23.02.2014 Views

18 Geissler TU-Dresden

18 Geissler TU-Dresden

18 Geissler TU-Dresden

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Potentials of Vehicle Dynamics and Slip Control for Mobile<br />

Machinery enabled by an Electric 4WD<br />

Potenzial von Fahrdynamik- und Schlupfregelung am elektrischen<br />

Einzelradantrieb von Arbeitsmaschinen<br />

(am Beispiel Rigitrac)<br />

Mike Geißler, Pavel Osinenko, Jens Scholz<br />

<strong>TU</strong> <strong>Dresden</strong><br />

4. Kolloquium:<br />

Elektrische Antriebe in der Landtechnik<br />

Wieselburg, 26. June 2013


Content<br />

• Short overview on existing control systems<br />

• Brief description of tire-ground dynamics<br />

• Features of Rigitrac EWD120, simulation and experimental<br />

tests<br />

•Results<br />

• Summary<br />

26.06.2013 Potential of vehicle dynamics and slip control 2<br />

2


Controlled Systems for Traction Drives<br />

in Mobile Machinery<br />

Tractor<br />

• 3pt hitch draft control (EHR)<br />

Objective: - Pulling force, position and combined control<br />

- Slip-control in pulling force control mode<br />

- Vibration damping system for transport<br />

• Adjustment of drive power (injection quantity)<br />

Self propelled machines<br />

• Pressure or volume flow control of the axle/wheel motors<br />

26.06.2013 Potential of vehicle dynamics and slip control 3<br />

3


Drive Train Concepts<br />

Fixed speed ratio of axles<br />

with leading<br />

Mechanical tension<br />

in drive train<br />

Disengagement of allwheel-drive<br />

on streets<br />

and large steering angles<br />

Transfer of motor<br />

power to one wheel<br />

Adjustment of axle<br />

speeds<br />

Lower tire wear and<br />

stress in drive train<br />

Lockable differential for<br />

all-wheel drive<br />

Torque vectoring<br />

Reduction of mech. parts<br />

within the drive train<br />

Individual vehicle<br />

traction<br />

optimized chassis<br />

concepts<br />

Oversizing (M) of the<br />

wheel motors<br />

Cost<br />

Fusion of the systems to combine the advantages<br />

26.06.2013 Potential of vehicle dynamics and slip control 4<br />

4


Advantages of Electrical Drives<br />

• High efficiency, especially in partial load range<br />

• 4 – quadrant operation (motor / generator)<br />

• Very good controllability, variable limit of the characteristic<br />

• Space optimized structure<br />

• Short-term overload capability of the motors<br />

•Low-wear<br />

26.06.2013 Potential of vehicle dynamics and slip control 5<br />

5


Tire-Ground Contact and Power<br />

Transmission<br />

direction<br />

tangential<br />

wheel<br />

force<br />

rolling resistance<br />

forces<br />

tractive/pulling<br />

force<br />

F ground<br />

F ground F ground<br />

slip<br />

a – driven wheel<br />

b – driven wheel w/o long. force<br />

c – pulling wheel<br />

Wheel efficiency<br />

power loss<br />

effective power<br />

Source: Renius K. Th.: Traktoren – Technik und ihre Anwendung. BLV Verlagsgesellschaft mbH, München, 1987.<br />

26.06.2013 Potential of vehicle dynamics and slip control 6<br />

6<br />

slip


Utilization of a Tractor<br />

power<br />

auxiliary loss<br />

gearbox<br />

loss<br />

rolling<br />

loss<br />

engine power<br />

I<br />

II<br />

slip<br />

loss<br />

drawbar<br />

power<br />

I highest energy efficiency<br />

II max. draw bar power<br />

Optimization of fuel cost<br />

and time<br />

slip increase<br />

tractor effici.<br />

drawbar force<br />

total efficiency<br />

Source: Renius K. Th.: Traktoren – Technik und ihre Anwendung. BLV Verlagsgesellschaft mbH, München, 1987.<br />

26.06.2013 Potential of vehicle dynamics and slip control 7<br />

7


Control Approach<br />

Steering, Different soil conditions, non-zero draft force angle (γ)<br />

- Slip control by wheel torque adjustment<br />

- Yaw control by torque vectoring<br />

lift<br />

yaw<br />

wheel forces during plugging<br />

force for each wheel<br />

wheel in<br />

furrow<br />

wheel not in<br />

furrow<br />

pitch<br />

drift<br />

roll<br />

drag<br />

slip<br />

Verification in simulation model and on test stand<br />

Source: Renius K. Th.: Traktoren – Technik und ihre Anwendung. BLV Verlagsgesellschaft mbH, München, 1987.<br />

26.06.2013 Potential of vehicle dynamics and slip control 8<br />

8


Diesel Electric Single-Wheel Drive<br />

combustion engine<br />

95 kW at 2000 1/min<br />

brake resistor<br />

P nenn<br />

= 40 kW<br />

P max<br />

= 200 kW<br />

liquid cooling<br />

suspension<br />

4-wheel steering with hydropneumatic<br />

single wheel<br />

suspension<br />

generator<br />

90 kW at 2000 1/min<br />

liquid cooling<br />

DC Link<br />

350 – 650 V<br />

max. 700 V<br />

4 wheel drives<br />

tire 540/60 R28<br />

v max<br />

= 65 km/h<br />

M nenn<br />

= 8200 Nm<br />

M max<br />

= 14000 Nm<br />

P nenn<br />

= 33 kW<br />

P max<br />

= 44 kW<br />

liquid cooling<br />

26.06.2013 Potential of vehicle dynamics and slip control 9<br />

9


Simulation Model<br />

input signals<br />

vehicle body and<br />

wheels<br />

contact dynamics<br />

Engine and<br />

Generator<br />

electric motors<br />

output of result<br />

identification,<br />

control,<br />

logic<br />

26.06.2013 Potential of vehicle dynamics and slip control 10<br />

10


Rigitrac in Test Environment<br />

Objectives:<br />

• handling of the system<br />

• reproduce defined loads<br />

• robust system controller<br />

(static and dynamic)<br />

• efficiency of drive system<br />

• 2 x 90 kW asynchronous motors at<br />

front axle for load simulation<br />

• additional gearboxes are available<br />

for high torques<br />

Measurements:<br />

• diesel motor: n, M<br />

optional: fuel consumption<br />

• DC Link: current and voltage<br />

• 2 wheel motors: n, M<br />

• component temperatures<br />

26.06.2013 Potential of vehicle dynamics and slip control 11<br />

11


Results – Torque Vectoring<br />

yaw rate during steering from 0° to 4° at 7 km/h<br />

yaw rate [deg/s]<br />

angle<br />

steering angle [deg]<br />

with control<br />

w/o control<br />

time [s]<br />

26.06.2013 Potential of vehicle dynamics and slip control 12<br />

12


Results – Torque Vectoring<br />

with Yaw Control<br />

yaw rate and torque difference during<br />

cornering at 10 km/h<br />

slip of rear axle and steering angle<br />

change during cornering at 10 km/h<br />

yaw rate [deg/s]<br />

yaw rate<br />

torque diff.<br />

torque difference [Nm]<br />

slip rear axle [%]<br />

slip left<br />

slip right<br />

steer. angle<br />

steering angle [deg]<br />

time [s]<br />

time [s]<br />

26.06.2013 Potential of vehicle dynamics and slip control 13<br />

13


Results – Slip Control at Constant Speed<br />

torque [Nm]<br />

slip [%] and controller status<br />

speed [m/s]<br />

motor speed [rpm]<br />

26.06.2013 Potential of vehicle dynamics and slip control 14<br />

14


Results – Slip with Yaw Rate Control<br />

slip and drawbar force - 12 kN and γ=20° at<br />

7 km/h - w/o control<br />

slip and drawbar force - 12 kN and γ=20° at<br />

7 km/h - with control<br />

slip rear axle [%]<br />

slip left<br />

slip right<br />

force<br />

drawbar force [s]<br />

slip rear axle [%]<br />

slip left<br />

slip right<br />

force<br />

drawbar force [s]<br />

time [s]<br />

yaw rate at different drawbar forces – 7 km/h<br />

time [s]<br />

yaw rate [deg/s]<br />

w/o control<br />

time [s]<br />

26.06.2013 Potential of vehicle dynamics and slip control 15<br />

15


Summary<br />

- Electric drives enables more accurate control strategies for<br />

mobile machinery<br />

- Electric single wheel drives allows dynamic power<br />

distribution to handle any particular situation<br />

- Torque vectoring improves motion stability and vehicle<br />

handling<br />

- Single wheel slip control coupled with torque vectoring<br />

allows to optimally utilize drive train power<br />

26.06.2013 Potential of vehicle dynamics and slip control 16<br />

16


Thank you for your<br />

attention!<br />

<strong>TU</strong> <strong>Dresden</strong><br />

Lehrstuhl Agrarsystemtechnik<br />

01062 <strong>Dresden</strong><br />

e-mail: geissler@ast.mw.tu-dresden.de<br />

26.06.2013 Potential of vehicle dynamics and slip control 17<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!