19.02.2014 Views

Structural evolution of the Outalpa Inliers, Olary Domain ... - PIRSA

Structural evolution of the Outalpa Inliers, Olary Domain ... - PIRSA

Structural evolution of the Outalpa Inliers, Olary Domain ... - PIRSA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Geological Note<br />

<strong>Structural</strong> <strong>evolution</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Outalpa</strong> <strong>Inliers</strong>, <strong>Olary</strong> <strong>Domain</strong>,<br />

Curnamona Province<br />

Richard Flint (Geosurveys Australia Pty Ltd)<br />

Introduction<br />

<strong>PIRSA</strong>, as part <strong>of</strong> <strong>the</strong> BHEI program,<br />

contracted Geosurveys Australia Pty<br />

Ltd to reappraise <strong>the</strong> geology <strong>of</strong> <strong>the</strong><br />

<strong>Outalpa</strong> <strong>Inliers</strong> in <strong>the</strong> central portion <strong>of</strong><br />

<strong>the</strong> <strong>Olary</strong> <strong>Domain</strong>, sou<strong>the</strong>rn Curnamona<br />

Province (Fig. 1), and produce a series<br />

<strong>of</strong> new digital and hardcopy lithological,<br />

lithostratigraphic, structural and metallogenic<br />

maps for <strong>the</strong> region (Flint,<br />

2001). Surface lithological mapping,<br />

and structural and airborne geophysical<br />

data were integrated into a new<br />

coherent 1:25 000 lithostratigraphic<br />

map incorporating both exposed and<br />

concealed portions <strong>of</strong> <strong>the</strong> inliers, and<br />

are <strong>the</strong> basis <strong>of</strong> a companion paper<br />

(Flint, in prep.). The present paper<br />

concentrates on <strong>the</strong> characteristics and<br />

nature <strong>of</strong> deformational episodes that<br />

have affected <strong>the</strong> Willyama Supergroup<br />

within <strong>the</strong> <strong>Olary</strong> <strong>Domain</strong>.<br />

A great challenge to a better<br />

understanding <strong>of</strong> <strong>the</strong> detailed strati-<br />

Fig. 1 Location plan <strong>of</strong> <strong>the</strong> <strong>Outalpa</strong> <strong>Inliers</strong> within <strong>the</strong> <strong>Olary</strong> <strong>Domain</strong>, Curnamona Province (after Flint and Parker, 1993; Preiss and Conor,<br />

2001).<br />

34<br />

MESA Journal 26 July 2002


Geological Note<br />

graphy for <strong>the</strong> Willyama Supergroup<br />

within <strong>the</strong> domain has been recognition<br />

<strong>of</strong> structural elements for <strong>the</strong> major<br />

deformational phases within <strong>the</strong><br />

Mesoproterozoic Olarian Orogeny. At<br />

least three main phases were identified<br />

more than 20 years ago, but since<br />

<strong>the</strong>n relatively few workers within <strong>the</strong><br />

region have successfully applied this<br />

classification scheme. This is due, in<br />

part, to a poor appreciation <strong>of</strong> <strong>the</strong> subtle<br />

differences between structural elements,<br />

and axial planes for various phases<br />

having a similar orientation in some<br />

areas. Orientation alone is not a sufficient<br />

distinguishing criteria — style <strong>of</strong> folding<br />

is also important, and <strong>the</strong> combination <strong>of</strong><br />

style, orientation and local overprinting<br />

criteria are all important to successfully<br />

delineate <strong>the</strong> various phases <strong>of</strong> <strong>the</strong><br />

Olarian Orogeny.<br />

No detailed regional study on<br />

structural <strong>evolution</strong> <strong>of</strong> <strong>the</strong> <strong>Olary</strong><br />

<strong>Domain</strong> has been undertaken, though<br />

syn<strong>the</strong>ses by Laing (1995a,b), primarily<br />

on lithology and lithostratigraphy, partly<br />

addressed structural considerations;<br />

Clarke et al. (1986) produced a regional<br />

structural syn<strong>the</strong>sis. Considerable<br />

structural data now exist for <strong>the</strong> <strong>Outalpa</strong><br />

<strong>Inliers</strong>, with University Honours<br />

mapping projects by Beckton (1993),<br />

Buckley (1993), Eykamp (1993),<br />

Middleton (1993), Peterson (1993),<br />

Benton (1994), Baulch (1995), Freeman<br />

(1995), Morton (1995), Fraser (1997),<br />

Pelling (1997) and Zdziarski (1997),<br />

an incompleted Ph.D project by Flint<br />

(1981), and mapping by Archibald<br />

(1980). All <strong>the</strong>ir point structural<br />

observations were digitally captured<br />

and, along with additional data collected<br />

during a 30-day field mapping program,<br />

now form a database containing >5450<br />

structural readings, permitting a detailed<br />

reappraisal <strong>of</strong> <strong>the</strong> tectonic <strong>evolution</strong> <strong>of</strong><br />

<strong>the</strong> <strong>Outalpa</strong> <strong>Inliers</strong>.<br />

Regional orogenesis<br />

Within <strong>the</strong> <strong>Olary</strong> <strong>Domain</strong>, deformation<br />

<strong>of</strong> <strong>the</strong> Olarian Orogeny occurred at<br />

~1600–1580 Ma during three main<br />

phases (OD 1<br />

to OD 3<br />

) that have produced<br />

a complex distribution <strong>of</strong> units (Glen et<br />

al., 1977; Berry et al., 1978; Grady et<br />

al., 1989; Clarke et al., 1986; Flint and<br />

Parker, 1993). The effects <strong>of</strong> refolding<br />

during two fur<strong>the</strong>r deformational phases<br />

(<strong>of</strong> <strong>the</strong> Palaeozoic Delamerian Orogeny)<br />

are relatively minimal.<br />

During OD 1<br />

, a layer-parallel<br />

schistosity and gneissosity developed<br />

during peak metamorphism at<br />

middle amphibolite facies, with local<br />

development <strong>of</strong> migmatite. However,<br />

<strong>the</strong> degree <strong>of</strong> folding during OD 1<br />

is<br />

enigmatic. Mesoscopic OD 1<br />

folds<br />

have only been observed rarely, but<br />

macroscopic recumbent folds with<br />

downward-facing stratigraphy have been<br />

proposed (Pointon, 1980; Clarke et al.,<br />

1986; Grady et al., 1989). Recognition<br />

<strong>of</strong> o<strong>the</strong>r OD 1<br />

folds is hampered by<br />

<strong>the</strong> intensity <strong>of</strong> refolding during later<br />

deformational phases.<br />

The second deformational episode<br />

(OD 2<br />

) varied in intensity across <strong>the</strong><br />

<strong>Olary</strong> <strong>Domain</strong>. Mesoscopic folding<br />

ranges from intense development <strong>of</strong><br />

tight to isoclinal folds with an inclined<br />

axial planar schistosity or crenulation<br />

cleavage, to open folds with minor<br />

crenulations and crenulation cleavage.<br />

Refolding during OD 2<br />

was significant<br />

(Parker, 1972; Berry et al., 1978;<br />

Archibald, 1980; Flint, 1981), but<br />

has been poorly recognised or totally<br />

overlooked by some subsequent workers.<br />

Elucidation <strong>of</strong> OD 2<br />

structures is critical<br />

in establishing a detailed stratigraphic<br />

sequence for <strong>the</strong> Willyama Supergroup<br />

within <strong>the</strong> domain.<br />

The OD 2<br />

schistosity and crenulation<br />

cleavage regionally trend approximately<br />

nor<strong>the</strong>asterly, are defined by sillimanite,<br />

biotite and/or muscovite, and clearly<br />

predate <strong>the</strong> strong and pervasive folding<br />

by OD 3<br />

(Flint and Parker, 1993).<br />

Mesoscopic to macroscopic OD 3<br />

folds are common, are open to close,<br />

and have steeply inclined to upright<br />

axial planes (trending east and<br />

nor<strong>the</strong>ast). Axial planar crenulations and<br />

crenulation cleavage are well developed,<br />

as are discrete retrograde shear zones<br />

characterised by assemblages <strong>of</strong> quartz,<br />

sericite and chlorite. Metamorphic grade<br />

during OD 3<br />

was greenschist facies and<br />

significantly lower grade than during<br />

earlier phases <strong>of</strong> <strong>the</strong> Olarian Orogeny.<br />

The fourth and fifth deformational<br />

phases within <strong>the</strong> Willyama Supergroup<br />

are assigned to <strong>the</strong> Delamerian Orogeny,<br />

though deformation is largely restricted<br />

to reactivation along major faults, broad<br />

warping <strong>of</strong> earlier structures and strata,<br />

and regional uplift by west-directed<br />

thrusts (Berry et al., 1978; Preiss, 1995;<br />

Paul et al., 2000).<br />

<strong>Outalpa</strong> orogenesis<br />

Of mapping projects undertaken within<br />

<strong>the</strong> <strong>Outalpa</strong> <strong>Inliers</strong> since 1980, only<br />

those by Archibald (1980), Flint (1981),<br />

Baulch (1995) and Morton (1995)<br />

clearly and successfully delineated<br />

structural elements for <strong>the</strong> three phases<br />

<strong>of</strong> <strong>the</strong> Olarian Orogeny (Table 1).<br />

Mapping by Buckley (1993), Beckton<br />

(1993), Eykamp (1993), Middleton<br />

(1993), Peterson (1993), Benton (1994)<br />

and Freeman (1995) did not distinguish<br />

younger deformational phases (post-D 1<br />

),<br />

whereas Fraser (1997), Pelling (1997)<br />

and Zdziarski (1997) grouped all post-<br />

D 1<br />

structural features into a single event.<br />

Clarke et al. (1986) adopted a different<br />

nomenclature for <strong>the</strong> deformational<br />

episodes — <strong>the</strong>ir D 2<br />

is equivalent to<br />

D 3<br />

<strong>of</strong> most o<strong>the</strong>r studies whilst younger<br />

development <strong>of</strong> retrograde shear zones<br />

was regarded as a separate phase (<strong>the</strong>ir<br />

D 3<br />

; Table 1).<br />

During this project, all <strong>the</strong> point<br />

structural data from previous work<br />

were reassessed and, where possible,<br />

reclassified into a common, regional<br />

classification scheme (Table 1, Fig. 2).<br />

A series <strong>of</strong> plans showing interpreted<br />

trend lines for bedding and axial planar<br />

surfaces have been compiled (Fig.<br />

3). Trends were simply derived from<br />

plotting all appropriate field structural<br />

observations onto a base map and, where<br />

data were sufficiently concentrated,<br />

extrapolated to achieve regional trends.<br />

Trend lines do not indicate fold hinges,<br />

<strong>the</strong>y simply reflect <strong>the</strong> orientation <strong>of</strong><br />

<strong>the</strong> structural element whe<strong>the</strong>r primary<br />

or modified by later deformational<br />

episodes. The trends are generalised<br />

and, though not all local variations in<br />

orientations are shown, are extremely<br />

useful in defining broad patterns,<br />

extent and coherency for individual<br />

deformations. Fur<strong>the</strong>r discussion on<br />

delineation <strong>of</strong> significant macroscopic<br />

fold hinges and lithostratigraphic<br />

considerations are contained in Flint<br />

(2001, in prep.).<br />

Bedding<br />

A layer-parallel schistosity and<br />

gneissosity, partly or totally overprinting<br />

MESA Journal 26 July 2002 35


Geological Note<br />

Fig. 2 Stereographic diagrams for principal structural elements, <strong>Outalpa</strong> <strong>Inliers</strong>.<br />

36<br />

MESA Journal 26 July 2002


Geological Note<br />

Table 1 Comparative deformational classifi cation schemes for <strong>the</strong> Willyama Supergroup <strong>of</strong> <strong>the</strong> <strong>Outalpa</strong> <strong>Inliers</strong>, <strong>Olary</strong> <strong>Domain</strong>.<br />

Berry et al.<br />

(1978)<br />

Archibald<br />

(1980)<br />

Flint<br />

(1981)<br />

Clarke et al.<br />

(1986)<br />

Flint and<br />

Parker (1993)<br />

Baulch, Morton<br />

(1995)<br />

Fraser, Pelling,<br />

Zdziarski (1997)<br />

This study Conor (2001)<br />

deformational<br />

phases<br />

OLARIAN OROGENY<br />

D 1<br />

D 1<br />

D 1<br />

OD 1<br />

D 1<br />

D 1<br />

OD 1<br />

Faugh-a-Ballagh<br />

D 2<br />

D 2<br />

D 2<br />

D 1<br />

OD 2<br />

D 2<br />

}<br />

OD 2<br />

Mount Mulga<br />

D 3<br />

D 3<br />

D 3<br />

D 2<br />

OD 3<br />

D 3<br />

}D 2<br />

}<br />

OD 3<br />

Waterfall<br />

RSZ* RSZ D 3<br />

RSZ* RSZ* }<br />

RSZ* Walter–<strong>Outalpa</strong><br />

}<br />

DELAMERIAN OROGENY<br />

D 4<br />

D 4<br />

DD 1<br />

D 4<br />

D 5<br />

D 5<br />

DD 2<br />

D 5<br />

*Retrograde schist zones (RSZ) regarded as syn- to late-D 3<br />

features.<br />

Fig. 3 Trends for S 0<br />

to S 5<br />

axial surfaces, <strong>Outalpa</strong> <strong>Inliers</strong>.<br />

MESA Journal 26 July 2002 37


Geological Note<br />

original bedding, developed in many<br />

regions <strong>of</strong> <strong>the</strong> <strong>Outalpa</strong> <strong>Inliers</strong> during<br />

OD 1<br />

. This has resulted in a complex<br />

compositional layering, certainly in<br />

part tectonic, but also reflecting <strong>the</strong><br />

orientation <strong>of</strong> original bedding in some<br />

circumstances.<br />

Observed sedimentary structures<br />

include cross-bedding, graded bedding,<br />

trough scours and syneresis features.<br />

Previously, younging criteria had<br />

been recorded at 36 localities within<br />

<strong>the</strong> <strong>Outalpa</strong> <strong>Inliers</strong>, but some are <strong>of</strong><br />

doubtful value, based on ei<strong>the</strong>r assumed<br />

reverse graded bedding (coarsening<br />

upwards) or tectonically induced<br />

pseudo-cross-bedding. An additional<br />

37 younging observations were noted<br />

during fieldwork; observed graded<br />

bedding was assumed to be normal<br />

(fining upwards). Only 17 <strong>of</strong> <strong>the</strong> total 73<br />

facing observations indicate overturned<br />

strata, and <strong>of</strong> <strong>the</strong>se only three have dips<br />


Geological Note<br />

Fig. 4 Superimposed structural trends within exposures near Ameroo Hill (left) and <strong>Outalpa</strong> Springs Bore (right).<br />

psammitic, psammopelitic and albitic<br />

horizons, and crenulations in pelitic<br />

schists. Axial planar crenulations, kinks<br />

and crenulation cleavage are typical OD 3<br />

elements.<br />

Macroscopic F 3<br />

folds have wavelengths<br />

and amplitudes <strong>of</strong> a few hundred<br />

metres to several kilometres,<br />

with examples in <strong>the</strong> Doughboy Inlier,<br />

northwest <strong>of</strong> Tommie Wattie Bore and<br />

nor<strong>the</strong>ast <strong>of</strong> Sylvester Bore. Trends <strong>of</strong> S 2<br />

(and S 1<br />

) axial surfaces in <strong>the</strong> Doughboy<br />

Inlier show a marked regional variation,<br />

indicating significant refolding about<br />

a nor<strong>the</strong>ast-plunging OD 3<br />

antiformal<br />

Tight to isoclinal OD 2<br />

folds with curved axial traces due to<br />

refolding during OD 3<br />

, north <strong>of</strong> <strong>Outalpa</strong> Springs Bore. (Photo<br />

48854)<br />

axis that is truncated by Neoproterozoic<br />

sediments (Fig. 4).<br />

Open warping <strong>of</strong> bedding and S 1<br />

and<br />

S 2<br />

axial surfaces is evident nor<strong>the</strong>ast<br />

<strong>of</strong> Sylvester Bore. Trends <strong>of</strong> S 3<br />

axial<br />

surfaces are at a very high angle to all<br />

earlier fabrics and mesoscopic folds<br />

are common. Similar warping <strong>of</strong> strata<br />

occurs south <strong>of</strong> Sylvester Bore.<br />

Discrete ductile–brittle retrograde<br />

shear zones, up to 50 m wide, are<br />

characterised by assemblages <strong>of</strong> quartz,<br />

sericite and chlorite (±Fe oxides) and<br />

extend across <strong>the</strong> inliers. They trend<br />

predominantly ~090–105°. Dips are<br />

subvertical to steeply<br />

south-dipping, with<br />

lineations plunging to<br />

<strong>the</strong> south and sou<strong>the</strong>ast<br />

with south block up<br />

and oblique reverse<br />

sense <strong>of</strong> displacement.<br />

These retrograde shear<br />

zones are considered<br />

to be late OD 3<br />

features<br />

ra<strong>the</strong>r than a discrete<br />

younger event as<br />

proposed by Clarke et<br />

al. (1986), as S 3<br />

axial<br />

planar crenulations also<br />

locally trend ~090–<br />

105° in <strong>the</strong> vicinity <strong>of</strong><br />

<strong>the</strong> retrograde shear<br />

zones. Uplift along <strong>the</strong>m represents <strong>the</strong><br />

final deformational effect <strong>of</strong> <strong>the</strong> Olarian<br />

Orogeny (Flint, 2001).<br />

Deformation 4<br />

D 4<br />

is manifest within <strong>the</strong> Willyama<br />

Supergroup as rare crenulations and<br />

kinks that have subvertical axial planes<br />

striking ~010–020° (Fig. 3). These<br />

structural elements are best observed<br />

within very pelite-rich schists in <strong>the</strong><br />

Doughboy Inlier and nor<strong>the</strong>rn Bimbowrie<br />

Inlier. No major D 4<br />

macroscopic fold has<br />

yet been identified within <strong>the</strong> Willyama<br />

Supergroup.<br />

Deformation 5<br />

D 5<br />

corresponds to <strong>the</strong> major fold-forming<br />

event <strong>of</strong> <strong>the</strong> Delamerian Orogeny within<br />

<strong>the</strong> Adelaide Geosyncline (Berry et al.,<br />

1978; Preiss, 1995). Crenulations and<br />

kinks within <strong>the</strong> Willyama Supergroup<br />

<strong>of</strong> <strong>the</strong> <strong>Outalpa</strong> <strong>Inliers</strong> have subvertical<br />

axial planes striking ~100–110°, though<br />

<strong>the</strong> latter may vary locally in close<br />

proximity to major pre-existing thrusts,<br />

shears and faults (Fig. 3). Distinguishing<br />

<strong>the</strong>se crenulations from <strong>of</strong>ten similarly<br />

orientated OD 3<br />

features is difficult,<br />

and can only be successfully done in<br />

basement pelitic schists within close<br />

proximity to Neoproterozoic sediments.<br />

No major, macroscopic D 5<br />

fold has<br />

MESA Journal 26 July 2002 39


Geological Note<br />

yet been identified within strata <strong>of</strong> <strong>the</strong><br />

<strong>Outalpa</strong> <strong>Inliers</strong>.<br />

Conclusions<br />

A detailed, universally accepted<br />

lithostratigraphy for <strong>the</strong> Willyama<br />

Supergroup within <strong>the</strong> <strong>Olary</strong> <strong>Domain</strong><br />

<strong>of</strong> <strong>the</strong> Curnamona Province has<br />

proven elusive over <strong>the</strong> years despite<br />

considerable regional mapping and an<br />

established stratigraphic succession for<br />

<strong>the</strong> Broken Hill <strong>Domain</strong>. Ambiguities<br />

exist principally due to structural<br />

complexities, particularly fold repetition<br />

<strong>of</strong> gneissic sequences containing few<br />

marker horizons, similarly orientated<br />

but discretely different deformational<br />

episodes, and misinterpretation <strong>of</strong><br />

structural overprinting criteria. Characterising<br />

<strong>the</strong> number and nature <strong>of</strong> <strong>the</strong><br />

major deformational episodes that have<br />

affected <strong>the</strong> Willyama Supergroup in <strong>the</strong><br />

<strong>Olary</strong> <strong>Domain</strong> is a prerequisite before<br />

local lithostratigraphic considerations<br />

and regional structural correlations.<br />

Original bedding and sedimentary<br />

structures within lithologies <strong>of</strong> <strong>the</strong><br />

Willyama Supergroup are best preserved<br />

in nor<strong>the</strong>rn portions <strong>of</strong> <strong>the</strong> <strong>Outalpa</strong><br />

<strong>Inliers</strong>. Only 23% <strong>of</strong> facing observations<br />

indicate overturned strata, and only 4%<br />

have dips


Geological Note<br />

Resources. Open fi le Envelope, 9788<br />

(unpublished).<br />

Flint, R.B. (in prep.). Lithostratigraphy <strong>of</strong> <strong>the</strong><br />

Willyama Supergroup within <strong>the</strong> <strong>Outalpa</strong><br />

<strong>Inliers</strong>, <strong>Olary</strong> <strong>Domain</strong>, Curnamona<br />

Province. MESA Journal.<br />

Fraser, G., 1997. The geology <strong>of</strong> <strong>the</strong> <strong>Outalpa</strong><br />

Springs area, <strong>Olary</strong>, South Australia,<br />

with special reference to metasomatic<br />

and mineralisation processes. University<br />

<strong>of</strong> Melbourne. B.Sc. (Hons) <strong>the</strong>sis<br />

(unpublished).<br />

Freeman, H.S.R., 1995. A geochemical and<br />

isotopic study <strong>of</strong> mafic and intermediate<br />

rocks in <strong>the</strong> <strong>Olary</strong> Province, South<br />

Australia — magma series discrimination<br />

and geological framework. University<br />

<strong>of</strong> Adelaide. B.Sc. (Hons) <strong>the</strong>sis<br />

(unpublished).<br />

Glen, R.A., Laing, W.P., Parker, A.J.<br />

and Rutland, R.W.R., 1977. Tectonic<br />

relationships between <strong>the</strong> Proterozoic<br />

Gawler and Willyama Orogenic <strong>Domain</strong>s,<br />

Australia. Geological Society <strong>of</strong> Australia.<br />

Journal, 24:125-150.<br />

Grady, A.E., Flint, D.J. and Wiltshire, R.J.,<br />

1989. Excursion guide for Willyama<br />

Supergroup and related rocks, <strong>Olary</strong><br />

district, SA. South Australia. Department<br />

<strong>of</strong> Mines and Energy. Report Book, 89/23.<br />

Laing, W.P., 1995a. Lithological map<br />

sheets: Billeroo North, Billeroo South,<br />

Boolcoomata South, Bulloo North,<br />

Bulloo South, Kalabity North, Kalabity<br />

South, Koolka North, Koolka South,<br />

<strong>Outalpa</strong> North, <strong>Outalpa</strong> South, Plumbago<br />

North, Plumbago South. South Australia.<br />

Geological Survey. Special Maps,<br />

1: 25 000.<br />

Laing, W.P., 1995b. Palaeoproterozoic–<br />

Mesoproterozoic lithostratigraphy <strong>of</strong> <strong>the</strong><br />

<strong>Olary</strong> domain, Curnamona Province.<br />

South Australia. Geological Survey.<br />

Special Map, 1:100 000.<br />

Middleton, R.D., 1993. The geology <strong>of</strong> <strong>the</strong><br />

<strong>Outalpa</strong>–Bimbowrie area with special<br />

reference to <strong>the</strong> Perryhumuck Mine,<br />

<strong>Olary</strong> Block, South Australia. University<br />

<strong>of</strong> Melbourne. B.Sc. (Hons) <strong>the</strong>sis<br />

(unpublished).<br />

Morton, D., 1995. The structure and<br />

stratigraphy <strong>of</strong> <strong>the</strong> Willyama Supergroup,<br />

west <strong>of</strong> Bimbowrie, <strong>Olary</strong>, South<br />

Australia. University <strong>of</strong> South Australia.<br />

B.Sc. (Hons) <strong>the</strong>sis (unpublished).<br />

Parker, A.J., 1972. A petrological and<br />

structural study <strong>of</strong> portion <strong>of</strong> <strong>the</strong> <strong>Olary</strong><br />

Province, west <strong>of</strong> Wiperaminga Hill,<br />

South Australia. University <strong>of</strong> Adelaide.<br />

B.Sc. (Hons) <strong>the</strong>sis (unpublished).<br />

Paul, M, Sandiford, M. and Flöttmann, T.,<br />

2000. <strong>Structural</strong> geometry <strong>of</strong> a thickskinned<br />

fold–thrust belt termination: <strong>the</strong><br />

<strong>Olary</strong> Block in <strong>the</strong> Adelaide Fold Belt,<br />

South Australia. Australian Journal <strong>of</strong><br />

Earth Sciences, 47(2):281-289.<br />

Pelling, G.A., 1997. Geology <strong>of</strong> <strong>the</strong> East<br />

Doughboy region with special reference<br />

to a diamictite <strong>of</strong> enigmatic origin,<br />

Bimbowrie, <strong>Olary</strong>, South Australia.<br />

University <strong>of</strong> Melbourne. B.Sc. (Hons)<br />

<strong>the</strong>sis (unpublished).<br />

Peterson, M.J., 1993. Geology <strong>of</strong> <strong>the</strong><br />

<strong>Outalpa</strong>–Tommie Wattie Bore area with<br />

special reference to migmatite formation<br />

during low-pressure, high-temperature<br />

amphibolite-grade metamorphism.<br />

University <strong>of</strong> Melbourne. B.Sc. (Hons)<br />

<strong>the</strong>sis (unpublished).<br />

Pointon, T., 1980. Geology <strong>of</strong> Weekeroo<br />

schists east <strong>of</strong> Whey Whey Creek,<br />

Weekeroo Station, <strong>Olary</strong> Province,<br />

South Australia. Flinders University<br />

(South Australia). B.Sc. (Hons) <strong>the</strong>sis<br />

(unpublished).<br />

Preiss, W.V., 1995. Delamerian Orogeny. In:<br />

Drexel, J.F. and Preiss, W.V. (Eds), The<br />

geology <strong>of</strong> South Australia. Vol. 2, The<br />

Phanerozoic. South Australia. Geological<br />

Survey. Bulletin, 54:45-60.<br />

Preiss, W.V. and Conor, C.H.H., 2001.Origin<br />

and nomenclature <strong>of</strong> <strong>the</strong> Willyama <strong>Inliers</strong>,<br />

Curnamona Province. MESA Journal, 21:<br />

47-49.<br />

Zdziarski, A., 1997. The geology <strong>of</strong> <strong>the</strong> Antro<br />

Woolshed area, <strong>Olary</strong>, South Australia.<br />

University <strong>of</strong> Melbourne. B.Sc. (Hons)<br />

<strong>the</strong>sis (unpublished).<br />

MESA Journal 26 July 2002 41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!