04.03.2014 Views

Derivation of Basic Transport Equation (A. Ertürk)

Derivation of Basic Transport Equation (A. Ertürk)

Derivation of Basic Transport Equation (A. Ertürk)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DERIVATION OF BASIC<br />

TRANSPORT<br />

EQUATION<br />

1


Definitions<br />

<strong>Basic</strong> dimensions<br />

[M] Mass<br />

[L] Length<br />

[T] Time<br />

Concentration<br />

Mass per unit<br />

volume<br />

[M·L -3 ]<br />

Mass Flow Rate<br />

Mass per unit<br />

time<br />

[M·T -1 ]<br />

Flux<br />

Mass flow rate<br />

through unit area<br />

[M·L -2 ·T -1 ]<br />

2


The <strong>Transport</strong> <strong>Equation</strong><br />

Mass balance for a control volume where<br />

the transport occurs only in one direction<br />

(say x-direction)<br />

Mass<br />

entering<br />

the control<br />

volume<br />

Mass<br />

leaving the<br />

control<br />

volume<br />

Δx<br />

Positive x direction<br />

3


The <strong>Transport</strong> <strong>Equation</strong><br />

The mass balance for this case can be<br />

written in the following form<br />

⎡ Change <strong>of</strong> ⎤<br />

⎢<br />

⎥<br />

⎢<br />

mass in the<br />

⎥<br />

⎢control<br />

volume⎥<br />

=<br />

⎢<br />

⎥<br />

⎢ in a time ⎥<br />

⎢<br />

⎥<br />

⎣ interval Δt<br />

⎦<br />

⎡Mass<br />

entering⎤<br />

⎢<br />

⎥<br />

⎢<br />

the control<br />

⎥<br />

⎢⎣<br />

volume in Δt<br />

⎥⎦<br />

−<br />

⎡Mass<br />

leaving⎤<br />

⎢<br />

⎥<br />

⎢<br />

the control<br />

⎥<br />

⎢⎣<br />

volume in Δt⎥⎦<br />

V<br />

∂C<br />

∂t<br />

=<br />

A<br />

⋅ J<br />

−<br />

A<br />

1 J 2<br />

⋅<br />

<strong>Equation</strong> 1<br />

4


The <strong>Transport</strong> <strong>Equation</strong><br />

A closer look to <strong>Equation</strong> 1<br />

V<br />

⋅<br />

∂C<br />

∂t<br />

=<br />

A<br />

⋅<br />

J<br />

−<br />

A<br />

1 J 2<br />

⋅<br />

Flux<br />

Flux<br />

Volume [L 3 ]<br />

Concentration<br />

over time<br />

[M·L -3 ·T -1 ]<br />

Area<br />

[L 2 ]<br />

[M·L -2 ·T -1 ]<br />

Area<br />

[L 2 ]<br />

[M·L -2 ·T -1 ]<br />

[L 3 ]·[M·L -3·T -1 ] = [M·T -1 ] [L 2 ]·[M·L -2·T -1 ] = [M·T -1 ]<br />

Mass over time<br />

Mass over time<br />

5


The <strong>Transport</strong> <strong>Equation</strong><br />

Change <strong>of</strong> mass in unit volume (divide all<br />

sides <strong>of</strong> <strong>Equation</strong> 1 by the volume)<br />

∂C<br />

∂t<br />

=<br />

A<br />

V<br />

⋅<br />

J<br />

−<br />

A<br />

1 J 2<br />

V<br />

⋅<br />

<strong>Equation</strong> 2<br />

Rearrangements<br />

∂C<br />

∂t<br />

A<br />

= ⋅<br />

V<br />

( − )<br />

J 1 J 2<br />

<strong>Equation</strong> 3<br />

6


The <strong>Transport</strong> <strong>Equation</strong><br />

A.J 1<br />

A.J 2<br />

x<br />

Δx<br />

Positive x direction<br />

The flux is changing in x direction with gradient <strong>of</strong><br />

Therefore<br />

∂J<br />

∂<br />

∂J<br />

= J + Δx<br />

<strong>Equation</strong> 4<br />

∂x<br />

J2 1 ⋅<br />

7


The <strong>Transport</strong> <strong>Equation</strong><br />

∂C<br />

∂t<br />

=<br />

A<br />

V<br />

⋅<br />

( − )<br />

J 1 J 2<br />

<strong>Equation</strong> 3<br />

∂J<br />

= J + Δx <strong>Equation</strong> 4<br />

∂x<br />

J2 1 ⋅<br />

∂C<br />

∂t<br />

=<br />

A<br />

V<br />

⋅<br />

⎛<br />

⎜J<br />

⎝<br />

⎛<br />

−⎜J<br />

⎝<br />

+<br />

∂J<br />

∂x<br />

⋅ Δx<br />

⎞⎞<br />

⎟<br />

⎟<br />

⎠⎠<br />

1 1<br />

<strong>Equation</strong> 5<br />

8


The <strong>Transport</strong> <strong>Equation</strong><br />

Rearrangements<br />

∂C<br />

∂t<br />

=<br />

A<br />

V<br />

⋅<br />

⎛<br />

⎜J<br />

⎝<br />

⎛<br />

−⎜J<br />

⎝<br />

+<br />

∂J<br />

∂x<br />

⋅ Δx<br />

⎞⎞<br />

⎟<br />

⎟<br />

⎠⎠<br />

1 1<br />

<strong>Equation</strong> 5<br />

V<br />

A<br />

= Δx<br />

⇒<br />

A<br />

V<br />

=<br />

1<br />

Δx<br />

<strong>Equation</strong> 6<br />

∂C<br />

∂t<br />

=<br />

1<br />

Δx<br />

⋅<br />

⎛<br />

⎜<br />

⎝<br />

J<br />

−<br />

J<br />

−<br />

∂J<br />

∂x<br />

⎞<br />

⋅ Δx⎟<br />

⎠<br />

1 1<br />

<strong>Equation</strong> 7<br />

9


The <strong>Transport</strong> <strong>Equation</strong><br />

Rearrangements<br />

∂C<br />

∂t<br />

=<br />

1<br />

Δx<br />

⋅<br />

⎛<br />

⎜<br />

⎝<br />

J<br />

−<br />

J<br />

−<br />

∂J<br />

∂x<br />

⎞<br />

⋅ Δx⎟<br />

⎠<br />

1 1<br />

<strong>Equation</strong> 7<br />

Finally, the most general transport equation<br />

in x direction is:<br />

∂C<br />

∂t<br />

=<br />

−<br />

∂J<br />

∂x<br />

<strong>Equation</strong> 8<br />

10


The <strong>Transport</strong> <strong>Equation</strong><br />

We are living in a 3 dimensional space,<br />

where the same rules for the general mass<br />

balance and transport are valid in all<br />

dimensions. Therefore<br />

C<br />

∂t<br />

∂<br />

3<br />

=<br />

−<br />

∑<br />

i= 1 ∂<br />

∂<br />

x<br />

i<br />

J<br />

i<br />

x 1 = x<br />

x 2 = y<br />

x 3 = z<br />

<strong>Equation</strong> 9<br />

∂C<br />

∂t<br />

=<br />

−<br />

⎛<br />

⎜<br />

⎝<br />

∂<br />

∂x<br />

J<br />

x<br />

+<br />

∂<br />

∂y<br />

J<br />

y<br />

+<br />

∂<br />

∂z<br />

J<br />

z<br />

⎞<br />

⎟<br />

⎠<br />

<strong>Equation</strong> 10<br />

11


The <strong>Transport</strong> <strong>Equation</strong><br />

• The transport equation is derived for a<br />

conservative tracer (material)<br />

• The control volume is constant as the time<br />

progresses<br />

• The flux (J) can be anything (flows,<br />

dispersion, etc.)<br />

12


The Advective Flux<br />

13


The advective flux can be analyzed with the simple<br />

conceptual model, which includes two control<br />

volumes. Advection occurs only towards one<br />

direction in a time interval.<br />

Δx<br />

I<br />

II<br />

x<br />

Particle<br />

14


Δx is defined as the distance, which a particle can<br />

pass in a time interval <strong>of</strong> Δt. The assumption is<br />

that the particles move on the direction <strong>of</strong><br />

positive x only.<br />

Δx<br />

I<br />

II<br />

x<br />

Particle<br />

15


Δx<br />

I<br />

II<br />

x<br />

Particle<br />

The number <strong>of</strong> particles (analogous to mass) moving from<br />

control volume I to control volume II in the time interval Δt<br />

can be calculated using the <strong>Equation</strong> below, where<br />

Q<br />

=<br />

C<br />

⋅ Δx<br />

⋅<br />

A<br />

<strong>Equation</strong> 11<br />

where Q is the number <strong>of</strong> particles (analogous to mass)<br />

passing from volume I to control volume II in the time interval<br />

Δt [M], C is the concentration <strong>of</strong> any material dissolved in<br />

water in control volume I [M·L -3 ], Δx is the distance [L] and A<br />

is the cross section area between the control volumes [L 2 ]. 16


Δx<br />

I<br />

II<br />

Q<br />

=<br />

C<br />

⋅<br />

Δx<br />

⋅<br />

A<br />

Number <strong>of</strong><br />

particles passing<br />

from I to II in Δt<br />

x<br />

Division by cross-section area:<br />

Q<br />

A ⋅ Δt<br />

=<br />

J<br />

ADV<br />

=<br />

Δx<br />

Δt<br />

⋅ C<br />

Particle<br />

Division by time:<br />

Q<br />

Δt<br />

=<br />

C<br />

⋅ Δx<br />

⋅<br />

Δt<br />

A<br />

Number <strong>of</strong><br />

particles<br />

passing from I<br />

to II in unit time<br />

Number <strong>of</strong> particles passing from I to II<br />

in unit time per unit area = FLUX<br />

J<br />

ADV<br />

=<br />

lim<br />

Δt→0<br />

⎛<br />

⎜<br />

⎝<br />

Δx<br />

Δt<br />

⋅<br />

C<br />

⎞<br />

⎟<br />

⎠<br />

=<br />

∂x<br />

∂t<br />

⋅<br />

C<br />

Advective<br />

flux<br />

17<br />

<strong>Equation</strong> 12


The Advective Flux<br />

J ADV<br />

∂x<br />

= ⋅ C <strong>Equation</strong> 12<br />

∂t<br />

18


The Dispersive Flux<br />

19


The dispersive flux can be analyzed with the<br />

simple conceptual model too. This conceptual<br />

model also includes two control volumes.<br />

Dispersion occurs towards both directions in a<br />

time interval.<br />

Δx<br />

Δx<br />

I<br />

II<br />

x<br />

Particle<br />

20


Δx is defined as the distance, which a particle can<br />

pass in a time interval <strong>of</strong> Δt. The assumption is that the<br />

particles move on positive and negative x directions. In<br />

this case there are two directions, which particles<br />

can move in the time interval <strong>of</strong> Δt.<br />

Δx<br />

Δx<br />

I<br />

II<br />

x<br />

Particle<br />

21


Another assumption is that a particle does not change its<br />

direction during the time interval <strong>of</strong> Δt and that the<br />

probability to move to positive and negative x directions<br />

are equal (50%) for all particles.<br />

Therefore, there are two components <strong>of</strong> the dispersive<br />

mass transfer, one from the control volume I to<br />

control volume II and the second from the control<br />

volume II to control volume I<br />

q 1<br />

q 2<br />

I<br />

II<br />

x<br />

22


I<br />

q 1<br />

II<br />

q 2<br />

A<br />

x<br />

q 1<br />

1 = 0.5 ⋅ C ⋅ Δx<br />

⋅<br />

q 2<br />

2 = 0.5 ⋅ C ⋅ Δx<br />

⋅<br />

Q = q1 - q 2<br />

50 % probability<br />

A<br />

<strong>Equation</strong> 13<br />

<strong>Equation</strong> 14<br />

<strong>Equation</strong> 15<br />

Q<br />

=<br />

0.5<br />

⋅<br />

Δx<br />

⋅<br />

A<br />

( − )<br />

C 1 C 2<br />

<strong>Equation</strong> 16<br />

23


Number <strong>of</strong> particles passing from I to II in Δt<br />

Q<br />

Δt<br />

= 0.5<br />

<strong>Equation</strong> 16<br />

⋅ Δx<br />

⋅<br />

A<br />

0.5 ⋅ Δx<br />

⋅ A ⋅<br />

=<br />

Δt<br />

( − )<br />

C 1 C 2<br />

Number <strong>of</strong> particles passing from I to<br />

II in unit time per unit area = FLUX<br />

⋅<br />

( C − C )<br />

Q 1 2<br />

<strong>Equation</strong> 17<br />

C = C1<br />

∂C<br />

∂x<br />

2 + ⋅<br />

<strong>Equation</strong> 18<br />

Q<br />

A ⋅ Δt<br />

=<br />

J<br />

<strong>Equation</strong> 22<br />

DISP<br />

=<br />

Δx<br />

− 0.5 ⋅ Δx<br />

⋅<br />

Δt<br />

∂C<br />

∂x<br />

⋅ Δx<br />

Divide<br />

by time<br />

Divide<br />

by<br />

Area<br />

Number <strong>of</strong> particles passing from I to<br />

II in unit time<br />

⎛ ⎛ ∂C<br />

⎞⎞<br />

0.5 ⋅ Δx<br />

⋅ A ⋅ ⎜C1<br />

− ⎜C1<br />

+ ⋅ Δx⎟⎟<br />

Q<br />

⎝ ⎝ ∂x<br />

⎠<br />

=<br />

⎠<br />

Δt<br />

Δt<br />

<strong>Equation</strong> 19<br />

Q<br />

Δt<br />

Q<br />

Δt<br />

⎛<br />

0.5 ⋅ Δx<br />

⋅ A ⋅ ⎜C1<br />

− C<br />

=<br />

⎝<br />

Δt<br />

<strong>Equation</strong> 20<br />

=<br />

<strong>Equation</strong> 21<br />

x<br />

I<br />

− 0.5 ⋅ Δx<br />

⋅ A<br />

Δt<br />

Δx<br />

∂C<br />

∂x<br />

Δx<br />

1<br />

⋅ Δx<br />

II<br />

∂C<br />

−<br />

∂x<br />

⎞<br />

⋅ Δx⎟<br />

⎠<br />

24<br />

Particle


Q<br />

A ⋅ Δt<br />

=<br />

J<br />

DISP<br />

=<br />

−<br />

0.5<br />

⋅<br />

Δx<br />

⋅<br />

Δt<br />

∂C<br />

∂x<br />

⋅<br />

Δx<br />

<strong>Equation</strong> 22<br />

J<br />

DISP<br />

<strong>Equation</strong> 23<br />

0.5 ⋅<br />

= −<br />

Δt<br />

D =<br />

( Δx)<br />

2<br />

0.5 ⋅<br />

Δt<br />

<strong>Equation</strong> 24<br />

( Δx)<br />

∂C<br />

⋅<br />

∂x<br />

2<br />

J DISP<br />

<strong>Equation</strong> 25<br />

= −D<br />

⋅<br />

∂C<br />

∂x<br />

0.5<br />

Δx<br />

Δt<br />

→<br />

→<br />

→<br />

[ ]<br />

2<br />

[] ( ) [ ]<br />

2<br />

L ⇒ Δx<br />

→ L<br />

[ T]<br />

⎫<br />

⎪<br />

⎬<br />

⎪<br />

⎭<br />

⇒<br />

D<br />

=<br />

0.5⋅<br />

Δt<br />

2<br />

( ) [][ ]<br />

2<br />

Δx<br />

⎡ ⋅ L<br />

→<br />

⎢<br />

⎣<br />

[ T]<br />

⎤<br />

⎥<br />

⎦<br />

=<br />

[ ]<br />

2 -1<br />

L ⋅ T<br />

25


Dispersion<br />

Molecular diffusion Turbulent diffusion Longitudinal dispersion<br />

GENERALLY<br />

Molecular diffusion


Ranges <strong>of</strong> the<br />

Dispersion<br />

Coefficient (D)<br />

27


The Dispersive Flux<br />

∂C<br />

J DISP<br />

= −D<br />

⋅<br />

∂x<br />

<strong>Equation</strong> 25<br />

28


THE ADVECTION-DISPERSION<br />

EQUATION FOR A<br />

CONSERVATIVE MATERIAL<br />

29


The Advection-Dispersion <strong>Equation</strong><br />

∂C<br />

∂t<br />

=<br />

J advection<br />

J dispersion<br />

−<br />

∂<br />

J<br />

<strong>Equation</strong> 8<br />

∂x<br />

∂x<br />

= ⋅ C<br />

<strong>Equation</strong> 12<br />

∂t<br />

∂C<br />

= − D ⋅ <strong>Equation</strong> 25<br />

∂x<br />

J = J advection<br />

+ J dispersion<br />

∂C<br />

∂t<br />

=<br />

−<br />

∂<br />

∂x<br />

<strong>Equation</strong> 26<br />

( + )<br />

J advection<br />

J dispersion<br />

General<br />

transport<br />

equation<br />

Advective<br />

flux<br />

Dispersive<br />

flux<br />

<strong>Equation</strong> 27<br />

30


The Advection-Dispersion <strong>Equation</strong><br />

∂C<br />

∂t<br />

=<br />

−<br />

∂<br />

∂x<br />

( + )<br />

J advection<br />

J dispersion<br />

<strong>Equation</strong> 27<br />

∂C<br />

∂t<br />

=<br />

−<br />

∂<br />

∂x<br />

J<br />

−<br />

∂<br />

∂x<br />

advection<br />

J dispersion<br />

<strong>Equation</strong> 28<br />

J advection<br />

=<br />

∂x<br />

∂t<br />

⋅<br />

C<br />

J dispersion<br />

= −D<br />

⋅<br />

∂C<br />

∂x<br />

∂C<br />

∂t<br />

=<br />

−<br />

∂<br />

∂x<br />

⎛<br />

⎜<br />

⎝<br />

∂x<br />

∂t<br />

⋅<br />

⎞<br />

C⎟<br />

⎠<br />

−<br />

∂<br />

∂x<br />

⎛<br />

⎜<br />

⎝<br />

−<br />

D<br />

⋅<br />

∂C<br />

∂x<br />

⎞<br />

⎟<br />

⎠<br />

<strong>Equation</strong> 29<br />

31


The Advection-Dispersion <strong>Equation</strong><br />

∂C<br />

∂t<br />

=<br />

−<br />

∂<br />

∂x<br />

⎛<br />

⎜<br />

⎝<br />

∂x<br />

∂t<br />

⋅<br />

⎞<br />

C⎟<br />

⎠<br />

−<br />

∂<br />

∂x<br />

⎛<br />

⎜<br />

⎝<br />

−<br />

D<br />

⋅<br />

∂C<br />

∂x<br />

⎞<br />

⎟<br />

⎠<br />

<strong>Equation</strong> 29<br />

Velocity u in<br />

x direction<br />

⋅ 2<br />

∂C<br />

u ∂ x<br />

2<br />

∂ C<br />

− D ⋅<br />

∂ x<br />

∂C<br />

∂t<br />

=<br />

−u<br />

⋅<br />

∂C<br />

∂x<br />

+<br />

D<br />

⋅<br />

∂<br />

2<br />

∂x<br />

C<br />

2<br />

<strong>Equation</strong> 30<br />

32


Dimensional Analysis <strong>of</strong> the<br />

Advection-Dispersion <strong>Equation</strong><br />

∂C<br />

∂t<br />

=<br />

−u<br />

⋅<br />

∂C<br />

∂x<br />

+<br />

D<br />

⋅<br />

∂<br />

2<br />

∂x<br />

C<br />

2<br />

<strong>Equation</strong> 30<br />

Concentration<br />

over time<br />

[M·L -3 ·T -1 ]<br />

Velocity times<br />

concentration<br />

over space<br />

[L·T -1 ]·[M·L -3·L -1 ]<br />

[L 2·T -1 ]·[M·L -3·L -2 ]<br />

= [M·L -3 ·T -1 ]<br />

= [M·L -3 ·T -1 ]<br />

33


The Advection-Dispersion <strong>Equation</strong><br />

We are living in a 3 dimensional space, where the<br />

same rules for the general mass balance and<br />

transport are valid in all dimensions. Therefore<br />

∂C<br />

=<br />

∂t<br />

3<br />

∑<br />

i=<br />

1<br />

⎛<br />

⎜−u<br />

⎝<br />

<strong>Equation</strong> 31<br />

i<br />

⋅<br />

∂C<br />

∂x<br />

i<br />

+<br />

D<br />

i<br />

⋅<br />

∂<br />

2<br />

∂x<br />

C<br />

2<br />

i<br />

⎞<br />

⎟<br />

⎠<br />

x 1 = x, u 1 = u, D 1 = D x<br />

x 2 = y, u 2 = v, D 2 = D y<br />

x 3 = z, u 3 = w, D 3 = D z<br />

∂C<br />

∂t<br />

= −u<br />

⋅<br />

∂C<br />

∂x<br />

+<br />

D<br />

x<br />

⋅<br />

∂<br />

2<br />

∂x<br />

C<br />

2<br />

− v<br />

⋅<br />

∂C<br />

∂y<br />

+<br />

D<br />

y<br />

⋅<br />

∂<br />

2<br />

∂y<br />

C<br />

2<br />

−<br />

w<br />

⋅<br />

∂C<br />

∂z<br />

+<br />

D<br />

z<br />

⋅<br />

∂<br />

2<br />

∂z<br />

C<br />

2<br />

<strong>Equation</strong> 32<br />

34


THE ADVECTION-DISPERSION<br />

EQUATION FOR A NON<br />

CONSERVATIVE MATERIAL<br />

35


36<br />

The Advection-Dispersion <strong>Equation</strong><br />

for non conservative materials<br />

<strong>Equation</strong> 32<br />

+ ∑ ⋅<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

−<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

−<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

= −<br />

∂<br />

∂<br />

C<br />

k<br />

z<br />

C<br />

D<br />

z<br />

C<br />

w<br />

y<br />

C<br />

D<br />

y<br />

C<br />

v<br />

x<br />

C<br />

D<br />

x<br />

C<br />

u<br />

t<br />

C<br />

2<br />

2<br />

z<br />

2<br />

2<br />

y<br />

2<br />

2<br />

x<br />

<strong>Equation</strong> 33<br />

2<br />

2<br />

z<br />

2<br />

2<br />

y<br />

2<br />

2<br />

x<br />

z<br />

C<br />

D<br />

z<br />

C<br />

w<br />

y<br />

C<br />

D<br />

y<br />

C<br />

v<br />

x<br />

C<br />

D<br />

x<br />

C<br />

u<br />

t<br />

C<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

−<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

−<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

= −<br />

∂<br />


37<br />

The <strong>Transport</strong> <strong>Equation</strong> for non<br />

conservative materials with<br />

sedimentation<br />

<strong>Equation</strong> 34<br />

+ ∑ ⋅<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

−<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

−<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

= −<br />

∂<br />

∂<br />

C<br />

k<br />

z<br />

C<br />

D<br />

z<br />

C<br />

w<br />

y<br />

C<br />

D<br />

y<br />

C<br />

v<br />

x<br />

C<br />

D<br />

x<br />

C<br />

u<br />

t<br />

C<br />

2<br />

2<br />

z<br />

2<br />

2<br />

y<br />

2<br />

2<br />

x<br />

<strong>Equation</strong> 33<br />

z<br />

C<br />

C<br />

k<br />

z<br />

C<br />

D<br />

z<br />

C<br />

w<br />

y<br />

C<br />

D<br />

y<br />

C<br />

v<br />

x<br />

C<br />

D<br />

x<br />

C<br />

u<br />

t<br />

C<br />

sedimentation<br />

2<br />

2<br />

z<br />

2<br />

2<br />

y<br />

2<br />

2<br />

x<br />

∂<br />

∂<br />

⋅<br />

−<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

−<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

−<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

= −<br />

∂<br />

∂<br />

∑<br />

υ


<strong>Transport</strong> <strong>Equation</strong> with all<br />

Components<br />

∂C<br />

∂t<br />

= −u<br />

⋅<br />

∂C<br />

∂x<br />

+<br />

D<br />

x<br />

⋅<br />

∂<br />

2<br />

∂x<br />

C<br />

− v<br />

+ D<br />

∂C<br />

∂ C<br />

− w ⋅ + Dz<br />

⋅ + ∑k<br />

⋅ C −υ<br />

2<br />

∂z<br />

∂z<br />

± external sources and sinks<br />

2<br />

2<br />

∂C<br />

⋅<br />

∂y<br />

y<br />

⋅<br />

∂<br />

2<br />

∂y<br />

C<br />

2<br />

sedimentation<br />

<strong>Equation</strong> 35<br />

∂C<br />

⋅<br />

∂z<br />

Sedimentation in z<br />

direction<br />

• External loads<br />

• Interaction with bottom<br />

• Other sources and sinks<br />

38


⎛<br />

⎜<br />

⎝<br />

∂C<br />

⎞<br />

⎟<br />

∂t<br />

⎠<br />

reaction<br />

Dimensional Analysis <strong>of</strong><br />

kinetics<br />

[M·L -3 ]·[T -1 ]=[M·L -3 ·T -1 ]<br />

Components<br />

= ∑k<br />

⋅ C<br />

⎛<br />

⎜<br />

⎝<br />

∂C<br />

⎞<br />

⎟<br />

∂t<br />

⎠<br />

sedimentation<br />

= −υ<br />

sedimentation<br />

[L·T -1 ]·[M·L -3·L -1 ]=[M·L -3 ·T -1 ]<br />

⋅<br />

∂C<br />

∂z<br />

⎛<br />

⎜<br />

⎝<br />

∂C<br />

∂t<br />

⎞<br />

⎟<br />

⎠<br />

external<br />

= ±<br />

external<br />

sources<br />

and<br />

sinks<br />

Must be given in [M·L -3 ·T -1 ]<br />

39


40<br />

Advection-Dispersion <strong>Equation</strong> with<br />

all components<br />

<strong>Equation</strong> 35<br />

sinks<br />

and<br />

sources<br />

external<br />

z<br />

C<br />

C<br />

k<br />

z<br />

C<br />

D<br />

z<br />

C<br />

w<br />

y<br />

C<br />

D<br />

y<br />

C<br />

v<br />

x<br />

C<br />

D<br />

x<br />

C<br />

u<br />

t<br />

C<br />

sedimentation<br />

2<br />

2<br />

z<br />

2<br />

2<br />

y<br />

2<br />

2<br />

x<br />

±<br />

∂<br />

∂<br />

⋅<br />

−<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

−<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

−<br />

∂<br />

∂<br />

⋅<br />

+<br />

∂<br />

∂<br />

⋅<br />

= −<br />

∂<br />

∂<br />

∑<br />

υ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!