05.02.2014 Views

A Robot to mimic horizontal Eye Movement - Biomedical ...

A Robot to mimic horizontal Eye Movement - Biomedical ...

A Robot to mimic horizontal Eye Movement - Biomedical ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Dr. John D. Enderle<br />

Professor of <strong>Biomedical</strong><br />

Engineering<br />

University of Connecticut<br />

Phone:(860) 486 5521<br />

Email: jenderle@bme.uconn.edu<br />

TEAM<br />

No.9


Main Goals<br />

• Replicate the Linearized Horizontal Fast <strong>Eye</strong> <strong>Movement</strong> System<br />

• Quickly target a stimulus in a +/-20°range<br />

• Camera inside the eye will capture an image<br />

• Image will be processed and appropriate movement executed<br />

• <strong>Movement</strong> should <strong>mimic</strong> that of the human Saccade<br />

• Target Saccade profiles for Human <strong>Eye</strong><br />

• Speed<br />

• Acceleration<br />

• Viscoelasticity<br />

• Precision


Ana<strong>to</strong>my<br />

• <strong>Eye</strong><br />

• Optical Nerve<br />

• Six Muscles<br />

Types of <strong>Movement</strong><br />

• Smooth Pursuit<br />

• Vestibular ocular<br />

• Op<strong>to</strong>kinetic<br />

• Vergence<br />

• Saccades


This linear muscle model exhibits accurate nonlinear force-velocity and length-tension<br />

relationships. No other linear muscle model <strong>to</strong> date is able <strong>to</strong> accurately reproduce<br />

these nonlinear relationships.<br />

• Each branch models a specific muscle<br />

• Medial Rectus muscle modeled by the<br />

Total Agonist force.<br />

• Lateral Rectus muscle modeled by the<br />

Total Antagonist force.<br />

<br />

Superior and Inferior Rectus’ muscles<br />

modeled by a single spring and dashpot<br />

in parallel.<br />

<br />

F ag<br />

and F ant<br />

represent the agonist and<br />

antagonist active-state tensions. These<br />

are our controls over the system.


• F constants represent<br />

forces based on the<br />

ocularmo<strong>to</strong>r elements.<br />

<br />

Tau and cap T constants<br />

intrinsic <strong>to</strong> humans and are<br />

set values based on<br />

experimental data.<br />

• Fag and Fant functions will<br />

output <strong>to</strong> the mo<strong>to</strong>rs.


• Neural and Agonist/Antagonist<br />

inputs shown <strong>to</strong> the right.<br />

• These inputs produce a 15<br />

degree simulated saccade with a<br />

max velocity of 400 deg/s.<br />

• The Agonist/Antagonist inputs<br />

are relayed <strong>to</strong> the mo<strong>to</strong>rs as<br />

force/time inputs for movement.<br />

• Simulink block diagram simulates the<br />

function of the eye robot.<br />

• Constants are defined in a MATLAB<br />

workspace.<br />

• Workspace is then transferred in<strong>to</strong><br />

Simulink.


• 40 degree range ( +/- 20 )<br />

• Peak Velocity of ~400 degrees per second<br />

• Duration<br />

• ~30 ms for < 5 degree saccades<br />

• 50+ ms for > 10 degree saccades<br />

• 1.6 New<strong>to</strong>n Force


MigeOne10 Shape Memory Alloy (SMA)<br />

• Force of 8.82 N<br />

• Time - 0.034 seconds (32 Volts)<br />

• Speed 243.6 mm/s<br />

• Stroke length 8.19 mm<br />

• Forced Cooling Methods


Miga MOSFET Drivers<br />

• External GATE (CNTL) Signals<br />

• Range (5 V– 30V)<br />

Alps Position Sensors<br />

• 10k Linear Potentiometer<br />

Arduino Uno<br />

• Analog Output (0V – 5V)<br />

• Receive Position Information<br />

(Analog-<strong>to</strong>-Digital Converter)<br />

• Generate Control Signals


It’s not enough <strong>to</strong> simply have a mo<strong>to</strong>r move the same length<br />

as muscle contraction at the same speed as muscle contraction<br />

• The Actua<strong>to</strong>r motion doesn’t<br />

account for the natural<br />

elasticity or viscosity of the<br />

muscle<br />

• Each branch models a specific<br />

muscle<br />

• Antagonist/Agonist – Lateral<br />

and Medial Rectus<br />

• Superior/Inferior Rectus- Model<br />

the <strong>to</strong>p and bot<strong>to</strong>m eye muscles,<br />

which don’t have muscle input<br />

<strong>horizontal</strong>ly, but do affect the<br />

eye rotation


DAMPER AND SPRING SELECTION<br />

Spring Selection<br />

• Component only exerts force<br />

relative <strong>to</strong> POSITION<br />

• Select for resting length and K<br />

Damper Selection<br />

• Component only exerts resistive<br />

force relative <strong>to</strong> VELOCITY<br />

• Represents viscosity of muscle<br />

• Controlling the flow rates of<br />

air out of a pneumatic<br />

cylinder, we can resist<br />

velocity of stroke


MOUNTING VISCOELASTICS<br />

Rail System<br />

• A system of friction-reducing<br />

linear bearings on a guided rail<br />

will transfer energy step-by-step<br />

from actuation <strong>to</strong> Saccade<br />

• Viscoelastic components will be<br />

attached <strong>to</strong> the bearing blocks<br />

• Keeps the motion linear with no<br />

<strong>to</strong>rque


• The Human eye has a diameter of 24 mm<br />

• Mass of roughly 7.5 grams<br />

• Why is scale important here?<br />

• Globes <strong>to</strong> be fabricated by QCI Engineering<br />

• Designed <strong>to</strong> <strong>mimic</strong> physiological dimensions<br />

• Needs <strong>to</strong> house Camera<br />

• Needs <strong>to</strong> provide USB cable outlet.


• 5 MegaPixels<br />

• USB Compatible<br />

• Roughly 15mm in Diameter<br />

• 320x240 at 30 Frames/s<br />

• SnoopyPro <strong>to</strong> capture driver communication with<br />

camera hardware (GNU General Public License)<br />

• Flatten Camera components<br />

• Redesign in Multisim<br />

• Order PCB via Ultiboard


• Color detection via HSV Thresholding<br />

• Easier <strong>to</strong> discern target objects<br />

• Flattens an RGB image in<strong>to</strong> 2 colors<br />

• Advantages?<br />

• Smaller file size for transfer<br />

• Calculate position by finding<br />

centroid of white pixel mass<br />

• Disadvantages?<br />

• Note <strong>to</strong>p right image


Dr. John D. Enderle | Client ● Uconn BME Professor<br />

Marek Wartenberg |BME senior design Advising<br />

Alex Korentis | UConn PhD student ● QCI Engineering<br />

Mark Gummin | Miga Mo<strong>to</strong>r Company

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!