18.02.2014 Views

Partially Premixed Combustion, PPC – Why all diesel engines ...

Partially Premixed Combustion, PPC – Why all diesel engines ...

Partially Premixed Combustion, PPC – Why all diesel engines ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Parti<strong>all</strong>y</strong> <strong>Premixed</strong> <strong>Combustion</strong>, <strong>PPC</strong><br />

– <strong>Why</strong> <strong>all</strong> <strong>diesel</strong> <strong>engines</strong> should be run on<br />

gasoline<br />

Bengt Johansson<br />

Lund University


First a little statement:<br />

Dual fuel is not needed!<br />

And 100.000 <strong>diesel</strong> cars per year are<br />

filled up with the wrong fuel in UK. Can<br />

we expect an average US car owner to<br />

put two correct fuels in two tanks?


But I still think a single<br />

fuel is enough…


Gross Indicated Efficiency [%]<br />

Scania <strong>diesel</strong> engine running on gasoline<br />

Group 3, 1300 [rpm]<br />

60<br />

55<br />

!<br />

η i =57% 147 g/kWh (@43 MJ/kg heating value)<br />

50<br />

45<br />

40<br />

FR47333CVX<br />

FR47334CVX<br />

FR47336CVX<br />

35<br />

30<br />

25<br />

20<br />

0 2 4 6 8 10 12 14<br />

Gross IMEP [bar]<br />

4


Outline<br />

• <strong>Combustion</strong> concepts<br />

• <strong>PPC</strong> – background<br />

• <strong>PPC</strong> with <strong>diesel</strong> fuel<br />

• <strong>PPC</strong> with gasoline<br />

• Low dilution <strong>PPC</strong> with ethanol<br />

• Too low load with too high octane number<br />

• Summary


Outline<br />

• <strong>Combustion</strong> concepts<br />

• <strong>PPC</strong> – background<br />

• <strong>PPC</strong> with <strong>diesel</strong> fuel<br />

• <strong>PPC</strong> with gasoline<br />

• Low dilution <strong>PPC</strong> with ethanol<br />

• Too low load with too high octane number<br />

• Summary


+ Clean with 3-way<br />

Catalyst<br />

- Poor low & part load<br />

efficiency<br />

Background<br />

<strong>Combustion</strong> concepts<br />

+ High efficiency<br />

- Emissions of NO x and<br />

soot<br />

Spark Ignition (SI)<br />

engine (Gasoline, Otto)<br />

Compression Ignition<br />

(CI) engine (Diesel)<br />

+ High efficiency<br />

Homogeneous Charge -<strong>Combustion</strong> control<br />

+ Ultra low NO Compression Ignition<br />

x -Power density<br />

(HCCI)<br />

Spark Assisted<br />

Compression Ignition<br />

(SACI)<br />

Gasoline HCCI<br />

+ Injection controlled<br />

- Less emissions<br />

advantage<br />

<strong>Parti<strong>all</strong>y</strong> premixed<br />

combustion (<strong>PPC</strong>)<br />

Diesel HCCI


Outline<br />

• <strong>Combustion</strong> concepts<br />

• <strong>PPC</strong> – background<br />

• <strong>PPC</strong> with <strong>diesel</strong> fuel<br />

• <strong>PPC</strong> with gasoline<br />

• Low dilution <strong>PPC</strong> with ethanol<br />

• Too low load with too high octane number<br />

• Summary


<strong>Parti<strong>all</strong>y</strong> <strong>Premixed</strong> <strong>Combustion</strong>, <strong>PPC</strong><br />

HC [ppm]<br />

NOx [ppm]<br />

Spridare 8x0.12x90 & 8x0.12x150, Iso-oktan, CR-tryck 750 bar, Duration 0,6 ms = 3.6 CAD<br />

6000<br />

1200<br />

HCCI<br />

PCCI<br />

CI<br />

5000<br />

<strong>PPC</strong><br />

1000<br />

4000<br />

800<br />

3000<br />

600<br />

2000<br />

400<br />

1000<br />

200<br />

-180 -160 -140 -120 -100 -80 -60 -40 -20<br />

SOI [ATDC]<br />

Def: region between truly homogeneous combustion, HCCI,<br />

and diffusion controlled combustion, <strong>diesel</strong><br />

SAE 2004-01-2990<br />

9


Outline<br />

• <strong>Combustion</strong> concepts<br />

• <strong>PPC</strong> – background<br />

• <strong>PPC</strong> with <strong>diesel</strong> fuel<br />

• <strong>PPC</strong> with gasoline<br />

• Low dilution <strong>PPC</strong> with ethanol<br />

• Too low load with too high octane number<br />

• Summary


2006-01-3412<br />

Characterization of <strong>Parti<strong>all</strong>y</strong> <strong>Premixed</strong><br />

<strong>Combustion</strong> (<strong>PPC</strong>)<br />

Christof Noehre, Magnus Andersson, Bengt Johansson and<br />

Anders Hultqvist<br />

<strong>PPC</strong> with Diesel Fuel!


Experimental setup<br />

Specifications of single cylinder engine:<br />

Displacement Volume 1951 cm³<br />

Swirl Ratio (standard) 1.7<br />

Swirl Ratio (if modified) 2.9<br />

Fuel<br />

Swedish MK 1 Diesel, CN51<br />

Injector holes 8<br />

Injector hole diameter 0.18 mm<br />

Spray umbrella angle 120<br />

Compression ratios<br />

A=12.4:1; B=14.3:1; C=17.1:1<br />

SAE 2006-01-3412<br />

12


Emissions at 8 bar IMEP<br />

Load<br />

Abs. Inlet Pressure<br />

Engine Speed<br />

Swirl Ratio 1.7<br />

Compression Ratio<br />

Inlet temp without<br />

EGR<br />

Inlet temp max<br />

EGR<br />

8 bar IMEP<br />

2.5 bar<br />

1090 rpm<br />

12.4:1 (Low)<br />

25 C<br />

55 C<br />

SAE 2006-01-3412<br />

13


1<br />

3<br />

4<br />

5<br />

Injection virtu<strong>all</strong>y<br />

finished before start of<br />

combustion<br />

14


<strong>Why</strong> is <strong>PPC</strong> not possible at highest<br />

compression ratio?<br />

- One reason: insufficient ignition delay<br />

15


Effect of EGR and compression ratio at 8 bar IMEP<br />

EGR sweep and compression ratio variation<br />

Load<br />

8 bar IMEP<br />

Abs. Inlet Pressure 2.5 bar<br />

Engine Speed 1090 rpm<br />

Swirl Ratio 1.7<br />

• <strong>PPC</strong> possible at 8 bar IMEP on<br />

compression ratios 12.4:1 and<br />

14.3:1.<br />

• Narrower operating range with<br />

increased compression ratio.<br />

SAE 2006-01-3412<br />

Increased EGR


Effect of EGR and compression ratio at 12 bar IMEP<br />

Load<br />

12 bar IMEP<br />

Abs. Inlet Pressure 3.0 bar<br />

Engine Speed 1090 rpm<br />

Swirl Ratio 1.7<br />

• <strong>PPC</strong> only possible at 12 bar IMEP with<br />

lowest compression ratio (12.4:1).<br />

• Soot emissions relatively high<br />

(compared to 8 bar IMEP).<br />

SAE 2006-01-3412<br />

17


The effect of EGR (and swirl) at 15 bar IMEP<br />

Increased EGR<br />

Increased EGR<br />

SAE 2006-01-3412<br />

• Low soot/low NOx combustion possible.<br />

• Increased swirl lowers soot emissions, but<br />

primarily before soot hump.<br />

18


6<br />

3<br />

4<br />

19


Gasoline instead of <strong>diesel</strong> fuel<br />

Lic. Thesis by Henrik Nordgren 2005 and presented at DEER2005<br />

20


Gasoline instead of <strong>diesel</strong> fuel<br />

Lic. Thesis by Henrik Nordgren 2005<br />

21


Outline<br />

• <strong>Combustion</strong> concepts<br />

• <strong>PPC</strong> – background<br />

• <strong>PPC</strong> with <strong>diesel</strong> fuel<br />

• <strong>PPC</strong> with gasoline<br />

• Low dilution <strong>PPC</strong> with ethanol<br />

• Too low load with too high octane number<br />

• Summary


Gasoline tests in Scania D12<br />

Bosch Common Rail<br />

Prail max<br />

1600 [bar]<br />

Orifices 8 [-]<br />

Orifice Diameter 0.18 [mm]<br />

Umbrella Angle 120 [deg]<br />

Engine / Dyno Spec<br />

BMEPmax 15 [bar]<br />

Vd 1951 [cm3]<br />

Swirl ratio 2.9 [-]<br />

Dilution<br />

Lambda 1.5<br />

EGR 50 %<br />

Fuel: Gasoline or Ethanol<br />

SAE 2009-01-2668<br />

23


NOx [g/kWh]<br />

CO [g/kWh]<br />

Soot [FSN]<br />

HC [g/kWh]<br />

Emissions – different fuels<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

Ethanol<br />

FR47330CVX<br />

FR47331CVX<br />

FR47333CVX<br />

FR47334CVX<br />

FR47335CVX<br />

FR47336CVX<br />

FR47338CVX<br />

2.5<br />

2<br />

1.5<br />

Ethanol<br />

FR47330CVX<br />

FR47331CVX<br />

FR47333CVX<br />

FR47334CVX<br />

FR47335CVX<br />

FR47336CVX<br />

FR47338CVX<br />

0.2<br />

1<br />

0.15<br />

0.1<br />

0.5<br />

0.05<br />

0<br />

2 4 6 8 10 12 14 16 18 20<br />

Gross IMEP [bar]<br />

0<br />

2 4 6 8 10 12 14 16 18 20<br />

Gross IMEP [bar]<br />

12<br />

10<br />

8<br />

6<br />

Ethanol<br />

FR47330CVX<br />

FR47331CVX<br />

FR47333CVX<br />

FR47334CVX<br />

FR47335CVX<br />

FR47336CVX<br />

FR47338CVX<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

Ethanol<br />

FR47330CVX<br />

FR47331CVX<br />

FR47333CVX<br />

FR47334CVX<br />

FR47335CVX<br />

FR47336CVX<br />

FR47338CVX<br />

4<br />

2<br />

SAE 2010-01-0871<br />

0<br />

2 4 6 8 10 12 14 16 18 20<br />

Gross IMEP [bar]<br />

4<br />

3<br />

2<br />

1<br />

24<br />

0<br />

2 4 6 8 10 12 14 16 18 20<br />

Gross IMEP [bar]


Energy flow in an IC engine<br />

Brake<br />

<strong>Combustion</strong><br />

*<br />

Thermodynamic<br />

*<br />

GasExchange<br />

*<br />

Mechanical<br />

FuelMEP<br />

<strong>Combustion</strong> efficiency<br />

QemisMEP<br />

QhrMEP<br />

QhtMEP<br />

Thermodynamic efficiency<br />

QlossMEP<br />

Gross Indicated efficiency<br />

IMEPgross<br />

QexhMEP<br />

Gas exchange efficiency<br />

PMEP<br />

Net Indicated efficiency<br />

lMEPnet<br />

Mechanical efficiency<br />

FMEP<br />

Brake efficiency<br />

BMEP<br />

25


[%]<br />

Efficiencies 17.1:1<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

<strong>Combustion</strong> Efficiency<br />

Thermal Efficiency<br />

Gas Exchange Efficiency<br />

Mechanical Efficiency<br />

50<br />

4 5 6 7 8 9 10 11 12 13<br />

Gross IMEP [bar]<br />

SAE 2009-01-2668<br />

26<br />

26


[%]<br />

Efficiencies 14.3:1<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

<strong>Combustion</strong> Efficiency<br />

Thermal Efficiency<br />

Gas Exchange Efficiency<br />

Mechanical Efficiency<br />

50<br />

4 6 8 10 12 14 16 18<br />

Gross IMEP [bar]<br />

SAE 2010-01-0871<br />

27<br />

27


Experimental Apparatus, Scania D13<br />

XPI Common Rail<br />

Orifices 8 [-]<br />

Orifice Diameter 0.19 [mm]<br />

Umbrella Angle 148 [deg]<br />

Engine / Dyno Spec<br />

BMEPmax 25 [bar]<br />

Vd 2124 [cm3]<br />

Swirl ratio 2.095 [-]<br />

SAE 2010-01-2198<br />

28<br />

Standard piston 28 bowl, rc: 17.3:1


IMEP gross [bar]<br />

Tested Load Area<br />

25<br />

Stable operational load vs. fuel type<br />

20<br />

15<br />

10<br />

5<br />

0<br />

20 30 40 50 60 70 80 90 100<br />

RON [-]<br />

29<br />

29


Brake Efficiency [%]<br />

D13 Running on Diesel & Gasoline<br />

52<br />

50<br />

48<br />

D13 Gasoline<br />

D13 Diesel<br />

46<br />

44<br />

42<br />

40<br />

38<br />

36<br />

34<br />

5 10 15 20 25 30<br />

Gross IMEP [bar]<br />

D13 Diesel was calibrated by Scania and the calibration was done<br />

to meet EU V legislation.<br />

Average improvement of 16.6% points @ high load!!!<br />

30


Outline<br />

• <strong>Combustion</strong> concepts<br />

• <strong>PPC</strong> – background<br />

• <strong>PPC</strong> with <strong>diesel</strong> fuel<br />

• <strong>PPC</strong> with gasoline<br />

• Low dilution <strong>PPC</strong> with ethanol<br />

• Too low load with too high octane number<br />

• Summary


2013-01-0277<br />

Close to Stoichiometric <strong>Parti<strong>all</strong>y</strong><br />

<strong>Premixed</strong> <strong>Combustion</strong><br />

- the Benefit of Ethanol in<br />

Comparison to Conventional Fuels<br />

Mengqin Shen, Martin Tuner and Bengt Johansson<br />

Lund University


Experimental System, Scania D13<br />

Scania D13 engine<br />

Engine Piston Model<br />

33


Fuel Properties<br />

Fuel RON MON CN H/C O/C LHV<br />

[MJ/kg]<br />

Stoichiometric<br />

A/F Ratio<br />

MK 1 - - 54 1.83 0 43.15 14.49<br />

Gasoline 69 66 - 1.98 0 43.80 14.68<br />

99.5% Ethanol 108 89 - 3 0.5 26.64 9<br />

34


CA50 [CAD ATDC]<br />

Gross Indicated Efficiency[%]<br />

Optimized <strong>Combustion</strong> phasing<br />

6<br />

5.5<br />

5<br />

4.5<br />

57<br />

56<br />

MK1<br />

Gasoline<br />

Ethanol<br />

4<br />

55<br />

O<br />

3.5<br />

3<br />

2.5<br />

54<br />

53<br />

52<br />

0 1 2 3 4 5 6 7<br />

2<br />

1 1.2 CA50 [CAD 1.4 ATDC] 1.6 1.8<br />

Gross indicated efficiency as a function of combustion phasing<br />

(gasoline fuel, IMEP gross 11bar, FuelMEP 20.5 bar, λ=1.85,EGR=38%).<br />

<strong>Combustion</strong> phasing (CA50) as a function of λ (Fuel MEP 20.5 bar).<br />

[-]<br />

35


RoHR/10 [J/CAD] / Injector Current<br />

<strong>PPC</strong>-RoHR-<strong>diesel</strong><br />

200<br />

150<br />

=1.74<br />

=1.58<br />

=1.16<br />

=1.05<br />

100<br />

50<br />

0<br />

-20 -10 0 10 20<br />

Crank Angle [CAD ATDC]<br />

36


RoHR/10 [J/CAD] / Injector Current<br />

<strong>PPC</strong>-RoHR-gasoline<br />

200<br />

150<br />

=1.74<br />

=1.58<br />

=1.16<br />

=1.05<br />

100<br />

50<br />

0<br />

-20 -10 0 10 20<br />

Crank Angle [CAD ATDC]<br />

37


RoHR/10 [J/CAD] / Injector Current<br />

<strong>PPC</strong>-RoHR-ethanol<br />

200<br />

150<br />

=1.74<br />

=1.58<br />

=1.16<br />

=1.05<br />

100<br />

50<br />

0<br />

-20 -10 0 10 20<br />

Crank Angle [CAD ATDC]<br />

38


<strong>Combustion</strong> Efficiency [%]<br />

Gross Indicated Efficiency [%]<br />

<strong>PPC</strong>-Efficiency<br />

FuelMEP ~20.5 bar EGR~38%<br />

100 55<br />

18%<br />

9%<br />

6%<br />

99.5<br />

50<br />

99<br />

45<br />

98.5<br />

MK1<br />

MK1 Gasoline<br />

Gasoline Ethanol<br />

Ethanol<br />

40<br />

98<br />

97.5 35<br />

1 1.2 1.4 1.6 1.8<br />

[-]<br />

39


<strong>Combustion</strong> Loss [%]<br />

Exhaust Loss [%]<br />

Heat Transfer Loss [%]<br />

Efficiency & Losses<br />

2<br />

1.5<br />

MK1<br />

Gasoline<br />

Ethanol<br />

50<br />

45<br />

MK1<br />

Gasoline<br />

Ethanol<br />

1<br />

0.5<br />

40<br />

35<br />

30<br />

0<br />

1 1.2 1.4 1.6 1.8<br />

[-]<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

MK1<br />

Gasoline<br />

Ethanol<br />

25<br />

1 1.2 1.4 1.6 1.8<br />

[-]<br />

• Relative combustion loss is between 0.2% and<br />

1.7% in <strong>all</strong> cases.<br />

• Less relative exhaust loss with lower λ .<br />

• More heat transfer in stoichiometric <strong>PPC</strong> due<br />

to higher combustion temperature .High heat<br />

transfer loss is the main reason for low<br />

efficiency of <strong>diesel</strong>.<br />

10<br />

1 1.2 1.4 1.6 1.8<br />

[-]<br />

40


Soot [FSN]<br />

UHC/NOx [g/kWh]<br />

CO [g/kWh]<br />

<strong>PPC</strong>-Emissions<br />

10 1.4<br />

1.2<br />

8<br />

1<br />

CO[g/kWh]<br />

NOx[g/kWh]<br />

UHC[g/kWh]<br />

7<br />

MK1<br />

Gasoline 6<br />

Ethanol<br />

5<br />

6<br />

0.8<br />

4<br />

0.6<br />

4<br />

0.4<br />

2<br />

0.2<br />

3<br />

2<br />

1<br />

0<br />

0<br />

1 1.2 1.4 1.6 1.8 2<br />

[-] [-]<br />

UHC, CO and NOx Soot emissions as as a function a function of λ of (FuelMEP λ (FuelMEP 20.5 bar, 20.5 EGR bar, 38%, EGR gasoline 38%). fuel).<br />

41


Observations<br />

It is possible to operate <strong>PPC</strong> from lean conditions to close<br />

to stoichiometric conditions.<br />

Gross indicated efficiency decreased for <strong>all</strong> the fuels in<br />

close to stoichiometric operation:<br />

– Ethanol showed higher efficiency and less efficiency reduction than gasoline<br />

and <strong>diesel</strong> fuel.<br />

Pronounced soot emission increase for <strong>diesel</strong> and gasoline.<br />

Ethanol showed very low soot in <strong>all</strong> conditions.<br />

Ethanol - Clean Stoichiometric <strong>PPC</strong> (with TWC).<br />

42


Outline<br />

• <strong>Combustion</strong> concepts<br />

• <strong>PPC</strong> – background<br />

• <strong>PPC</strong> with <strong>diesel</strong> fuel<br />

• <strong>PPC</strong> with gasoline<br />

• Low dilution <strong>PPC</strong> with ethanol<br />

• Too low load with too high octane number<br />

• Summary


<strong>PPC</strong>- LD<br />

Comparison of Negative Valve Overlap (NVO)<br />

and Rebreathing Valve Strategies on a Gasoline<br />

<strong>PPC</strong> Engine at Low Load and Idle Operating<br />

Conditions<br />

SAE Paper 2013-01-0902<br />

Patrick Borgqvist, Per Tunestål, Bengt Johansson<br />

Lund University<br />

44


IMEP gross [bar]<br />

Introduction<br />

<strong>Parti<strong>all</strong>y</strong> <strong>Premixed</strong> <strong>Combustion</strong> – Light Duty Engine<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

20 30 40 50 60 70 80 90 100<br />

RON [-]<br />

<strong>PPC</strong> Operating Region from Heavy Duty Experiments [1]<br />

• Goal: Increase attainable<br />

operating region<br />

- Means to reduce minimum<br />

load:<br />

Injection strategies<br />

- Advanced pilot strategies<br />

- Split main<br />

Trapping hot residuals<br />

- Temperature increase<br />

- Dilution<br />

- Stratification<br />

Glow plug<br />

[1] Manente, V., et al. “An Advanced Internal <strong>Combustion</strong> Engine Concept for Low Emissions and High<br />

Efficiency from Idle to Max Load Using Gasoline <strong>Parti<strong>all</strong>y</strong> <strong>Premixed</strong> <strong>Combustion</strong>”, SAE 2010.01-2198<br />

45


Experimental Setup – Volvo D5<br />

Engine<br />

Displacement<br />

Number of<br />

cylinders<br />

Bore<br />

Stroke<br />

Compression<br />

ratio<br />

Valve timings<br />

480 cm 3 (1 cyl)<br />

5 (1 used)<br />

81 mm<br />

93.2 mm<br />

16.5:1<br />

Fully flexible<br />

Fuel Injector<br />

Standard D5 piston<br />

Nozzle Holes 5<br />

Umbrella Angle 140 deg<br />

Hole Size<br />

0.159 mm<br />

46


IMEP gross [bar]<br />

Fuel Specification<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

20 30 40 50 60 70 80 90 100<br />

RON [-]<br />

Fuel RON MON LHV<br />

[Mj/kg]<br />

A/F stoich<br />

Gasoline 87 81 43.50 14.60<br />

47


Pressure [bar] / Valve Lift [a.u.]<br />

Negative Valve Overlap (NVO)<br />

55<br />

50<br />

45<br />

40<br />

35<br />

Pressure<br />

Intake Valve<br />

Exhaust Valve<br />

NVO<br />

Trap hot residual gas<br />

to elevate the initial<br />

temperature of the<br />

fresh charge of the<br />

subsequent cycle<br />

30<br />

25<br />

20<br />

NVO<br />

Disadvantage<br />

Gas-exchange<br />

efficiency penalty<br />

15<br />

10<br />

5<br />

0<br />

-200 -100 0 100 200 300 400 500<br />

Crank Angle [CAD]<br />

48


Rebreathing<br />

55<br />

50<br />

45<br />

40<br />

Pressure [bar]<br />

Intake Valve [a.u.]<br />

Exhaust Valve [a.u.]<br />

Advantage:<br />

Improved gasexchange<br />

efficiency<br />

35<br />

30<br />

25<br />

20<br />

Minimum<br />

possible NVO<br />

Disadvantage:<br />

Lower temperature of<br />

re-inducted residual<br />

gases compared to<br />

trapped residuals???<br />

15<br />

10<br />

5<br />

Second exhaust<br />

valve opening<br />

0<br />

-200 -100 0 100 200 300 400 500<br />

Crank Angle [CAD]<br />

49


IMEPgross [bar]<br />

IMEPgross [bar]<br />

<strong>Combustion</strong> stability<br />

3.4<br />

3.2<br />

Rebreathing: std IMEPnet [bar]<br />

0.4<br />

3.4<br />

3.2<br />

NVO: std IMEPnet [bar]<br />

0.4<br />

3<br />

0.35<br />

3<br />

0.35<br />

2.8<br />

0.3<br />

2.8<br />

0.3<br />

2.6<br />

2.4<br />

0.25<br />

2.6<br />

2.4<br />

0.25<br />

2.2<br />

0.2<br />

2.2<br />

0.2<br />

2<br />

0.15<br />

2<br />

0.15<br />

1.8<br />

0 20 40 60 80 100<br />

Rebreathing [CAD]<br />

1.8<br />

60 80 100 120 140 160 180 200 220<br />

NVO [CAD]<br />

Similar improvement on combustion stability<br />

with Rebreathing compared to NVO<br />

50


IMEPgross [bar]<br />

IMEPgross [bar]<br />

Unburned Hydrocarbons<br />

Rebreathing: Unburned Hydro-Carbon Emissions [ppm]<br />

3.4<br />

3.2<br />

3<br />

500<br />

450<br />

400<br />

3.4<br />

3.2<br />

3<br />

NVO: Unburned Hydro-Carbon Emissions [ppm]<br />

500<br />

450<br />

400<br />

2.8<br />

350<br />

2.8<br />

350<br />

2.6<br />

300<br />

2.6<br />

300<br />

2.4<br />

250<br />

2.4<br />

250<br />

2.2<br />

200<br />

2.2<br />

200<br />

2<br />

150<br />

2<br />

150<br />

1.8<br />

0 20 40 60 80 100<br />

Rebreathing [CAD]<br />

100<br />

1.8<br />

60 80 100 120 140 160 180 200 220<br />

NVO [CAD]<br />

100<br />

Similar improvement in hydro-carbon emissions<br />

reduction with Rebreathing compared to NVO<br />

51


IMEPgross [bar]<br />

IMEPgross [bar]<br />

Gas exchange Efficiency<br />

3.4<br />

3.2<br />

3<br />

Rebreathing: Gas-Exchange Efficiency [%]<br />

96<br />

94<br />

3.4<br />

3.2<br />

3<br />

NVO: Gas-Exchange Efficiency [%]<br />

96<br />

94<br />

2.8<br />

92<br />

2.8<br />

92<br />

2.6<br />

90<br />

2.6<br />

90<br />

2.4<br />

2.2<br />

88<br />

2.4<br />

2.2<br />

88<br />

2<br />

86<br />

2<br />

86<br />

1.8<br />

0 20 40 60 80 100<br />

Rebreathing [CAD]<br />

84<br />

1.8<br />

60 80 100 120 140 160 180 200 220<br />

NVO [CAD]<br />

84<br />

Gas-exchange efficiency is significantly higher<br />

with the Rebreathing strategy compared to NVO<br />

52


IMEPnet [bar]<br />

IMEPnet [bar]<br />

Net Indicated Efficiency<br />

3.2<br />

Rebreathing: Net Indicated Efficiency [%]<br />

40<br />

3.2<br />

NVO: Net Indicated Efficiency [%]<br />

40<br />

3<br />

3<br />

2.8<br />

2.6<br />

35<br />

2.8<br />

2.6<br />

35<br />

2.4<br />

2.4<br />

2.2<br />

2<br />

30<br />

2.2<br />

2<br />

30<br />

1.8<br />

1.8<br />

1.6<br />

0 20 40 60 80 100<br />

Rebreathing [CAD]<br />

25<br />

1.6<br />

60 80 100 120 140 160 180 200 220<br />

NVO [CAD]<br />

25<br />

The net indicated efficiency is higher with the Rebreathing case.<br />

Note, shown against IMEPnet<br />

53


NVO Injection<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Pressure [bar]<br />

Valve Lift [a.u.]<br />

Fuel Indicator [a.u.]<br />

NVO Injection<br />

Glow plug: ON<br />

Engine speed: 800 rpm<br />

Fuel: 87 RON Gasoline<br />

Idea: Fuel reformation<br />

to improve the main<br />

combustion event<br />

0<br />

-200 -100 0 100 200 300 400 500<br />

Crank Angle [CAD]<br />

54


Rate of Heat Release [J/CAD]<br />

Rate of Heat Release [J/CAD]<br />

Effect of NVO Injection Timing<br />

Effect of NVO-Pilot Injection Timing<br />

Effect of NVO-Pilot Injection Timing<br />

25 NVO: 220 CAD<br />

20<br />

15<br />

Fuel Distribution<br />

NVO/Main: 50/50 %<br />

Lambda: 1.08 - 1.42<br />

-22 CAD<br />

-15 CAD<br />

-10 CAD<br />

-5 CAD<br />

0 CAD<br />

25 NVO: 220 CAD<br />

20<br />

15<br />

Fuel Distribution<br />

NVO/Main: 50/50 %<br />

Lambda: 1.08-1.42<br />

-22 CAD<br />

-15 CAD<br />

-10 CAD<br />

-5 CAD<br />

0 CAD<br />

10<br />

10<br />

5<br />

5<br />

0<br />

0<br />

-5<br />

-40 -30 -20 -10 0 10 20 30 40<br />

Crank Angle (Gas-Exchange TDC) [CAD]<br />

-5<br />

-40 -30 -20 -10 0 10 20 30 40<br />

Crank Angle [CAD]<br />

55


IMEPgross [bar]<br />

NVO Injection – Ignition Delay<br />

56<br />

2.6<br />

2.4<br />

Ignition Delay (CA10-SOI) [CAD] (NVO Injection)<br />

18<br />

16<br />

Significant effect on the<br />

ignition delay when NVO<br />

is sufficiently high, from<br />

200 CAD NVO<br />

2.2<br />

14<br />

2<br />

12<br />

1.8<br />

10<br />

1.6<br />

8<br />

60 80 100 120 140 160 180 200 220<br />

NVO [CAD]


IMEPgross [bar]<br />

NVO Injection – <strong>Combustion</strong> stability<br />

2.6<br />

2.4<br />

std IMEPnet [bar] (NVO Injection)<br />

0.3<br />

0.25<br />

Significant improvement<br />

on combustion stability<br />

with NVO injection and a<br />

high setting of NVO<br />

2.2<br />

2<br />

0.2<br />

1.8<br />

0.15<br />

1.6<br />

60 80 100 120 140 160 180 200 220<br />

NVO [CAD]<br />

0.1<br />

57


IMEPgross [bar]<br />

NVO Injection - HC<br />

Unburned Hydro-Carbon Emissions [ppm] (NVO Injection)<br />

2.6<br />

2.4<br />

2.2<br />

700<br />

650<br />

600<br />

550<br />

500<br />

Significant reduction of<br />

unburned hydrocarbon<br />

emissions with NVO<br />

injection and a high<br />

setting of NVO<br />

2<br />

1.8<br />

1.6<br />

450<br />

400<br />

350<br />

60 80 100 120 140 160 180 200 220<br />

NVO [CAD]<br />

58


IMEPgross [bar]<br />

NVO Injection - NOx<br />

2.6<br />

2.4<br />

2.2<br />

NOx [ppm] (NVO Injection)<br />

120<br />

100<br />

80<br />

High NOx emissions in the<br />

intermediate region<br />

between too low and too<br />

high NVO settings<br />

Low NOx emissions when<br />

engine load is low and NVO<br />

is sufficiently high<br />

2<br />

60<br />

1.8<br />

40<br />

1.6<br />

60 80 100 120 140 160 180 200 220<br />

NVO [CAD]<br />

20<br />

59


IMEPgross [bar]<br />

NVO Injection -Soot<br />

2.6<br />

2.4<br />

2.2<br />

soot [FSN] (NVO Injection)<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

Soot emissions are<br />

much higher when<br />

NVO injection is<br />

used<br />

2<br />

1.8<br />

1.6<br />

60 80 100 120 140 160 180 200 220<br />

NVO [CAD]<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

60


IMEPgross [bar]<br />

NVO Injection -Lambda<br />

IMEPgross [bar]<br />

IMEPgross [bar]<br />

soot [FSN] (NVO Injection)<br />

Lambda [-] (NVO Injection)<br />

2.6<br />

0.8<br />

0.7<br />

2.6<br />

2.4<br />

2.2<br />

2<br />

2.8<br />

2.6<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

60 80 100 120 140 160 180 200 220<br />

NVO [CAD]<br />

NOx [ppm] (NVO Injection)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

1.8<br />

1.6<br />

1.4<br />

2.6<br />

2.4<br />

120<br />

100<br />

1.6<br />

1.2<br />

2.2<br />

80<br />

60 80 100 120 140 160 180 200 220<br />

NVO [CAD]<br />

2<br />

60<br />

1.8<br />

40<br />

61<br />

1.6<br />

60 80 100 120 140 160 180 200 220<br />

NVO [CAD]<br />

20


Putting it <strong>all</strong> Together<br />

Comparison of different valve strategies and fuel<br />

injection strategies, with optimized settings, at low<br />

engine speed and load operating conditions<br />

1. NVO, single injection<br />

2. NVO with NVO injection, 200 CAD NVO<br />

3. NVO with NVO injection, 220 CAD NVO<br />

4. Rebreathing, single injection<br />

62


std IMEPnet [bar]<br />

Putting it <strong>all</strong> Together<br />

0.4<br />

0.35<br />

0.3<br />

NVO, sing. inj.<br />

NVO, NVO inj. 200 NVO<br />

NVO, NVO inj. 220 NVO<br />

Reb, sing. inj.<br />

Highest combustion<br />

stability with the NVO<br />

injection strategy<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

1 1.5 2 2.5 3 3.5<br />

IMEPgross [bar]<br />

63


soot [FSN]<br />

Putting it <strong>all</strong> Together<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

NVO, sing. inj.<br />

NVO, NVO inj. 200 NVO<br />

NVO, NVO inj. 220 NVO<br />

Reb, sing. inj.<br />

Soot emissions are<br />

significantly higher with<br />

the NVO injection<br />

strategy depending on<br />

NVO setting<br />

0.5<br />

0.4<br />

Higher NVO gives a lower<br />

global air-fuel ratio<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

1 1.5 2 2.5 3 3.5<br />

IMEPgross [bar]<br />

64


Net Indicated Efficiency [%]<br />

Putting it <strong>all</strong> Together<br />

42<br />

40<br />

38<br />

36<br />

NVO, sing. inj.<br />

NVO, NVO inj. 200 NVO<br />

NVO, NVO inj. 220 NVO<br />

Reb, sing. inj.<br />

Net indicated efficiency<br />

is highest with the<br />

Rebreathing strategies<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

1 1.5 2 2.5 3 3.5<br />

IMEPgross [bar]<br />

65


Low Load Operating Strategy<br />

Summary<br />

NVO<br />

NVO injection<br />

Rebreathing<br />

+ Lowest std of<br />

IMEP<br />

- soot emissions<br />

+ highest indicated efficiency<br />

- Low load limitation<br />

• Tradeoff between Nox and UHC emissions<br />

Gradu<strong>all</strong>y replace hot residuals with EGR<br />

to suppress NOx emissions<br />

2.0<br />

2.5<br />

IMEPgross [bar]<br />

3.0<br />

66


Outline<br />

• <strong>Combustion</strong> concepts<br />

• <strong>PPC</strong> – background<br />

• <strong>PPC</strong> with <strong>diesel</strong> fuel<br />

• <strong>PPC</strong> with gasoline<br />

• Low dilution <strong>PPC</strong> with ethanol<br />

• Too low load with too high octane number<br />

• Summary


<strong>Parti<strong>all</strong>y</strong> <strong>Premixed</strong> <strong>Combustion</strong>, <strong>PPC</strong><br />

• Compression Ignition should use gasoline not <strong>diesel</strong><br />

• <strong>PPC</strong> is the most efficient of <strong>all</strong> processes known (using one fuel)!<br />

– <strong>Combustion</strong> Efficiency >99.8%<br />

– Thermodynamic Efficiency= 55-57%<br />

– Gas exchange efficiency reasonable<br />

– Mechanical efficiency high as load can be high<br />

• Load range 1.5-26 (30) bar IMEP<br />

• Low enough emissions<br />

– NOx, HC and CO below legal limits without catalytic aftertreatment<br />

– PM low enough using ethanol and low with gasoline<br />

68


The End<br />

Thank you<br />

69


<strong>Parti<strong>all</strong>y</strong> <strong>Premixed</strong> <strong>Combustion</strong>, <strong>PPC</strong><br />

– <strong>Why</strong> <strong>all</strong> <strong>diesel</strong> <strong>engines</strong> should be run on<br />

gasoline<br />

Bengt Johansson<br />

Lund University

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!