invariant bi-linear form 〈A, B〉 = kstr(AB)<br />

〈S a 1 , S 2b〉 = kδ a b<br />

〈K i , K j 〉 ≡ κ ij<br />

• Fermions transform in representation of bosonic subgroup<br />

• Fermionic fields c, ¯c<br />

[K i , S a 1 ] = −(Ri ) a b Sb 1<br />

c = c a S 2a , ¯c = ¯c a S a 1<br />

• Parametrization (Type I supergroup)<br />

g = e c g B e¯c


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Free fermion resolution<br />

• Free fermion resolution: Introduce auxiliary fields<br />

b = b a S a 1 ,<br />

¯b = ¯ba S 2a<br />

• Action<br />

• Screening charges<br />

S pert = − 1<br />

4πk<br />

S WZNW [g] = S 0 + S pert<br />

∫<br />

Σ<br />

d 2 σ str(Ad(g B )(¯b)b)<br />

• Bosonic WZNW, background charges, (1, 0) bc-ghosts<br />

S 0 = Sren WZNW [g B ] − 1 ∫<br />

dz 2√ hR (2) 1<br />

4π<br />

2 ln det R(g B)<br />

+ 1 ∫<br />

dz 2 ( b a ¯∂c a −<br />

2π<br />

¯b a ∂¯c a)


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Free fermion resolution<br />

• Quantum measure (again)<br />

〈K i B , K j B 〉 ren = κ ij − γ ij , γ ij = trR i R j ,<br />

• Free fermion currents<br />

K i (z) = KB i + b a(R i ) a b cb<br />

S1 a(z) = k∂ca + k(R i ) a b κ ijc b K j B − k 2 (Ri ) a b κ ij(R j ) c d b cc b c d<br />

S 2a (z) = −b a<br />

• Stress-energy tensor<br />

(<br />

)<br />

TG FF = 1 2<br />

KB i Ω ijK j B + tr(ΩRi )κ ij ∂K j B<br />

− b a ∂c a ,<br />

(Ω −1 ) ij = κ ij − γ ij + 1 2 f im nf jn m,<br />

(Ω −1 ) a b = δa b + (Ri κ ij R j ) a b .


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Topological conformal field theory<br />

• BRST-currents/charges Q, ¯Q<br />

• Cohomology by Q or Q + ¯Q<br />

• Conformal tensor exact<br />

H phys = kernel(Q)<br />

image(Q)<br />

T (z) = [Q, G(z)]<br />

¯T (¯z) = [Q, Ḡ(¯z)]<br />

• Cohomology ring: Position independent structure<br />

constants<br />

φ i φ j ∼ a ij k φ k


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

TCFT from N = (2, 2) by twisting<br />

• Positive B-twist<br />

• Gives TCFT with c = 0<br />

T +<br />

twisted (z) = T (z) + 1 2 ∂U(z) ,<br />

¯T +<br />

twisted (¯z) = ¯T (¯z) + 1 2 ¯∂Ū(¯z) .<br />

• ∆(G + , G − , U) = (3/2, 3/2, 1) ↦→ (1, 2, 1)<br />

• G + ↦→ Q<br />

• Chiral ring maps to cohomology<br />

• G − cohomology partner to T +<br />

twisted<br />

• U partner to Q<br />

T +<br />

twisted = [Q, G− ]


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

From WS SUSY to target superspaces<br />

• Idea: Consider Lie supergroup G<br />

• Look at free fermion resolution of WZNW model for G<br />

• Construct N = (2, 2) WS SUSY theory on the bosonic<br />

subgroup G B<br />

• By twisting reach TCFT with T +<br />

twisted = T G<br />

FF and Q one of<br />

the fermionic currents<br />

• Immediate constraint sdimg = 0<br />

• PSL(N|N) does not work, and no topological sectors were<br />

found<br />

• What about GL(N|N)?


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

• Generators (<br />

GL(N|N)<br />

E αβ<br />

+ F αβ<br />

+<br />

F αβ<br />

−<br />

E αβ<br />

−<br />

• Invariant form kstr (positive/negative on bosonic part)<br />

kstr(E αβ<br />

ɛ<br />

)<br />

E γδ<br />

ɛ<br />

) = κ ′<br />

(αβ ɛ )( γδ<br />

ɛ ′ ) = kɛδ ɛɛ ′δ αδ δ βγ<br />

• Can calculate free fermion currents and stress-energy<br />

tensor<br />

• Consider GL(N) × GL(N) bosonic base generated by E αβ<br />

±<br />

• Choose initial metric on bosonic base<br />

κ start = κ ij − γ ij + 1 2 f im nf jn m<br />

• Extra terms only changes metric on U(1) factors<br />

κ start = (E αβ<br />

ɛ<br />

, E γδ<br />

ɛ<br />

) = kɛδ ′ ɛɛ ′δ αδ δ βγ − ɛɛ ′ δ αβ δ γδ<br />

• Simply corresponds to field redefinition of U(1) factors


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Choose Manin decomposition<br />

• The right choice turns out to be<br />

gl(N) ⊕ gl(N) = a + ⊕ a −<br />

a + = span{E αβ<br />

+ + E αβ<br />

− }<br />

a − = span{ E + αα − E−<br />

αα<br />

2k<br />

+ 1<br />

2k<br />

2 Id, E αβ<br />

+<br />

k<br />

• Can then calculate SUSY currents G ± , U, T N =(2,2)<br />

, E βα<br />

−<br />

−k | α > β}


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

• Deformation parameter<br />

Fix deformations<br />

a 0 = span{x αα , ∑ α<br />

x αα }<br />

a = p αα x αα + q ∑ α<br />

x αα<br />

• Twist<br />

T +<br />

twisted = T N =(2,2)<br />

a + 1 2 ∂U a<br />

• p αα fixed by<br />

T +<br />

twisted = T GL(N|N)<br />

• The single remaining parameter q fixed by<br />

G + a is fermionic current<br />

• c = 3N 2 ↦→ c a = 0 (before twisting)<br />

• Whole deformation can be seen as background charge


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

WS SUSY currents as super Lie currents<br />

• After the twist χ i , χ i ghost system (1/2, 1/2) ↦→ (1, 0)<br />

• Fix dictionary-automorphism of ghosts<br />

c αβ = −χ βα ,<br />

b αβ = −χ βα<br />

• We got what we aimed for<br />

G + a = ∑ α<br />

F αα<br />

+<br />

• ... and a surprise<br />

U a = 1<br />

2k<br />

∑α<br />

Ga − = 1<br />

1<br />

k<br />

2k<br />

∑α>β<br />

(k + N + 1 − 2α)Ẽ<br />

αα<br />

∑α F αα<br />

−<br />

(Ẽ<br />

αα<br />

αβ ˜F − Ẽ βα<br />

− + 1 k<br />

+ + 1<br />

2k<br />

+ 1 ββ<br />

k<br />

∑β<br />

(Ẽ<br />

+ − Ẽ −<br />

αα<br />

∑α


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Deformations with chiral fields<br />

• N = (2, 2) WS SUSY: chiral and twisted chiral<br />

supermultiplets (and anti-)<br />

• Classical SUSY-preserving deformation by F- and D-terms<br />

• Chiral multiplet generated by field in (++)-ring<br />

• Remaining components<br />

[G + −1/2 , φ ++] = [Ḡ+ −1/2 , φ ++] = 0<br />

ψ ++ = −[G − −1/2 , φ ++], ¯ψ ++ = −[Ḡ− −1/2 , φ ++]<br />

F ++ = −{G − −1/2 , [Ḡ− −1/2 , φ ++]}<br />

• F-term perturbation non-exact in twisted theory<br />

• Anti-chiral and twisted (anti-)chiral F-term perturbations<br />

are exact in G + + Ḡ+ cohomology


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Screening charges in supergroup model<br />

• We achieved T +<br />

twisted = T GL(N|N) ⇒<br />

S GL(N)×GL(N)<br />

N =(1,1)<br />

+ deformations + twist = S GL(N|N)<br />

0<br />

• Free fermion resolution boson-fermion interaction terms<br />

S pert = − 1<br />

4πk<br />

• Are screening charges:<br />

∫<br />

Σ<br />

d 2 σ str(Ad(g B )(¯b)b)<br />

J(z)L pert ∼ total derivatives<br />

• Conclusion: Is (classical) SUSY deformation<br />

• Is in fact chiral F-term perturbation: Take g B =<br />

( ) A 0<br />

0 B<br />

• φ = tr(A −1 B) in (+, +)-ring, has dimension (1/2, 1/2)<br />

F ++ = −{G − −1/2 , [Ḡ− −1/2 , φ ++]} = 4π<br />

k L pert


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Bosonic screening charges<br />

• Free fermion resolution gave us<br />

S 0 = Sren WZNW [g B ] − 1 ∫<br />

dz 2√ hR (2) 1<br />

4π<br />

2 ln det R(g B)<br />

+ 1 ∫<br />

dz 2 ( b a ¯∂c a −<br />

2π<br />

¯b a ∂¯c a)<br />

• GL(2) Gauss decomposition<br />

exp γ<br />

( ) ( ( ) ( ))<br />

0 1<br />

1 0 1 0<br />

exp φ<br />

0 0<br />

0 + φ<br />

0 1 z exp ¯γ<br />

0 −1<br />

• First order formalism: Introduce auxiliary fields β and ¯β<br />

∫<br />

Sren WZNW [g B ] = S kin+b.g. [φ 0 , φ z , β, γ] + d 2 zβ ¯βe φz/√ k<br />

• Screening charges are chiral F-terms.<br />

( ) 0 0<br />

1 0


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Exactness<br />

• Free fermion resolution AND bosonic first order formalism<br />

S GL(2|2) = S kin+b.g. [φ ± 0 , φ± z , β ± , γ ± ]<br />

} {{ }<br />

G + +Ḡ+ exact<br />

+ S bos. screening + S bos.-ferm. interaction<br />

} {{ }<br />

G − +Ḡ− exact


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Principal chiral field deformations<br />

• Principal chiral field<br />

S geom. = − k ∫<br />

∫<br />

d 2 z 〈g −1 ∂g, g −1 ¯∂g〉 ≡<br />

4π<br />

d 2 z Φ principal<br />

• PSU(1, 1|2) deformation of coefficient principal chiral field<br />

to turning on RR-flux in string theory<br />

• Can show this is D-term<br />

• Is G + -exact<br />

Φ principal = −{G + −1/2 , [Ḡ+ −1/2 , φ]}<br />

φ = − 1 ( 0 Id<br />

4πk 〈 Id 0<br />

) (<br />

g −1 0 Id<br />

Id 0<br />

)<br />

Jg¯J〉


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

String theory on AdS 3 × S 3 × T 4<br />

• The procedure works for string theory on AdS 3 × S 3 × T 4<br />

• AdS 3 × S 3<br />

N = (2, 2) WZNW on SU(1, 1) × SU(2)<br />

• T 4<br />

N = (2, 2) WZNW on U(1) 4<br />

• String ghosts – can be seen as<br />

N = (2, 2) WZNW on U(1) 2<br />

• Divide into<br />

U(1, 1) × U(2) ↦→ U(1, 1|2)<br />

U(1) × U(1) ↦→ U(1|1)<br />

U(1) × U(1) ↦→ U(1|1)<br />

• String theory has total central charge zero


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

String theory on AdS 3 × S 3 × T 4<br />

• Our method: Before twisting, after deformation<br />

c = 0<br />

• Comparison to string theory<br />

G − string = G− ,<br />

U string = U,<br />

G + string = G+ + extra terms<br />

• Novel choice of N = (2, 2)<br />

• G − chiral ring is the same as in string theory!


Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook<br />

Conclusions and Outlook<br />

• Start from bosonic group, add background charges plus<br />

twist −→ Supergroup<br />

• Interaction terms are G − -exact F-terms<br />

• G − chiral ring is the same as in string theory<br />

• Calculate extremal correlators in string theory on<br />

AdS 3 × S 3 × T 4 , higher genus!<br />

• Gives proposal for boundary action via analogy with<br />

Landau-Ginzburg model – this should be checked explicitly<br />

• Also works for SL(2|1)<br />

• Other groups? Supergroups?<br />

• N = (4, 4) supersymmetric point<br />

• Is it possible to use equivariant localisation in this context?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!