05.02.2014 Views

Diploma thesis - Fachbereich Physik

Diploma thesis - Fachbereich Physik

Diploma thesis - Fachbereich Physik

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.5. EXAMPLE: ORDINARY INTEGRAL 19<br />

The aim is now to expand Z(j) until the first order in ¯h. For this purpose, it is useful<br />

to recall the following result [22, p. 337]:<br />

∫<br />

1 ∞<br />

(<br />

√ dx x n exp − 1 )<br />

(n − 1)!! ¯hn/2<br />

2π¯h 2¯h λx2 = √ [λ > 0] , (2.78)<br />

λ<br />

n+1<br />

−∞<br />

where n is an arbitrary even integer. For n being odd the integral vanishes. Inserting the<br />

expansion (2.77) into (2.73) and expanding the exponential function into a Taylor series<br />

yields<br />

Z(j) =<br />

1<br />

√ exp<br />

2π¯h<br />

×<br />

[<br />

− 1¯h ]∫ ∞<br />

[<br />

A(x cl, j) dδx exp − 1 ]<br />

−∞ 2¯h A′′ (x cl )δx 2<br />

[<br />

1 − 1<br />

6¯h A′′′ (x cl )δx 3 − 1<br />

24¯h A(4) (x cl )δx 4 + 1<br />

72¯h 2 (A′′′ (x cl )) 2 δx 6 + . . .<br />

]<br />

(2.79)<br />

where terms contributing to Z(j) in an order higher than linear in ¯h according to the result<br />

(2.78) have been omitted. Applying (2.78) then yields<br />

[<br />

Z(j) = exp − 1¯h ] [ ]<br />

A(x 1<br />

cl, j) √<br />

A<br />

′′<br />

(x cl ) − ¯h A (4) (x cl )<br />

√<br />

8 (A<br />

′′<br />

(x cl )) + 5¯h (A ′′′ (x cl )) 2<br />

√ 5 24 (A<br />

′′<br />

(x cl )) + 7 O(¯h2 ) .<br />

,<br />

(2.80)<br />

This expression can be converted, using the Taylor expansion<br />

)<br />

ln(1 − x) = −<br />

(x + x2<br />

2 + x3<br />

3 + . . . + xn<br />

n + . . . , (2.81)<br />

into the form<br />

Z(j) = exp<br />

Defining<br />

one obtains<br />

[<br />

− 1¯h A(x cl, j) − 1 2 ln A′′ (x cl ) + ¯h<br />

{ 5 [A ′′′ (x cl )] 2<br />

24 [A ′′ (x cl )] − 1 }<br />

A (4) (x cl )<br />

3 8 [A ′′ (x cl )] 2<br />

]<br />

+ O(¯h 2 )<br />

.<br />

(2.82)<br />

F(j) := − 1 ln Z(j) , (2.83)<br />

β<br />

F(j) = 1<br />

¯hβ A(x cl, j) + ¯h<br />

{<br />

2¯hβ ln A′′ (x cl ) − ¯h2 5 [A ′′′ (x cl )] 2<br />

¯hβ 24 [A ′′ (x cl )] − 1 3 8<br />

}<br />

A (4) (x cl )<br />

+ O (¯h 3) .<br />

[A ′′ (x cl )] 2<br />

(2.84)<br />

In the saddle-point approximation, the reduced Planck constant ¯h is considered a small<br />

quantity. Nevertheless, in order to include the zero-temperature limit, i.e. β → ∞, in the<br />

calculation, a factor ¯hβ cannot be considered a small, but rather an arbitrary quantity.<br />

Moreover, a factor 1/β has to be rewritten as ¯h/¯hβ. The average X is now defined by<br />

X := X(j) := 1 ∫<br />

1 ∞<br />

√ dx x exp<br />

[− 1¯h ]<br />

Z(j)<br />

A(x, j) . (2.85)<br />

2π¯h<br />

−∞

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!