23.02.2014 Views

LAD Estimation for Time Series Models With Finite and Infinite ...

LAD Estimation for Time Series Models With Finite and Infinite ...

LAD Estimation for Time Series Models With Finite and Infinite ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>LAD</strong> <strong>Estimation</strong> <strong>for</strong> <strong>Time</strong> <strong>Series</strong> <strong>Models</strong><br />

<strong>With</strong> <strong>Finite</strong> <strong>and</strong> <strong>Infinite</strong> Variance<br />

Richard A. Davis<br />

Colorado State University<br />

William Dunsmuir<br />

University of New South Wales<br />

NBER/NSF Workshop<br />

1


<strong>LAD</strong> <strong>Estimation</strong> <strong>for</strong> ARMA <strong>Models</strong><br />

finite variance<br />

infinite variance<br />

A Real Data Example<br />

<strong>LAD</strong> estimation<br />

unit root problem<br />

NBER/NSF Workshop<br />

2


Αsymptotics in Non-st<strong>and</strong>ard Settings<br />

(When Taylor series expansions do not work.)<br />

Applications to:<br />

• <strong>LAD</strong> estimation<br />

(Pollard `91, Davis <strong>and</strong> Dunsmuir `95)<br />

• M-estimation with infinite variance<br />

(Davis, Knight <strong>and</strong> Liu `92, Davis `95)<br />

• Unit root problems (AR + MA)<br />

(Davis <strong>and</strong> Dunsmuir `95, Davis, Chen <strong>and</strong> Dunsmuir<br />

`95)<br />

NBER/NSF Workshop<br />

3


Εxample (The median).<br />

Data. Z 1 , . . . , Z n , IID median 0 <strong>and</strong> pdf f(0) > 0.<br />

Median. m n = median(Z 1 , . . . , Z n )<br />

Asymptotics:<br />

Note: m^<br />

n<br />

^<br />

(assume m 0 = population median = 0)<br />

^<br />

m n is AN(0,??)<br />

minimizes<br />

n<br />

T n (m) =<br />

Σ<br />

(|Z t − m|− | Z t |)<br />

t=1<br />

NBER/NSF Workshop<br />

4


Set<br />

u=n 1/2 m <strong>and</strong> put<br />

Then<br />

S n (u ) = T n (un -1/2 )<br />

^<br />

u n = n 1/2 m n .<br />

Using the key identity,<br />

we have<br />

Σt = 1<br />

NBER/NSF Workshop<br />

n<br />

Σ t=1<br />

= (|Z t − un -1/2 | − |Z t |).<br />

|z-y| - |z| = -y sgn(z) + 2(y-z) (I(0


S n (u) = −u n -1/2 sgn(Z t )<br />

n<br />

Σ<br />

t=1<br />

n<br />

Σt=1<br />

+ 2 (n -1/2 u-Z t ){ I(0< Z t


Conclude :<br />

• A n<br />

• B n<br />

d<br />

P<br />

-uN<br />

u 2 f(0)<br />

• S n (u) S(u):= −uN + u 2 f(0) [on C( R) ]<br />

^<br />

• u n = n 1/2 ^<br />

m n<br />

u := minimizer of S(u).<br />

Solve S'(u) = −N + 2 u f(0) = 0, we obtain<br />

^<br />

d<br />

d<br />

^<br />

u = N/(2f(0)) ~ N(0,1/(4f 2 (0)))<br />

or<br />

^<br />

d<br />

n 1/2 m n N(0,1/(4f 2 (0)))<br />

NBER/NSF Workshop<br />

7


The Paradigm:<br />

• Objective function to be minimized: T n (θ)<br />

• Reparameterize by setting u = a n (θ−θ 0 )<br />

θ 0 = true value, a n = scaling<br />

• Form new objective function:<br />

S n (u) = T n (θ 0 +u/a n )<br />

• Establish weak convergence of S n (u) to S(u) on C(R) R).<br />

• Show<br />

u^<br />

n = a n (θ−θ<br />

^ d<br />

0 ) u:= ^ argmin S(u)<br />

NBER/NSF Workshop<br />

8


8<br />

Theorem. Let {Y t } be the linear process<br />

Y t = c j Z t-j , |c j | < ,<br />

where {Z t }~IID(0,σ 2 ), median(Z 1 )=0, <strong>and</strong> f(0)>0 .<br />

Then<br />

S n := (| Z t -n -1/2 Y t-1 | - |Z t | )<br />

d<br />

∞<br />

∞<br />

∑ ∑<br />

j= 0 j= 0<br />

n<br />

Σ t=1<br />

γ f(0) + N,<br />

where N ~ N(0, γ) (γ = Var(Y t )).<br />

Key identity:<br />

|z-y| - |z| = -y sgn(z) + 2(y-z) (I(0


Using the key identity,<br />

|z-y| - |z| = -y sgn(z) + 2(y-z) (I(0


Results :<br />

• A<br />

d<br />

n −uN 1 − v N 2 , (N 1 ,N 2 ) T ~ N( ⎢ ⎤ ).<br />

⎦ ⎥ ,<br />

⎡<br />

⎣<br />

0 1 EX 1<br />

0 EX 1<br />

EX 1<br />

2<br />

• EB n<br />

• B n<br />

P<br />

EY 1<br />

2<br />

f(0) = (u,v) Σ (u,v) T f(0).<br />

(u,v) Σ (u,v) T f(0).<br />

Conclude :<br />

• S n (u,v)<br />

d<br />

−uN 1 − v N 2 + (u,v) Σ (u,v) T f(0).<br />

• (u ^<br />

n ,v^<br />

n ) T d Σ -1 (N 1 ,N 2 ) T / 2f(0) ~ N(0, Σ -1 / 4f 2 (0))<br />

^<br />

^<br />

• (n 1/2 (µ−µ 0 ), n 1/2 (φ−φ 0 )) T d<br />

N(0, Σ -1 / 4f 2 (0))<br />

NBER/NSF Workshop<br />

11


Εxample (AR(1)).<br />

Data. X 1 , . . . , X n<br />

Model. X t = µ 0 + φ 0 X t-1 +Z t ,<br />

<strong>LAD</strong> estimation:<br />

Minimize<br />

| φ 0 | < 1, {Z t } ~ IID(0,σ 2 ), f(0)>0.<br />

n<br />

Σ t=1<br />

n<br />

T n (µ,φ) = (|X t −µ − φX t-1 | − |Z t |)<br />

Σ t=1<br />

= (|Z t − (µ−µ 0 ) −(φ −φ 0 )X t-1 | − |Z t |)<br />

Set u=n 1/2 (µ−µ 0 ), v= n 1/2 (φ−φ 0 ),<br />

S n (u,v) = (|Z t − un -1/2 − vn -1/2 X t-1 | −|Z t |)<br />

NBER/NSF Workshop<br />

n<br />

Σ<br />

t=1<br />

12


S n (u,v) = (|Z t − un -1/2 − vn -1/2 X t-1 | −|Z t |)<br />

n<br />

Σ<br />

t=1<br />

n<br />

Σ<br />

t=1<br />

n<br />

Σ<br />

t=1<br />

= (|Z t − n -1/2 Y t-1 | − |Z t |)<br />

(n -1/2 Y t-1 = un -1/2 + vn -1/2 X t-1 )<br />

n<br />

Σ<br />

t=1<br />

= - n -1/2 Y t-1 sgn(Z t )<br />

+ 2 (n -1/2 Y t-1 -Z t ){ I(0< Z t


Results :<br />

• A<br />

d<br />

n −uN 1 − v N 2 , (N 1 ,N 2 ) T ~ N( ⎢ ⎤ ).<br />

⎦ ⎥ ,<br />

⎡<br />

⎣<br />

0 1 EX 1<br />

0 EX 1<br />

EX 1<br />

2<br />

• EB n<br />

• B n<br />

P<br />

EY 1<br />

2<br />

f(0) = (u,v) Σ (u,v) T f(0).<br />

(u,v) Σ (u,v) T f(0).<br />

Conclude :<br />

• S n (u,v)<br />

d<br />

−uN 1 − v N 2 + (u,v) Σ (u,v) T f(0).<br />

• (u ^<br />

n ,v^<br />

n ) T d Σ -1 (N 1 ,N 2 ) T / 2f(0) ~ N(0, Σ -1 / 4f 2 (0))<br />

^<br />

^<br />

• (n 1/2 (µ−µ 0 ), n 1/2 (φ−φ 0 )) T d<br />

N(0, Σ -1 / 4f 2 (0))<br />

NBER/NSF Workshop<br />

14


Εxample (MA(1)).<br />

Data. X 1 , . . . , X n<br />

Model. X t = Z t + θ Z t-1 ,<br />

<strong>LAD</strong> estimation:<br />

| θ 0 | < 1, {Z t } ~ IID(0,σ 2 ), f(0)>0.<br />

Minimize<br />

T n (θ) = (|Z t (θ)| - |Z t (θ 0 )| )<br />

n<br />

Σ t=1<br />

n<br />

Σ t=1<br />

Set u=n 1/2 (θ−θ 0 ),<br />

= (|X t −θX t-1 +θ 2 X t-2 - . . . (-θ) t-1 X 1 | - |Z t (θ 0 )| )<br />

NBER/NSF Workshop<br />

15


S n (u) = T n (θ 0 + un -1/2 )<br />

n<br />

Σ<br />

t=1<br />

= (|Z t (θ 0 + un -1/2 )| - |Z t (θ 0 )| )<br />

(Not a convex function of u!)<br />

Linearize Z t (θ 0 + un -1/2 ) to get<br />

n<br />

Σ<br />

t=1<br />

S n (u) ∼ (|Z t (θ 0 ) + un -1/2 Z t ' (θ 0 )| -|Z t (θ 0 )| )<br />

where -Z t ' (θ 0 ) is the AR(1) process<br />

Y t = −θ 0 Y t-1 +Z t .<br />

Result : Same limit result as in the AR(1) case, i.e.<br />

n 1/2 ^<br />

(θ <strong>LAD</strong> −θ 0 ) d N / (Var(Y t )2f(0))<br />

NBER/NSF Workshop<br />

~ N(0, (1-θ 2 ) / (σ 2 4f 2 (0)))<br />

16


Linearized Version :<br />

Initial estimate :<br />

^<br />

θ 0 = θ 0 + O p (n -1/2 )<br />

Objective Function:<br />

Then<br />

n<br />

Σ<br />

t=1<br />

^ ^ ^ ^<br />

T n (θ) = (|Z t (θ 0 ) + Z' t (θ 0 )(θ−θ 0 )| - |Z t (θ 0 )| ).<br />

n 1/2 ^<br />

(θ L −θ 0 ) d N(0, (1-θ 2 ) / (4f 2 (0))),<br />

^<br />

where θ L = argmin T n (θ)<br />

NBER/NSF Workshop<br />

17


Extensions :<br />

ARMA Model : φ(B)X t = θ(B)Z t , {Z t } ~ IID(0,σ 2 ), f(0)>0.<br />

Set β = (φ 1 , . . ., φ p , θ 1 , . . ., θ q ) T <strong>and</strong><br />

Then<br />

v = n 1/2 (β − β 0 )<br />

(i) S n (v ) := (|Z t (β 0 + vn -1/2 )| - |Z t (β 0 )| )<br />

d<br />

n<br />

Σ<br />

t=1<br />

NBER/NSF Workshop<br />

f(0)v T Γ Q<br />

-1/2<br />

v + v T N , N~N( 0, Γ Q ), (in C(R p+q ))<br />

(ii) v<br />

^<br />

<strong>LAD</strong> = n 1/2 ^<br />

(β <strong>LAD</strong> −β 0 )<br />

d<br />

Γ -1 Q N/(2f(0))<br />

~ N(0, Γ Q -1 /(4f 2 (0)))<br />

Note: Γ Q -1 σ 2 is the limiting covariance matrix in Gaussian case.<br />

18


ARMA Model <strong>With</strong> Stable Noise:<br />

(Davis, Knight <strong>and</strong> Liu `92 <strong>for</strong> AR case, Davis `95 <strong>for</strong> ARMA.)<br />

Model:<br />

φ(B)X t = θ(B)Z t , {Z t } ~ IID symmetric stable(α), 0


Linear Regression with ARMA Errors :<br />

Model : Y t = A T t α + X t ,<br />

where {X t } follows an ARMA process<br />

φ(B)X t = θ(B)Z t , {Z t } ~ IID(0,σ 2 ), f(0)>0.<br />

Assume A T t = (a 1t , . . . , a rt ) T satisfies Gren<strong>and</strong>er’s conditions:<br />

(a) |a jn |/b jn 0<br />

(b)<br />

(c)<br />

B n<br />

-1<br />

A t A t+j<br />

T<br />

B n<br />

-1<br />

Γ A (j)<br />

b jn<br />

n<br />

Σ<br />

t=1<br />

P<br />

P8<br />

where b jn<br />

2<br />

= ||A t || 2 <strong>and</strong> B n = diag(b 1t , . . . , b rt ) .<br />

P<br />

NBER/NSF Workshop<br />

20


<strong>Estimation</strong>: Let<br />

X t (α) =<br />

⎧<br />

⎨<br />

⎩<br />

0, if t < 1,<br />

Y t − A t T α , if t > 0,<br />

<strong>and</strong> <strong>for</strong> τ Τ =( α Τ , β Τ ), define<br />

Z t (τ) =<br />

⎧<br />

⎨<br />

⎩ . . .<br />

0, if t < 1,<br />

φ(B)X t (α) − θ 1 Z t-1 (τ)−<br />

−θ q Z t-q (τ)<br />

, if t > 0,<br />

Minimize<br />

n<br />

Σ<br />

t=1<br />

S n ( u, v) = (|Z t (τ 0 + n(u,v))| - |Z t (τ 0 )| )<br />

where n(u,v) = ( (B n -1 u) T , n -1/2 v T ) T .<br />

NBER/NSF Workshop<br />

21


Result :<br />

d<br />

• S n ( u, v) S ( u, v) on C(R p+q+r )<br />

• B n (α<br />

^<br />

<strong>LAD</strong> −α 0 ), n 1/2 (β<br />

^<br />

<strong>LAD</strong> −β 0 )<br />

d<br />

Γ −1 N /(2f(0))<br />

~ N(0, Γ -1 /(4f 2 (0))),<br />

where<br />

<strong>and</strong><br />

Γ =<br />

⎡<br />

⎢<br />

⎣<br />

Γ C 0<br />

⎤<br />

⎥<br />

⎦<br />

0 T Γ Q<br />

Σ<br />

j, k<br />

Γ C = π j π k Γ A (j-k), π(B) = θ 0 (B) / φ 0 (B) .<br />

NBER/NSF Workshop<br />

22


An Example : (overshorts Y 1 , . . . , Y 57<br />

storage tank.)<br />

from underground<br />

(gallons)<br />

-100 -50 0 50 100<br />

0 10 20 30 40 50<br />

ACF<br />

-0.5 0.0 0.5 1.0<br />

NBER/NSF Workshop<br />

0 5 10 15 20<br />

Lag<br />

23


Model. Y t = µ + Z t +θZ t-1<br />

Problem. Estimate µ <strong>and</strong> construct a C.I.?<br />

(Is µ < -5 gallons/day?)<br />

<strong>Estimation</strong>.<br />

Estimates<br />

Asymptotic Var<br />

µ ^ MLE = − 4.87 (1+θ) 2 σ 2 /n = (1.408) 2<br />

θ<br />

^<br />

MLE = −.849 (1−θ 2 )/n = (.070) 2<br />

µ ^ <strong>LAD</strong> = -6.01 (1+θ) 2 /(4nf 2 (0)) = (2.236) 2<br />

θ<br />

^<br />

<strong>LAD</strong> = −.673 (1−θ 2 ) / (σ 2 4n(f 2 (0))) = (.106) 2<br />

NBER/NSF Workshop<br />

24


Unit Root. If θ=1, then<br />

µ ^ MLE is AN(µ 0 , 12σ 2 /n 3 ) (if θ is not estimated)<br />

µ ^ MLE is asymptotically non-normal (if θ is estimated)<br />

Asymptotic distribution of µ ^<br />

<strong>LAD</strong> <strong>and</strong> θ<br />

^<br />

<strong>LAD</strong> when θ = 1?<br />

NBER/NSF Workshop<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!