28.07.2014 Views

Lectures for Part II: Time Series Models in Finance

Lectures for Part II: Time Series Models in Finance

Lectures for Part II: Time Series Models in Finance

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Nonl<strong>in</strong>ear <strong>Time</strong> <strong>Series</strong> Model<strong>in</strong>g<br />

<strong>Part</strong> <strong>II</strong>: <strong>Time</strong> <strong>Series</strong> <strong>Models</strong> <strong>in</strong> F<strong>in</strong>ance<br />

Richard A. Davis<br />

Colorado State University<br />

(http://www.stat.colostate.edu/~rdavis/lectures)<br />

MaPhySto Workshop<br />

Copenhagen<br />

September 27 — 30, 2004<br />

MaPhySto Workshop 9/04<br />

1


<strong>Part</strong> <strong>II</strong>: <strong>Time</strong> <strong>Series</strong> <strong>Models</strong> <strong>in</strong> F<strong>in</strong>ance<br />

1. Classification of white noise<br />

2. Examples<br />

3. “Stylized facts” concern<strong>in</strong>g f<strong>in</strong>ancial time series<br />

4. ARCH and GARCH models<br />

5. Forecast<strong>in</strong>g with GARCH<br />

6. IGARCH<br />

7. Stochastic volatility models<br />

8. Regular variation and application to f<strong>in</strong>ancial TS<br />

8.1 univariate case<br />

8.2 multivariate case<br />

8.3 applications of multivariate regular variation<br />

8.4 application of multivariate RV equivalence<br />

8.5 examples<br />

8.6 Extremes <strong>for</strong> GARCH and SV models<br />

8.7 Summary of results <strong>for</strong> ACF of GARCH & SV models<br />

MaPhySto Workshop 9/04<br />

2


1. Classification of White Noise<br />

As we have already seen from f<strong>in</strong>ancial data, such as log(returns),<br />

and from residuals from some ARMA model fits, one needs to<br />

consider time series models <strong>for</strong> white noise (uncorrelated) that<br />

allows <strong>for</strong> dependence.<br />

Classification of WN (<strong>in</strong> <strong>in</strong>creas<strong>in</strong>g degree of “whiteness”).<br />

MaPhySto Workshop 9/04<br />

3


1. Classification of White Noise (cont)<br />

MaPhySto Workshop 9/04<br />

4


2. Examples<br />

(1) All-pass processs. Satisfies W1 and not W2.<br />

MaPhySto Workshop 9/04<br />

5


2. Examples (cont)<br />

MaPhySto Workshop 9/04<br />

6


2. Examples (cont)<br />

MaPhySto Workshop 9/04<br />

7


2. Examples (cont)<br />

MaPhySto Workshop 9/04<br />

8


2. Examples (cont)<br />

MaPhySto Workshop 9/04<br />

9


2. Examples (cont)<br />

MaPhySto Workshop 9/04<br />

10


2. Examples (cont)<br />

MaPhySto Workshop 9/04<br />

11


2. Examples (cont)<br />

Properties of ARCH(1) process:<br />

1. Strictly stationary solution if 0 < α 1


2. Examples (cont)<br />

Likelihood function:<br />

MaPhySto Workshop 9/04<br />

13


2. Examples (cont)<br />

A realization of the process<br />

MaPhySto Workshop 9/04<br />

14


2. Examples (cont)<br />

The sample ACF.<br />

MaPhySto Workshop 9/04<br />

15


2. Examples (cont)<br />

The sample ACF of the absolute values and squares.<br />

MaPhySto Workshop 9/04<br />

16


MaPhySto Workshop 9/04<br />

17


3. “Stylized Facts” of F<strong>in</strong>ancial Returns<br />

Def<strong>in</strong>e X t = 100*(ln (P t ) - ln (P t-1 )) (log returns)<br />

• heavy tailed<br />

P(|X 1 | > x) ~ C x -α , 0 < α < 4.<br />

• uncorrelated<br />

ˆ<br />

ρ X<br />

( h)<br />

near 0 <strong>for</strong> all lags h > 0 (MGD sequence?)<br />

• |X t | and X t2 have slowly decay<strong>in</strong>g autocorrelations<br />

ρˆ ( ) and ˆ<br />

| X |<br />

h ρ 2 ( h)<br />

• process exhibits ‘stochastic volatility’.<br />

X<br />

converge to 0 slowly as h <strong>in</strong>creases.<br />

MaPhySto Workshop 9/04<br />

18


Log returns <strong>for</strong> IBM 1/3/62-11/3/00 (blue=1961-1981)<br />

100*log(returns)<br />

-20 -10 0 10<br />

MaPhySto Workshop 9/04<br />

1962 1967 1972 1977 1982 1987 1992 1997<br />

time<br />

19


Sample ACF IBM (a) 1962-1981, (b) 1982-2000<br />

(a) ACF of IBM (1st half)<br />

(b) ACF of IBM (2nd half)<br />

ACF<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

ACF<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0 10 20 30 40<br />

Lag<br />

0 10 20 30 40<br />

Lag<br />

Remark: Both halves look like white noise.<br />

MaPhySto Workshop 9/04<br />

20


ACF of squares <strong>for</strong> IBM (a) 1961-1981, (b) 1982-2000<br />

(a) ACF, Squares of IBM (1st half)<br />

(b) ACF, Squares of IBM (2nd half)<br />

ACF<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

ACF<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

0 10 20 30 40<br />

0 10 20 30 40<br />

Lag<br />

Lag<br />

Remark: <strong>Series</strong> are not <strong>in</strong>dependent white noise?<br />

MaPhySto Workshop 9/04<br />

21


Plot of M t (4)/S t (4) <strong>for</strong> IBM<br />

M(4)/S(4)<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

MaPhySto Workshop 9/04<br />

0 2000 4000 6000 8000 10000<br />

Remark: For <strong>II</strong>D data, M t (k)/S t (k) → 0 as t →∞iff E|X , | k < ∞, where<br />

t<br />

k<br />

k<br />

M<br />

t<br />

= maxs= 1,...,<br />

t<br />

| X<br />

s<br />

| and St<br />

= ∑|<br />

X<br />

s<br />

|<br />

t<br />

s=<br />

1<br />

22


Hill’s estimator of tail <strong>in</strong>dex<br />

The marg<strong>in</strong>al distribution F <strong>for</strong> heavy-tailed data is often modeled us<strong>in</strong>g<br />

Pareto-like tails,<br />

1-F(x) = x -α L(x),<br />

<strong>for</strong> x large, where L(x) is a slowly vary<strong>in</strong>g function (L(xt)/ L(x)→1, as x<br />

→∞). Now if<br />

X~ F, then P(log X > x) = P(X > exp(x))=exp(-αx)L(exp(x)),<br />

and hence log X has an approximate exponential distribution <strong>for</strong> large x.<br />

The spac<strong>in</strong>gs,<br />

log( X (j) ) − log(X (j+1) ) , j=1,2,. . . ,m,<br />

from a sample of size n from an exponential distr are approximately<br />

<strong>in</strong>dependent and Exp(αj) distributed. This suggests estimat<strong>in</strong>g α −1 by<br />

MaPhySto Workshop 9/04<br />

αˆ<br />

−1<br />

=<br />

=<br />

1<br />

m<br />

1<br />

m<br />

m<br />

∑( log X<br />

( j)<br />

− log X<br />

( j+<br />

1)<br />

)<br />

j=<br />

1<br />

m<br />

∑( log X<br />

( j)<br />

− log X<br />

( m+<br />

1)<br />

)<br />

j=<br />

1<br />

j<br />

23


Hill’s estimator of tail <strong>in</strong>dex<br />

Def: The Hill estimate of α <strong>for</strong> heavy-tailed data with distribution given<br />

by<br />

1-F(x) = x -α L(x),<br />

is<br />

αˆ<br />

−1<br />

=<br />

1<br />

m<br />

m<br />

∑( log X<br />

( j)<br />

− log X<br />

( j+<br />

1)<br />

)<br />

j=<br />

1<br />

j<br />

=<br />

1<br />

m<br />

m<br />

∑( log X<br />

( j)<br />

− log X<br />

( m+<br />

1)<br />

)<br />

j=<br />

1<br />

The asymptotic variance of this estimate <strong>for</strong> α is<br />

ˆ 2<br />

2<br />

α / m and estimated by α / m.<br />

(See also GPD=generalized Pareto distribution.)<br />

MaPhySto Workshop 9/04<br />

24


Hill’s plot of tail <strong>in</strong>dex <strong>for</strong> IBM (1962-1981, 1982-2000)<br />

Hill<br />

1 2 3 4 5<br />

Hill<br />

1 2 3 4 5<br />

0 200 400 600 800 1000<br />

m<br />

0 200 400 600 800<br />

m<br />

MaPhySto Workshop 9/04<br />

25


4. ARCH and GARCH <strong>Models</strong><br />

MaPhySto Workshop 9/04<br />

26


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

27


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

28


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

29


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

30


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

31


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

32


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

33


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

34


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

35


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

36


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

i<br />

MaPhySto Workshop 9/04<br />

37


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

38


MaPhySto Workshop 9/04<br />

39


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

40


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

SS but not WS GARCH Processes<br />

MaPhySto Workshop 9/04<br />

41


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

42


MaPhySto Workshop 9/04<br />

43


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

44


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

45


MaPhySto Workshop 9/04<br />

46


MaPhySto Workshop 9/04<br />

47


MaPhySto Workshop 9/04<br />

48


Parameter Estimation <strong>for</strong> F<strong>in</strong>ite-Variance GARCH <strong>Models</strong><br />

MaPhySto Workshop 9/04<br />

49


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

50


MaPhySto Workshop 9/04<br />

51


MaPhySto Workshop 9/04<br />

52


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

53


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

54


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

55


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

56


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

57


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

58


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

59


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

60


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

61


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

62


MaPhySto Workshop 9/04<br />

63


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

64


4. ARCH and GARCH <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

65


5. Forecast<strong>in</strong>g with GARCH<br />

MaPhySto Workshop 9/04<br />

66


5. Forecast<strong>in</strong>g with GARCH (cont)<br />

MaPhySto Workshop 9/04<br />

67


6. IGARCH<br />

MaPhySto Workshop 9/04<br />

68


7. Stochastic Volatility <strong>Models</strong><br />

MaPhySto Workshop 9/04<br />

69


7. Stochastic Volatility <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

70


7. Stochastic Volatility <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

71


7. Stochastic Volatility <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

72


7. Stochastic Volatility <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

73


7. Stochastic Volatility <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

74


7. Stochastic Volatility <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

75


7. Stochastic Volatility <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

76


7. Stochastic Volatility <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

77


7. Stochastic Volatility <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

78


7. Stochastic Volatility <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

79


7. Stochastic Volatility <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

80


MaPhySto Workshop 9/04<br />

81


7. Stochastic Volatility <strong>Models</strong> (cont)<br />

MaPhySto Workshop 9/04<br />

82


8. Regular variation and application to f<strong>in</strong>ancial TS models<br />

8.1 Regular variation — univariate case<br />

Def: The random variable X is regularly vary<strong>in</strong>g with <strong>in</strong>dex α if<br />

P(|X|> t x)/P(|X|>t) → x −α and P(X> t)/P(|X|>t) →p,<br />

or, equivalently, if<br />

P(X> t x)/P(|X|>t) → px −α and P(X< −t x)/P(|X|>t) → qx −α ,<br />

where 0 ≤ p ≤ 1 and p+q=1.<br />

Equivalence:<br />

X is RV(α) if and only if P(X ∈ t • ) /P(|X|>t)→ v µ(• )<br />

(→ v vague convergence of measures on R\{0}). In this case,<br />

µ(dx) = (pα x −α−1 I(x>0) + qα (-x) -α−1 I(x


8.1 Regular variation — univariate case (cont)<br />

Another <strong>for</strong>mulation (polar coord<strong>in</strong>ates):<br />

Def<strong>in</strong>e the ± 1 valued rv θ, P(θ = 1) = p, P(θ = −1) = 1− p = q.<br />

Then<br />

X is RV(α) if and only if<br />

or<br />

P(|<br />

X | t x, X/ | X | ∈ S)<br />

→<br />

P(|<br />

X | > t )<br />

> −α<br />

x<br />

P(<br />

θ∈<br />

S)<br />

P(|<br />

X| t x,X/| X| ∈• )<br />

→<br />

P(|<br />

X| > t )<br />

> −α<br />

v<br />

x<br />

P(<br />

θ∈•<br />

)<br />

(→ v vague convergence of measures on S 0 = {-1,1}).<br />

MaPhySto Workshop 9/04<br />

84


8.2 Regular variation — multivariate case<br />

Multivariate regular variation of X=(X 1 , . . . , X m ): There exists a<br />

random vector θ ∈ S m-1 such that<br />

Equivalence:<br />

P(|X|> t x, X/|X| ∈ •)/P(|X|>t) → v x −α P( θ ∈•)<br />

(→ v vague convergence on S m-1 , unit sphere <strong>in</strong> R m ) .<br />

• P( θ ∈•) is called the spectral measure<br />

• α is the <strong>in</strong>dex of X.<br />

P(<br />

X<br />

∈t<br />

•)<br />

→ v<br />

µ (<br />

•<br />

)<br />

P<br />

(|<br />

X<br />

| ><br />

t )<br />

µ is a measure on R m which satisfies <strong>for</strong> x > 0 and A bounded away<br />

from 0,<br />

µ(xB) = x −α µ(xA).<br />

MaPhySto Workshop 9/04<br />

85


8.2 Regular variation — multivariate case (cont)<br />

Examples:<br />

1. If X 1 > 0 and X 2 > 0 are iid RV(α), then X= (X 1 , X 2 ) is<br />

multivariate regularly vary<strong>in</strong>g with <strong>in</strong>dex α and spectral distribution<br />

P( θ =(0,1) ) = P( θ =(1,0) ) =.5 (mass on axes).<br />

Interpretation: Unlikely that X 1 and X 2 are very large at the same<br />

time.<br />

Figure: plot of<br />

(X t1 ,X t2 ) <strong>for</strong> realization<br />

of 10,000.<br />

x_2<br />

0 10 20 30 40<br />

MaPhySto Workshop 9/04<br />

0 5 10 15 20<br />

x_1<br />

86


2. If X 1 = X 2 > 0, then X= (X 1 , X 2 ) is multivariate regularly vary<strong>in</strong>g<br />

with <strong>in</strong>dex α and spectral distribution<br />

P( θ = (1/√2, 1/√2) ) = 1.<br />

3. AR(1): X t = .9 X t-1 + Z t , {Z t }~<strong>II</strong>D symmetric stable (1.8)<br />

{<br />

±(1,.9)/sqrt(1.81), W.P. .9898<br />

Distr of θ:<br />

±(0,1), W.P. .0102<br />

Figure: plot of (X t ,<br />

X t+1 ) <strong>for</strong> realization<br />

of 10,000.<br />

x_{t+1}<br />

-10 0 10 20 30<br />

MaPhySto Workshop 9/04<br />

-10 0 10 20 30<br />

x_t<br />

87


8.3 Applications of multivariate regular variation<br />

• Doma<strong>in</strong> of attraction <strong>for</strong> sums of iid random vectors<br />

(Rvaceva, 1962). That is, when does the partial sum<br />

−1<br />

a n<br />

∑<br />

t=<br />

1<br />

converge <strong>for</strong> some constants a n ?<br />

n<br />

• Spectral measure of multivariate stable vectors.<br />

• Doma<strong>in</strong> of attraction <strong>for</strong> componentwise maxima of iid<br />

random vectors (Resnick, 1987). Limit behavior of<br />

1<br />

a −<br />

n<br />

n<br />

∨<br />

t=<br />

1<br />

• Weak convergence of po<strong>in</strong>t processes with iid po<strong>in</strong>ts.<br />

• Solution to stochastic recurrence equations, Y t = A t Y t-1 + B t<br />

• Weak convergence of sample autocovariances.<br />

X<br />

t<br />

X<br />

t<br />

MaPhySto Workshop 9/04<br />

88


8.3 Applications of multivariate regular variation (cont)<br />

L<strong>in</strong>ear comb<strong>in</strong>ations:<br />

X ~RV(α) ⇒ all l<strong>in</strong>ear comb<strong>in</strong>ations of X are regularly vary<strong>in</strong>g<br />

i.e., there exist α and slowly vary<strong>in</strong>g fcn L(.), s.t.<br />

P(c T X> t)/(t -α L(t)) →w(c), exists <strong>for</strong> all real-valued c,<br />

where<br />

w(tc) = t −α w(c).<br />

Use vague convergence with A c ={y: c T y > 1}, i.e.,<br />

T<br />

P(<br />

X<br />

∈<br />

tA<br />

c<br />

)<br />

P<br />

( c<br />

X<br />

> t)<br />

=<br />

→µ (A )<br />

:<br />

w(<br />

),<br />

c<br />

= c<br />

−α<br />

t L<br />

(<br />

t)<br />

P(|<br />

X<br />

|<br />

><br />

t )<br />

A c<br />

where t -α L(t) = P(|X| > t).<br />

MaPhySto Workshop 9/04<br />

89


8.3 Applications of multivariate regular variation (cont)<br />

Converse?<br />

X ~RV(α) ⇐ all l<strong>in</strong>ear comb<strong>in</strong>ations of X are regularly vary<strong>in</strong>g?<br />

There exist α and slowly vary<strong>in</strong>g fcn L(.), s.t.<br />

(LC) P(c T X> t)/(t -α L(t)) →w(c), exists <strong>for</strong> all real-valued c.<br />

Theorem (Basrak, Davis, Mikosch, `02). Let X be a random vector.<br />

1. If X satisfies (LC) with α non-<strong>in</strong>teger, then X is RV(α).<br />

2. If X > 0 satisfies (LC) <strong>for</strong> non-negative c and α is non-<strong>in</strong>teger,<br />

then X is RV(α).<br />

3. If X > 0 satisfies (LC) with α an odd <strong>in</strong>teger, then X is RV(α).<br />

MaPhySto Workshop 9/04<br />

90


8.4 Applications of theorem<br />

1. Kesten (1973). Under general conditions, (LC) holds with L(t)=1<br />

<strong>for</strong> stochastic recurrence equations of the <strong>for</strong>m<br />

Y t = A t Y t-1 + B t ,<br />

(A t , B t ) ~ <strong>II</strong>D,<br />

A t d×d random matrices, B t random d-vectors.<br />

It follows that the distributions of Y t , and <strong>in</strong> fact all of the f<strong>in</strong>ite dim’l<br />

distrs of Y t are regularly vary<strong>in</strong>g (if α is non-even).<br />

2. GARCH processes. S<strong>in</strong>ce squares of a GARCH process can be<br />

embedded <strong>in</strong> a SRE, the f<strong>in</strong>ite dimensional distributions of a<br />

GARCH are regularly vary<strong>in</strong>g.<br />

MaPhySto Workshop 9/04<br />

91


8.5 Examples<br />

Example of ARCH(1): X t =(α 0 +α 1 X 2 t-1) 1/2 Z t ,<br />

{Z t }~<strong>II</strong>D.<br />

α found by solv<strong>in</strong>g E|α 1 Z 2 | α/2 = 1.<br />

α 1 .312 .577 1.00 1.57<br />

α 8.00 4.00 2.00 1.00<br />

Distr of θ:<br />

P(θ ∈•) = E{||(B,Z)|| α I(arg((B,Z)) ∈ •)}/ E||(B,Z)|| α<br />

where<br />

P(B = 1) = P(B = -1) =.5<br />

MaPhySto Workshop 9/04<br />

92


8.4 Examples (cont)<br />

Example of ARCH(1): α 0 =1, α 1 =1, α=2, X t =(α 0 +α 1 X 2 t-1) 1/2 Z t ,<br />

{Z t }~<strong>II</strong>D<br />

Figures: plots of (X t , X t+1 ) and estimated distribution of θ <strong>for</strong><br />

realization of 10,000.<br />

x_{t+1}<br />

-20 -10 0 10 20<br />

-20 -10 0 10 20<br />

x_t<br />

0.06 0.08 0.10 0.12 0.14 0.16 0.18<br />

-3 -2 -1 0 1 2 3<br />

theta<br />

MaPhySto Workshop 9/04<br />

93


8.4 Applications of theorem (cont)<br />

Example: SV model X t = σ t Z t<br />

Suppose Z t ~ RV(α) and<br />

logσ<br />

2<br />

t<br />

=<br />

∞<br />

∑<br />

j=−∞<br />

ψ ε<br />

j<br />

t−<br />

j<br />

,<br />

∞<br />

∑<br />

j=−∞<br />

ψ<br />

2<br />

j<br />

< ∞,{<br />

ε<br />

t<br />

}~ <strong>II</strong>DN(0, σ<br />

2<br />

).<br />

Then Z n =(Z 1 ,…,Z n )’ is regulary vary<strong>in</strong>g with <strong>in</strong>dex α and so is<br />

X n = (X 1 ,…,X n )’ = diag(σ 1 ,…, σ n ) Z n<br />

with spectral distribution concentrated on (±1,0), (0, ±1).<br />

Figure: plot of<br />

(X t ,X t+1 ) <strong>for</strong><br />

realization of 10,000.<br />

x_2<br />

-5000 0 5000 10000<br />

MaPhySto Workshop 9/04<br />

-5000 0 5000 10000<br />

x_1<br />

94


8.6 Extremes <strong>for</strong> GARCH and SV processes<br />

Setup<br />

• X t = σ t Z t , {Z t } ~ <strong>II</strong>D (0,1)<br />

• X t is RV (α)<br />

• Choose {b n } s.t. nP(X t > b n ) →1<br />

Then<br />

P<br />

n −<br />

( 1 −<br />

b X1<br />

≤ x)<br />

→exp{<br />

−x<br />

α<br />

n<br />

}.<br />

Then, with M n = max{X 1 , . . . , X n },<br />

(i) GARCH:<br />

P(<br />

b<br />

MaPhySto Workshop 9/04<br />

γ is extremal <strong>in</strong>dex ( 0 < γ < 1).<br />

(ii) SV model:<br />

P(<br />

b<br />

M<br />

≤ x)<br />

→exp{<br />

−γx<br />

−1 −α<br />

n n<br />

M<br />

≤ x)<br />

→ exp{ −x<br />

},<br />

−1 −α<br />

n n<br />

},<br />

extremal <strong>in</strong>dex γ = 1 no cluster<strong>in</strong>g.<br />

95


8.6 Extremes <strong>for</strong> GARCH and SV processes (cont)<br />

(i) GARCH:<br />

P(<br />

b<br />

(ii) SV model: P(<br />

b<br />

M<br />

≤ x)<br />

→ exp{ −γx<br />

−1 −α<br />

n n<br />

M<br />

≤ x)<br />

→exp{<br />

−x<br />

−1 −α<br />

n n<br />

}<br />

}<br />

Remarks about extremal <strong>in</strong>dex.<br />

(i)<br />

(ii)<br />

γ < 1 implies cluster<strong>in</strong>g of exceedances<br />

Numerical example. Suppose c is a threshold such that<br />

Then, if γ = .5, P(<br />

b<br />

(iii) 1/γ is the mean cluster size of exceedances.<br />

(iv) Use γ to discrim<strong>in</strong>ate between GARCH and SV models.<br />

(v)<br />

P<br />

n −1<br />

( bn<br />

X1<br />

−1<br />

n<br />

M<br />

n<br />

≤ c)<br />

~ .95<br />

≤ c)<br />

~ (.95)<br />

= .975<br />

Even <strong>for</strong> the light-tailed SV model (i.e., {Z t } ~<strong>II</strong>D N(0,1), the<br />

extremal <strong>in</strong>dex is 1 (see Breidt and Davis `98 )<br />

.5<br />

MaPhySto Workshop 9/04<br />

96


8.6 Extremes <strong>for</strong> GARCH and SV processes (cont)<br />

0 10 20 30<br />

** * * *** ***<br />

0 20 40 60<br />

time<br />

MaPhySto Workshop 9/04<br />

97


8.7 Summary of results <strong>for</strong> ACF of GARCH(p,q) and SV models<br />

GARCH(p,q)<br />

α∈(0,2):<br />

α∈(2,4):<br />

α∈(4,∞):<br />

d<br />

( ρˆ<br />

X<br />

( h))<br />

h= , K , m<br />

⎯⎯→(<br />

Vh<br />

/ V0<br />

)<br />

h=<br />

1, K,<br />

1 m<br />

1−2/<br />

α<br />

d −1<br />

( n ρ ( h)<br />

) ⎯⎯→ γ (0)( V ) .<br />

ˆ<br />

X h=<br />

1, K , m<br />

X h h=<br />

1, K,<br />

m<br />

1/2<br />

d −1<br />

( n ρ ( h)<br />

) ⎯⎯→<br />

(0)( G ) .<br />

ˆ<br />

X<br />

γ<br />

h= 1, K , m<br />

X h h=<br />

1, K,<br />

m<br />

,<br />

Remark: Similar results hold <strong>for</strong> the sample ACF based on |X t | and<br />

X t2 .<br />

MaPhySto Workshop 9/04<br />

98


8.7 Summary of results <strong>for</strong> ACF of GARCH(p,q) and SV models (cont)<br />

SV Model<br />

α∈(0,2):<br />

1/ α<br />

d 1 h+<br />

1 α h<br />

( n / ln n) ρˆ<br />

( h)<br />

⎯⎯→<br />

.<br />

X<br />

σ σ<br />

σ<br />

1<br />

2<br />

α<br />

S<br />

S<br />

0<br />

α∈(2, ∞):<br />

1/2<br />

d −1<br />

( n ρ ( h)<br />

) ⎯⎯→<br />

(0)( G ) .<br />

ˆ<br />

X<br />

γ<br />

h= 1, K , m<br />

X h h=<br />

1, K,<br />

m<br />

MaPhySto Workshop 9/04<br />

99


Sample ACF <strong>for</strong> GARCH and SV <strong>Models</strong> (1000 reps)<br />

(a) GARCH(1,1) Model, n=10000<br />

-0.3 -0.1 0.1 0.3<br />

(b) SV Model, n=10000<br />

-0.06 -0.02 0.02<br />

MaPhySto Workshop 9/04<br />

100


Sample ACF <strong>for</strong> Squares of GARCH (1000 reps)<br />

(a) GARCH(1,1) Model, n=10000<br />

0.0 0.2 0.4 0.6<br />

b) GARCH(1,1) Model, n=100000<br />

0.0 0.2 0.4 0.6<br />

MaPhySto Workshop 9/04<br />

101


Sample ACF <strong>for</strong> Squares of SV (1000 reps)<br />

(c) SV Model, n=10000<br />

0.0 0.01 0.02 0.03 0.04<br />

0.0 0.05 0.10 0.15<br />

(d) SV Model, n=100000<br />

MaPhySto Workshop 9/04<br />

102


Example: Amazon returns May 16, 1997 to June 16, 2004.<br />

.40<br />

<strong>Series</strong><br />

.20<br />

.00<br />

-.20<br />

-.40<br />

-.60<br />

-.80<br />

-1.00<br />

1.00<br />

0 400 800 1200 1600<br />

Residual ACF: Abs values<br />

Residual ACF: Squares<br />

1.00<br />

.80<br />

.80<br />

.60<br />

.60<br />

.40<br />

.40<br />

.20<br />

.20<br />

.00<br />

.00<br />

-.20<br />

-.20<br />

-.40<br />

-.40<br />

-.60<br />

-.60<br />

-.80<br />

-.80<br />

-1.00<br />

MaPhySto Workshop 9/04<br />

0 5 10 15 20 25 30 35 40<br />

-1.00<br />

0 5 10 15 20 25 30 35 40<br />

103


Wrap-up<br />

• Regular variation is a flexible tool <strong>for</strong> model<strong>in</strong>g both dependence<br />

and tail heav<strong>in</strong>ess.<br />

• Useful <strong>for</strong> establish<strong>in</strong>g po<strong>in</strong>t process convergence of heavy-tailed<br />

time series.<br />

• Extremal <strong>in</strong>dex γ < 1 <strong>for</strong> GARCH and γ =1<strong>for</strong> SV.<br />

Unresolved issues related to RV⇔ (LC)<br />

• α = 2n?<br />

• there is an example <strong>for</strong> which X 1 , X 2 > 0, and (c, X 1 ) and (c, X 2 )<br />

have the same limits <strong>for</strong> all c > 0.<br />

• α = 2n−1 and X > 0 (not true <strong>in</strong> general).<br />

MaPhySto Workshop 9/04<br />

104

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!