04.03.2014 Views

Population size and structure of three mussel species (Bivalvia ...

Population size and structure of three mussel species (Bivalvia ...

Population size and structure of three mussel species (Bivalvia ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Hydrobiologia (2005) 537: 169–183 Ó Springer 2005<br />

<strong>Population</strong> <strong>size</strong> <strong>and</strong> <strong>structure</strong> <strong>of</strong> <strong>three</strong> <strong>mussel</strong> <strong>species</strong> (<strong>Bivalvia</strong>: Unionidae) in<br />

a northeastern German river with special regard to influences <strong>of</strong><br />

environmental factors<br />

Eckhard Weber<br />

Ernst-Moritz-Arndt-Universita¨t Greifswald, Zoologisches Institut und Museum, Johann-Sebastian-Bach-Straße 11/12,<br />

17487 Greifswald, Germany (E-mail: webeck@mail.uni-greifswald.de)<br />

Received 5 August 2002; in revised form 13 June 2004; accepted 27 August 2004<br />

Key words: Anodonta, Unio, population <strong>structure</strong>, age <strong>structure</strong>, river, environmental factors<br />

Abstract<br />

Unionid <strong>mussel</strong>s are <strong>of</strong> great ecological importance in running <strong>and</strong> st<strong>and</strong>ing waters, however their populations<br />

declined continually during the 20th century. In order to collect more data on the situation <strong>of</strong> these<br />

<strong>mussel</strong>s in running waters, the populations <strong>of</strong> Anodonta anatina, Anodonta cygnea, <strong>and</strong> Unio tumidus<br />

(Unionidae) were investigated in the northeastern German river Ryck from 1996 to 1998. At <strong>three</strong> sampling<br />

stations along the river, the <strong>mussel</strong> stocks as well as sediment <strong>and</strong> water properties were analyzed. In this<br />

river abundances <strong>of</strong> up to 138.7 indiv./m 2 were detected. The average population densities varied from 10.9<br />

to 34.9 indiv./m 2 . More critically however, the age <strong>structure</strong>s showed significant signs <strong>of</strong> irregular reproductive<br />

success <strong>and</strong> overaging. Consequently, the <strong>mussel</strong> stocks are going to decline, <strong>and</strong> furthermore,<br />

U. tumidus should be listed as an endangered <strong>species</strong> in the Ryck river. Negative influences on bivalves can<br />

be expected from sporadically occurring low oxygen <strong>and</strong> high ion concentrations in the water. But after all,<br />

the conditions within the sediments seem to be decisive for the survival <strong>of</strong> juvenile <strong>mussel</strong>s <strong>and</strong> thus for the<br />

age <strong>structure</strong> <strong>of</strong> the populations.<br />

Introduction<br />

Some <strong>of</strong> the most remarkable organisms <strong>of</strong> the<br />

macrozoobenthos in fresh waters are the <strong>species</strong> <strong>of</strong><br />

the Unionidae. They can reach a considerable<br />

body <strong>size</strong> <strong>and</strong> form dense populations. Due to<br />

their filtering capacities, the unionids are <strong>of</strong> great<br />

significance in the self-purification <strong>of</strong> waters<br />

(Ostrovsky et al., 1993; Ogilvie & Mitchell, 1995;<br />

V<strong>and</strong>erploeg et al., 1995; Welker & Walz, 1998;<br />

Soto & Mena, 1999).<br />

Furthermore, another unique feature <strong>of</strong> the<br />

unionid <strong>mussel</strong>s emerges within their reproductive<br />

biology. After the fertilized eggs have developed<br />

into larvae (glochidia) in the gills <strong>of</strong> the females,<br />

the larvae are shed <strong>and</strong> have to undergo a metamorphosis<br />

as ectoparasites on host fish. Not until<br />

then they are able to grow up as <strong>mussel</strong>s in the<br />

sediment (Heard, 1998; Wa¨ chtler et al., 2001).<br />

In the 20th century, the Unionidae suffered<br />

from enormous population declines, <strong>and</strong> the <strong>species</strong><br />

composition <strong>of</strong> <strong>mussel</strong> coenosises in lakes<br />

<strong>and</strong> rivers shifted (Mentzen, 1926; Arter, 1989;<br />

Lew<strong>and</strong>owski, 1991; Klemm et al. 1994/1995;<br />

Krzyzanek, 1994; Zettler, 1996). Reasons for this<br />

development can be an increasing eutrophication<br />

as well as steps <strong>of</strong> river regulation <strong>and</strong> maintenance.<br />

However, changes in water characteristics<br />

do not affect <strong>mussel</strong>s solely directly, but also<br />

indirectly by influencing the density <strong>and</strong> the composition<br />

<strong>of</strong> the ichthy<strong>of</strong>auna (Hochwald & Bauer,<br />

1990; Scholz, 1991; Byrne, 1998).<br />

Previous studies have documented the state <strong>of</strong><br />

European unionids especially in st<strong>and</strong>ing waters


170<br />

(a)<br />

M-V<br />

Rienegraben<br />

Greifswalder<br />

Bodden<br />

Horst<br />

I<br />

Groß Petershagen<br />

Ryck<br />

Jarmshagen<br />

II<br />

Wackerow<br />

Wieck<br />

Bachgraben<br />

Boltenhagen<br />

III<br />

Heilgeisth<strong>of</strong><br />

Eldena<br />

(b)<br />

5 km<br />

Greifswald<br />

Figure 1. Maps showing the study area in northeastern Germany (a) <strong>and</strong> the sampling stations (b). M–V ¼ Federal State <strong>of</strong><br />

Mecklenburg-Vorpommern; I, II, III ¼ sampling stations.<br />

(e.g. O¨ kl<strong>and</strong>, 1963; Tudorancea, 1972; Lew<strong>and</strong>owski<br />

& Stanczykowska, 1975; Arter, 1989;<br />

Lew<strong>and</strong>owski, 1991; Krzyzanek, 1994; Mu¨ ller &<br />

Patzner, 1996). Data on populations living in<br />

running waters are infrequent (Negus, 1966;<br />

Hickley, 1983; Lew<strong>and</strong>owski, 1990). Thus, the aim<br />

<strong>of</strong> this work is to redress the balance <strong>and</strong> to provide<br />

further information on unionids in running<br />

waters. Moreover, the results should disclose<br />

possible environmental factors, which may affect<br />

the <strong>mussel</strong>s. Data on the <strong>structure</strong> <strong>of</strong> populations<br />

are required to take measures for their preservation<br />

<strong>and</strong> to provide base-line data for further<br />

investigations to reveal changes in the studied<br />

river.<br />

Study area<br />

The river Ryck is a small coastal river located in<br />

the northeast <strong>of</strong> Mecklenburg-Vorpommern<br />

(northeastern Germany). Its catchment basin is <strong>of</strong><br />

an area <strong>of</strong> 230.7 km 2 (Amt fu¨ r Wasserwirtschaft,<br />

1970) <strong>and</strong> is predominantly used agriculturally.<br />

After a flowing distance <strong>of</strong> approximately 24.5 km<br />

(VE Meliorationskombinat Rostock, 1968, 1970),<br />

the river Ryck discharges into the Greifswalder<br />

Bodden near Greifswald, i.e. into a bay <strong>of</strong> the<br />

Baltic Sea. While the Ryck upriver <strong>of</strong> Greifswald is<br />

<strong>of</strong> freshwater, the lower stretches carry brackish<br />

water from the Bodden. In irregular intervals the<br />

flowing direction <strong>of</strong> the river changes due to the<br />

Table 1. Width <strong>and</strong> depth <strong>of</strong> the river Ryck at the sampling<br />

stations I, II, <strong>and</strong> III<br />

Station Width (m) Depth (m)<br />

I 9.0 0.9<br />

II 9.5 1.3<br />

III 19.5 1.3<br />

water level <strong>of</strong> the Greifswalder Bodden <strong>and</strong> the<br />

wind conditions. Those changes are occasionally<br />

connected with an influx <strong>of</strong> brackish water into the<br />

stretch <strong>of</strong> the Ryck upriver <strong>of</strong> Greifswald. The<br />

upper course <strong>of</strong> the river tables a slope <strong>of</strong> only<br />

0.1& (VE Meliorationskombinat Rostock, 1968).<br />

In the upper course, <strong>three</strong> sampling stations<br />

were set up (Fig. 1). Depth <strong>and</strong> width <strong>of</strong> the Ryck<br />

at these stations can be seen in Table 1. The shores<br />

are fringed with reeds from Phalaris arundinacea<br />

(station I) or Phragmites australis (stations II <strong>and</strong><br />

III). Among the hydrophytes in the river Nuphar<br />

lutea, Potamogeton lucens, Potamogeton perfoliatus,<br />

Ceratophyllum demersum, <strong>and</strong> Elodea canadensis<br />

dominate.<br />

Materials <strong>and</strong> methods<br />

Environmental characteristics<br />

In order to examine water properties <strong>and</strong> to<br />

identify factors which could influence the <strong>mussel</strong>s,


171<br />

Table 2. Analyzed water properties <strong>and</strong> the used measuring<br />

instruments <strong>and</strong> methods<br />

Variable<br />

NO 3 -N, NO 2 -N<br />

NH 4 -N, PO 4 -P<br />

O 2 , temperature<br />

Conductivity<br />

Current velocity<br />

Seston<br />

Instruments <strong>and</strong> methods<br />

Ion chromatograph (Sykam Chromatographie<br />

Vertriebs GmbH)<br />

Photometer Nanocolor 200D (Macherey-<br />

Nagel GmbH)<br />

Oximeter Oxi 96 (WTW)<br />

Conductometer LF 95 (WTW), temperature:<br />

20 °C<br />

Drift body method<br />

Water samples (3 · 1 l) were filtered with<br />

washed (Aqua dest.), dried <strong>and</strong> weighed GF/<br />

C filters (Whatman), after that the filters<br />

were dried (50 °C) <strong>and</strong> re-weighed<br />

water samples were analyzed monthly between<br />

April till October in the years 1996–1999. During<br />

these months, the <strong>mussel</strong>s reach their maximum<br />

activity (e.g. growth, reproduction, metabolism,<br />

translocation) <strong>and</strong> react therefore stronger to<br />

environmental influences.<br />

The concentration <strong>of</strong> oxygen, temperature, <strong>and</strong><br />

current velocity were measured at the sampling<br />

stations. The other variables were analyzed in the<br />

laboratory (Table 2).<br />

To describe the sediment composition at each<br />

station, 15 samples were taken across the width <strong>of</strong><br />

the river using a corer (inner diameter: 55 mm). In<br />

this study, the upper 50 mm <strong>of</strong> the cores were<br />

investigated. The organic content <strong>of</strong> the sediments<br />

was determined by loss on ignition after heating<br />

the samples for 2 h at 550 °C in a muffle furnace.<br />

The percentages <strong>of</strong> s<strong>and</strong>, silt, <strong>and</strong> clay were measured<br />

applying a laser particle <strong>size</strong>r (Fritsch analysette<br />

22).<br />

Survey <strong>of</strong> the <strong>mussel</strong> populations<br />

The samples were taken between 1996 <strong>and</strong> 1998. In<br />

order to secure well-founded data on the abundance<br />

<strong>of</strong> unionids, the entire sediment <strong>of</strong> defined<br />

areas was sieved completely (Haukioja & Hakala,<br />

1974; Hanson et al., 1988; Miller & Payne, 1988,<br />

1993; Amyot & Downing, 1991; Richardson &<br />

Yokley, 1996). Thus, a 0.25 m 2 plastic frame<br />

(quadratic, height: 0.25 m) was pushed into the<br />

substratum. The upper sediment layers within the<br />

frame were removed with a net until more compact<br />

layers, consisting <strong>of</strong> marl, s<strong>and</strong>, or peat, were<br />

reached. The removed material was sieved (4 mm),<br />

<strong>and</strong> the <strong>mussel</strong>s were collected <strong>and</strong> placed in labeled<br />

bags. With the intention to investigate different<br />

ranges <strong>of</strong> the river bed, six <strong>of</strong> those samples<br />

from the bank <strong>and</strong> further six from the middle <strong>of</strong><br />

the river were taken for every sample series. In the<br />

middle <strong>of</strong> the river at station III, samples could not<br />

be taken as described because <strong>of</strong> too s<strong>of</strong>t sediments.<br />

However, areas <strong>of</strong> 0.25 m 2 were investigated<br />

using a dredge closable by a lid in a distance<br />

<strong>of</strong> 5.5–6 m <strong>of</strong>f the bank. The dredged material was<br />

sieved, <strong>and</strong> the <strong>mussel</strong>s were picked out at the<br />

sampling station, too.<br />

There were seven sample series taken at station<br />

I, 3 at station II, <strong>and</strong> 4 at station III. Within one<br />

sampling site, only different areas were investigated<br />

by the several sampling series applying a preestablished<br />

pattern.<br />

In order to ascertain the total <strong>size</strong> <strong>of</strong> the <strong>mussel</strong><br />

populations at every station, four transects were<br />

installed additionally across the river. In every<br />

transect, one sample per meter was taken. The<br />

sampling was carried out as described using frame<br />

<strong>and</strong> net or the dredge, respectively.<br />

The collected <strong>mussel</strong>s were brought to the<br />

laboratory for ageing <strong>and</strong> kept there in a large<br />

vessel filled with river water. The age was identified<br />

by means <strong>of</strong> dark annual rings observed on the<br />

shells (e.g. Haskin, 1954; Crowley, 1957; Negus,<br />

1966; Haukioja & Hakala, 1978; Neves & Moyer,<br />

1988). Difficulties in counting these rings could<br />

appear if <strong>mussel</strong>s stopped their growing after disturbances<br />

<strong>and</strong> formed pseudannuli. Those were<br />

not easily to distinguish from true annual rings.<br />

Furthermore, the age determination could become<br />

difficult if several rings were very close. Such ring<br />

concentrations occurred mainly in the fringe ranges<br />

<strong>of</strong> shells <strong>of</strong> older <strong>mussel</strong>s. Mistakes in the age<br />

determination were avoided by means <strong>of</strong> repeated<br />

controls <strong>and</strong> comparisons <strong>of</strong> shells. After the<br />

investigations, the <strong>mussel</strong>s were released at the<br />

location <strong>of</strong> their origin.<br />

The similarity <strong>of</strong> <strong>species</strong> compositions <strong>and</strong> age<br />

<strong>structure</strong>s ascertained at the sampling stations was<br />

determined using <strong>three</strong> indices. First, for comparing<br />

the presence or absence <strong>of</strong> age classes at the<br />

stations, the set quotient was calculated (Mu¨ ller,<br />

1978, 1987):


172<br />

c<br />

Sq ½%Š ¼100<br />

a þ b þ c ;<br />

where Sq is the set quotient; a, the number <strong>of</strong> age<br />

classes only existing within stock A; b, the number<br />

<strong>of</strong> age classes only existing within stock B; c the<br />

number <strong>of</strong> age classes existing within both stocks.<br />

Secondly, to calculate the similarity <strong>of</strong> the<br />

dominance values <strong>of</strong> <strong>species</strong> or age classes, Renkonen‘s<br />

coefficient was used (Mu¨ hlenberg, 1989):<br />

Rc ½%Š ¼ Xs<br />

i¼1<br />

D min<br />

i ;<br />

where Rc is the Renkonen’s coefficient; D i min , the<br />

smallest <strong>of</strong> the two dominance values <strong>of</strong> a <strong>species</strong><br />

or age class.<br />

At last, set quotient <strong>and</strong> Renkonen’s coefficient<br />

were combined to calculate Wainstein’s index,<br />

which considers the presence <strong>of</strong> <strong>species</strong> or age<br />

classes within different stocks <strong>and</strong> their dominance,<br />

too (Mu¨ ller, 1987; Mu¨ hlenberg, 1989):<br />

Sq Rc<br />

Wi ½%Š ¼ ;<br />

100<br />

where Wi is the Wainstein’s index; Sq, the set<br />

quotient; Rc, the Renkonen’s coefficient.<br />

Results<br />

Environmental factors<br />

The results <strong>of</strong> water analyses are shown in Figure<br />

2. Of all variables average values, highest <strong>and</strong><br />

lowest ones <strong>of</strong> the investigation period are presented.<br />

The factors followed characteristic seasonal<br />

trends during the years. Amongst nitrogen<br />

ions the nitrate ions predominated (Fig. 2a–c).<br />

The concentration <strong>of</strong> nitrate was 5–10-fold larger<br />

than the ammonium one <strong>and</strong> represented the 25-<br />

fold <strong>of</strong> the nitrite concentration. The concentration<br />

minima were measured in summer. The<br />

phosphate concentration was between 0.002 <strong>and</strong><br />

0.424 mg/l (Fig. 2d). Especially high concentrations<br />

appeared at times <strong>of</strong> low oxygen saturation.<br />

The concentrations <strong>of</strong> nitrogen <strong>and</strong> phosphate<br />

ions slightly decreased downwards the river or were<br />

lowest at station II. The gained values <strong>of</strong> the four<br />

ions mirror a b-mesosaprobic to b-a-mesosaprobic<br />

situation in the river (determination according to<br />

LAWA, 1998). The concentration <strong>of</strong> oxygen declined<br />

downwards the river (Fig. 2e). During the<br />

year, concentration minima occurred in summer.<br />

The lowest value <strong>of</strong> 1 mg/l (saturation: 11%) was<br />

measured at station II. The temperature <strong>of</strong> the<br />

water correlated with the air temperature <strong>and</strong> appeared<br />

highest in summer. Down the river, the<br />

mean water temperature rose (Fig. 2f). The conductivity<br />

showed only little deviations (Fig. 2g).<br />

The high value <strong>of</strong> 2.09 mS/cm at station III could<br />

be explained by an influx <strong>of</strong> brackish water into<br />

the upper river. The current was fastest at station<br />

II (Fig. 2h). Its highest value was 0.4 m/s. The<br />

concentration <strong>of</strong> seston was ascertained to quantify<br />

the nutrient resources for <strong>mussel</strong>s. The average<br />

concentration at station III was nearly double-fold<br />

as high as at the other two stations (Fig. 2i). No<br />

significant differences between the sampling stations<br />

were found regarding the water properties (ttest:<br />

p > 0.05).<br />

The sediment consisted <strong>of</strong> silty s<strong>and</strong> (stations I<br />

<strong>and</strong> II) or silty loamy s<strong>and</strong> (station III). The<br />

average content <strong>of</strong> organic matter varied between<br />

3.6% (station II) <strong>and</strong> 17.8% (station III). The<br />

sediment composition showed a close relationship<br />

to the current velocity, as with an increase <strong>of</strong> current<br />

velocity the percentage <strong>of</strong> s<strong>and</strong> in the sediment<br />

increased, too. The content <strong>of</strong> organic material,<br />

however, got reduced (Fig. 3). The percentages <strong>of</strong><br />

s<strong>and</strong> <strong>and</strong> organic matter in the sediment at station<br />

III differed significantly from those found at the<br />

stations I <strong>and</strong> II (t-test (s<strong>and</strong>): p I/II ¼ 0.375, p I/<br />

III ¼ 0.049, p II/III ¼ 0.013; t-test (organic matter):<br />

p I/II ¼ 0.308, p I/III < 0.001, p II/III < 0.001).<br />

Species composition <strong>and</strong> population <strong>size</strong><br />

At all stations, <strong>mussel</strong>s <strong>of</strong> the <strong>species</strong> Anodonta<br />

anatina (L.), Anodonta cygnea (L.), <strong>and</strong> Unio tumidus<br />

Philipsson were found. The abundance <strong>of</strong><br />

<strong>mussel</strong>s, which got ascertained from particular<br />

samples <strong>and</strong> sample series, showed considerable<br />

deviations. In Figure 4 the mean values for the<br />

sampling stations as well as the values <strong>of</strong> series<br />

with highest <strong>and</strong> lowest abundances are given.<br />

The highest population densities <strong>of</strong> the unionids<br />

were observed in the bank regions <strong>of</strong> the<br />

stations I (maximum: 138.7 indiv./m 2 ; April 1996)<br />

<strong>and</strong> II (max.: 110.0 indiv./m 2 ; May 1997). In


173<br />

(a)<br />

NO 3 -N<br />

(b)<br />

NO 2 -N<br />

(c)<br />

NH 4 -N<br />

5<br />

0.27 0,27<br />

0,8 0.8<br />

Concentration [mg/l]<br />

4<br />

3<br />

2<br />

1<br />

Concentration [mg/l]<br />

0.18 0,18<br />

0.09 0,09<br />

Concentration [mg/l]<br />

0,6 0.6<br />

0,4 0.4<br />

0,2 0.2<br />

0<br />

I II III<br />

0.00 0,00<br />

I II III<br />

0.00<br />

I II III<br />

Station<br />

Station<br />

Station<br />

(d)<br />

0.5 0,5<br />

PO 4 -P<br />

(e)<br />

18<br />

O 2<br />

(f)<br />

25<br />

Temperature<br />

Concentration [mg/l]<br />

0.4 0,4<br />

0.3 0,3<br />

0.2 0,2<br />

0.1 0,1<br />

Concentration [mg/l]<br />

12<br />

6<br />

Temperature [°C]<br />

20<br />

15<br />

10<br />

5<br />

0.00<br />

I II III<br />

0<br />

I II III<br />

0<br />

I II III<br />

Station<br />

Station<br />

Station<br />

(g) Conductivity<br />

(h) Current<br />

(i)<br />

2.5 2,5<br />

0,4 0.4<br />

25<br />

Seston<br />

Conductivity [mS/cm]<br />

2.0 2,0<br />

1.5 1,5<br />

1.0 1,0<br />

Velocity [m/s]<br />

0,3 0.3<br />

0,2 0.2<br />

0,1 0.1<br />

Concentration [mg/l]<br />

20<br />

15<br />

10<br />

5<br />

0.5 0,5<br />

I II III<br />

Station<br />

0.00<br />

I II III<br />

Station<br />

0<br />

I II III<br />

Station<br />

Figure 2. Average, highest <strong>and</strong> lowest values <strong>of</strong> the water properties which were analyzed in the river Ryck monthly from April to<br />

October in the period <strong>of</strong> survey (1996–1999). I, II, III ¼ sampling stations.<br />

comparison with these data, the highest abundance<br />

at station III was very low (max.: 33.3 indiv./m<br />

2 ; July 1997). The average population<br />

density within the bank region at station III was<br />

also distinctively lower than those at the stations I<br />

<strong>and</strong> II (station I: 66.0 indiv./m 2 , station II:<br />

61.1 indiv./m 2 , station III: 18.5 indiv./m 2 ).<br />

The dominance values <strong>of</strong> the <strong>species</strong> are illustrated<br />

in Figure 5. Anodonta anatina was the<br />

predominant unionid at all stations (54.0–69.2%).<br />

At the stations I <strong>and</strong> III, A. cygnea reached a higher<br />

dominance (30.2%, 24.4%) than U. tumidus which<br />

was only represented by relatively few individuals<br />

(0.6%, 10.9%). The situation at sampling site II was<br />

different, as the most balanced numerical ratio between<br />

the <strong>three</strong> <strong>species</strong> existed at this station. Furthermore,<br />

U. tumidus (28.2%) reached a higher<br />

dominance than A. cygnea (17.8%).


174<br />

S<strong>and</strong>, org. matter [%]<br />

90<br />

60<br />

30<br />

0<br />

Sediment<br />

II I III<br />

Station<br />

0,15 0.15<br />

0,10 0.10<br />

0,05 0.05<br />

0,00 0.00<br />

Current velocity [m/s]<br />

s<strong>and</strong> org.matter current velocity<br />

Figure 3. Average percentages <strong>of</strong> s<strong>and</strong> <strong>and</strong> organic matter in<br />

the sediments as well as the average current velocity measured<br />

in the water column. I, II, III ¼ sampling stations.<br />

A comparison <strong>of</strong> the dominance <strong>structure</strong>s<br />

observed at the <strong>three</strong> stations by means <strong>of</strong><br />

Renkonen’s coefficient underlined the special position<br />

<strong>of</strong> station II (Table 3).<br />

The mean abundances <strong>of</strong> the unionid <strong>mussel</strong>s<br />

are given in Table 4. However, the study showed<br />

that the <strong>mussel</strong>s were unequally distributed within<br />

the river cross-section (Fig. 4). Thus, the determined<br />

abundances only enabled to draw rough<br />

conclusions about the total <strong>size</strong> <strong>of</strong> the unionid<br />

populations. Therefore, the numbers <strong>of</strong> clams per<br />

river meter (rm ¼ stretch <strong>of</strong> the river <strong>of</strong> 1 m<br />

length) were calculated (Table 4). With 350.5 indiv./rm<br />

the largest number <strong>of</strong> <strong>mussel</strong>s per river<br />

meter was found at station II. It even exceeded the<br />

number <strong>of</strong> individuals at station III, though the<br />

river Ryck was tw<strong>of</strong>old wider there (comp.<br />

Table 1).<br />

Age <strong>structure</strong><br />

The age <strong>structure</strong>s <strong>of</strong> A. anatina <strong>and</strong> A. cygnea<br />

appeared very unbalanced within the period <strong>of</strong><br />

Station I (1996)<br />

Station II (1997)<br />

Abundance [N/m 2 ]<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

66.0<br />

44.6<br />

bank<br />

20.7<br />

0.7<br />

middle<br />

36.7 27.6<br />

9.1<br />

0.0<br />

Un Aa Ac Ut Un Aa Ac Ut<br />

Taxon<br />

Abundance [N/m 2 ]<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

61.1<br />

38.6<br />

bank<br />

13.8<br />

8.7<br />

42.2<br />

middle<br />

17.1 20.4<br />

4.7<br />

Un Aa Ac Ut Un Aa Ac Ut<br />

Taxon<br />

Abundance [N/m 2 ]<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

7.5<br />

Station III (1997)<br />

4.5<br />

bank 18.5 5.5m<br />

2.3 0.7<br />

12.3<br />

4.0 2.2<br />

Un Aa Ac Ut Un Aa Ac Ut<br />

Taxon<br />

Figure 4. Abundance <strong>of</strong> the Unionidae at the sampling stations. Column <strong>and</strong> given number ¼ average value; vertical lines ¼ presentation<br />

<strong>of</strong> maximal <strong>and</strong> minimal values; Un ¼ Unionidae; Aa ¼ A. anatina; Ac¼ A. cygnea; Ut¼ U. tumidus; 96, 97 ¼ years <strong>of</strong><br />

surveys (1996 <strong>and</strong> 1997); bank ¼ sample series taken within the bank region; middle ¼ sample series taken from the middle <strong>of</strong> the river;<br />

5.5 m ¼ sample series taken in a distance <strong>of</strong> 5.5–6 m <strong>of</strong>f the bank.


175<br />

Dominance [%]<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Station I<br />

II<br />

III<br />

N 985 465 156<br />

Figure 5. Species composition at the sampling stations I, II,<br />

<strong>and</strong> III. Aa ¼ A. anatina; Ac¼ A. cygnea; Ut¼ U. tumidus;<br />

n ¼ number <strong>of</strong> collected <strong>mussel</strong>s.<br />

Table 3. Similarity <strong>of</strong> the dominance <strong>structure</strong>s according to<br />

Renkonen’s coefficient (Rc)<br />

Stations I/II I/III II/III<br />

Rc [%] 72.44 89.71 82.73<br />

I, II, III = sampling stations.<br />

survey. At all stations, one or more age classes<br />

were absent (Fig. 6). The youngest age classes<br />

reached relatively low dominance values in the<br />

stocks, <strong>and</strong> the older ones were very numerous <strong>and</strong><br />

partly even predominant. This tendency to overaged<br />

stocks became clear especially regarding<br />

A. anatina at station III.<br />

At the <strong>three</strong> sampling stations, different age<br />

classes <strong>of</strong> the Anodonta <strong>species</strong> were absent or<br />

dominating. At the stations I <strong>and</strong> III, for example<br />

the age classes <strong>of</strong> 1987, 1989, <strong>and</strong> 1995 were very<br />

Aa<br />

Ac<br />

Ut<br />

rich in individuals. At sampling site II, the age<br />

classes 1988–1991 were represented by only few<br />

individuals or they lacked completely. These differences<br />

between the age <strong>structure</strong>s suggest that<br />

similar living conditions for <strong>mussel</strong>s cannot be<br />

presumed in the whole upper course <strong>of</strong> the river<br />

Ryck.<br />

In order to assess the similarity <strong>of</strong> age <strong>structure</strong>s<br />

more efficiently, set quotient, Renkonen‘s<br />

coefficient, <strong>and</strong> Wainstein’s index were calculated.<br />

The results showed that there was a higher similarity<br />

between the age <strong>structure</strong>s <strong>of</strong> both <strong>species</strong><br />

from the same station, than between the age<br />

<strong>structure</strong>s <strong>of</strong> the same <strong>species</strong> from different stations<br />

(Fig. 7). This similarity between the age<br />

<strong>structure</strong>s <strong>of</strong> A. anatina <strong>and</strong> A. cygnea was greatest<br />

at the sampling sites I <strong>and</strong> II. Amongst the stations,<br />

the highest similarity was detected between<br />

the sampling sites I <strong>and</strong> III (comp. Table 3).<br />

For U. tumidus the partly very low abundances<br />

<strong>and</strong> especially the age <strong>structure</strong>s (Fig. 8) indicate<br />

an instability <strong>of</strong> the population. At station I, a<br />

very low population density <strong>of</strong> this <strong>species</strong> was<br />

detected. But it has to be underlined that in this<br />

certain river section some juvenile <strong>mussel</strong>s were<br />

also found. At station II, the population virtually<br />

consisted solely <strong>of</strong> two age classes, one <strong>of</strong> them<br />

was considerably young. The stock at station III<br />

appeared overaged since no juveniles could be<br />

collected there.<br />

Discussion<br />

The <strong>species</strong> Anodonta anatina, Anodonta cygnea,<br />

<strong>and</strong> Unio tumidus which were found in the upper<br />

course <strong>of</strong> the river Ryck inhabit running <strong>and</strong><br />

Table 4. <strong>Population</strong> <strong>size</strong> <strong>and</strong> mean abundance <strong>of</strong> the Unionidae in the river Ryck<br />

Taxon I II III<br />

Abundance (N/m 2 ) Pop. <strong>size</strong> (N/rm) Abundance (N/m 2 ) Pop. <strong>size</strong> (N/rm) Abundance (N/m 2 ) Pop. <strong>size</strong> (N/rm)<br />

Unionidae 33.6 311.3 34.9 350.5 10.9 216.2<br />

A. anatina 23.2 214.6 18.8 188.8 7.0 138.5<br />

A. cygnea 10.2 94.7 6.2 62.4 2.8 55.0<br />

U. tumidus 0.2 2.0 9.9 99.3 1.1 22.7<br />

I, II, III = sampling stations; N = number <strong>of</strong> <strong>mussel</strong>s; rm = river meter (stretch <strong>of</strong> the river <strong>of</strong> 1 m length).


176<br />

40<br />

Aa (stn.I 96)<br />

N = 682<br />

40<br />

Ac (stn.I 96)<br />

N = 297<br />

30<br />

30<br />

N [%]<br />

20<br />

N [%]<br />

20<br />

10<br />

10<br />

0<br />

0<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

Age [years]<br />

Age [years]<br />

40<br />

Aa (stn.II 9 7)<br />

N = 251<br />

40<br />

Ac (stn.II 9 7)<br />

N = 83<br />

30<br />

30<br />

N [%]<br />

20<br />

N [%]<br />

20<br />

10<br />

10<br />

0<br />

0<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

Age [years]<br />

Age [years]<br />

40<br />

Aa (stn.III 97)<br />

N = 101<br />

40<br />

Ac (stn.III 97)<br />

N = 38<br />

30<br />

30<br />

N [%]<br />

20<br />

N [%]<br />

20<br />

10<br />

10<br />

0<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

Age [years]<br />

Age [years]<br />

Figure 6. Age <strong>structure</strong>s <strong>of</strong> Anodonta anatina (Aa) <strong>and</strong> Anodonta cygnea (Ac). I, II, III ¼ sampling stations; 96, 97 ¼ years <strong>of</strong> surveys<br />

(1996 <strong>and</strong> 1997); n ¼ number <strong>of</strong> collected <strong>mussel</strong>s.<br />

0<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

st<strong>and</strong>ing waters in large areas <strong>of</strong> Germany <strong>and</strong><br />

Europe (Falkner, 1990; Glo¨ er & Meier-Brook,<br />

1994; Wolff, 1968; Zadin, 1938).<br />

The abundance values <strong>of</strong> unionid <strong>mussel</strong>s show<br />

an enormous deviation range in running waters <strong>of</strong><br />

Central <strong>and</strong> Western Europe (Table 5).<br />

The data in Table 5 give the impression that the<br />

average <strong>and</strong> the maximum population densities <strong>of</strong><br />

unionid <strong>mussel</strong>s in the river Ryck are very high.<br />

The <strong>species</strong> composition corresponds with the type<br />

<strong>of</strong> river, i.e. with a eutrophic slowly running water<br />

having finer sediments. However, examining the<br />

abundances <strong>and</strong> the age <strong>structure</strong>s <strong>of</strong> the <strong>three</strong><br />

<strong>species</strong> at the several sampling stations carefully it<br />

has to be said that the situation <strong>of</strong> unionids is not<br />

as good as it appears at first sight.<br />

First <strong>of</strong> all, the state <strong>of</strong> the U. tumidus population<br />

has to be classified as critical. At station I,<br />

this <strong>species</strong> reached only an abundance <strong>of</strong> ca.<br />

0.2 indiv./m 2 . Regarding Unio crassus, Hochwald


177<br />

Figure 7. Similarity <strong>of</strong> the age <strong>structure</strong>s <strong>of</strong> both Anodonta <strong>species</strong> according to set quotient (Sq), Renkonen’s coefficient (Rc), <strong>and</strong><br />

Wainstain’s index (Wi). Aa ¼ A. anatina; Ac¼ A. cygnea; I, II, III ¼ sampling stations.<br />

40<br />

Ut (stn.I 96)<br />

N =10<br />

80<br />

Ut (stn.II 97)<br />

N =131<br />

30<br />

60<br />

N [%]<br />

20<br />

N [%]<br />

40<br />

10<br />

20<br />

0<br />

0<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

Age [years]<br />

Age [years]<br />

90<br />

Ut (stn.III 97)<br />

N =17<br />

60<br />

N [%]<br />

30<br />

0<br />

0<br />

2<br />

4<br />

6<br />

Age [years]<br />

Figure 8. Age <strong>structure</strong>s <strong>of</strong> Unio tumidus (Ut). I, II, III ¼ sampling stations; 96, 97 ¼ years <strong>of</strong> surveys (1996 <strong>and</strong> 1997); n ¼ number <strong>of</strong><br />

collected <strong>mussel</strong>s.<br />

8<br />

10<br />

12<br />

14<br />

(1997) <strong>and</strong> Hochwald & Bauer (1990) verified a<br />

reducing percentage <strong>of</strong> fertilized eggs in the clutch<br />

during a period <strong>of</strong> a decreasing population density.<br />

Downing et al. (1993) proved for Elliptio complanata<br />

(Unionidae) that no successful fertilization is<br />

possible at an abundance less than 10 <strong>mussel</strong>s/m 2 .<br />

Therefore, the stock at station I is possibly unable<br />

to reproduce <strong>and</strong> depends on an import <strong>of</strong> glochidia<br />

from other stretches <strong>of</strong> the river Ryck. In<br />

the river section at station II, the stock was mainly


178<br />

Table 5. Abundances <strong>of</strong> unionid <strong>mussel</strong>s in European running waters<br />

Author River Abundance (N/m 2 ) Sediment type<br />

Franke (1993)<br />

Main (banks) <strong>and</strong> its<br />

2–4 Gravel, s<strong>and</strong>, mud<br />

tributaries (Germany)<br />

Hickley (1983) Eden (Engl<strong>and</strong>) 73 Gravel <strong>and</strong> silt<br />

Lew<strong>and</strong>owski (1990)<br />

Szeszupa (lower stretches; 2–344 S<strong>and</strong>y–muddy, muddy<br />

Pol<strong>and</strong>)<br />

Libois & Hallet-Libois (1987) Meuse (Belgium) 18.1 Mud, s<strong>and</strong>, fine gravel<br />

Negus (1966) Thames (Engl<strong>and</strong>) 22.3 Different types (e.g. silt,<br />

s<strong>and</strong>, muddy s<strong>and</strong>)<br />

Zettler (1998)<br />

Peene <strong>and</strong> its tributaries 7.6–75.5 S<strong>and</strong>y–muddy<br />

(Germany)<br />

This study Ryck (Germany) S<strong>and</strong>y–muddy<br />

Station I 33.6 (max.: 138.7)<br />

Station II 34.9 (max.: 110.0)<br />

Station III 10.9 (max.: 33.3)<br />

composed <strong>of</strong> representatives <strong>of</strong> two age classes.<br />

Because <strong>of</strong> the low age <strong>of</strong> one <strong>of</strong> these age classes<br />

<strong>and</strong> the relatively high population density (ca.<br />

9.9 indiv./m 2 ), U. tumidus was less endangered at<br />

this station <strong>and</strong> had the best chance <strong>of</strong> reproduction<br />

there in the entire river. However, with respect<br />

to the age <strong>structure</strong>, this part <strong>of</strong> the population has<br />

also to be assessed as very vulnerable. At sampling<br />

station III, the stock was considerably overaged<br />

<strong>and</strong> will possibly disappear during the next years,<br />

if no more juvenile <strong>mussel</strong>s grow up there.<br />

The Anodonta <strong>species</strong> are not so threatened,<br />

though even they are also impaired. The age<br />

<strong>structure</strong>s prove the absence <strong>of</strong> some age classes<br />

<strong>and</strong> an overaging <strong>of</strong> few stocks. The reproductive<br />

success changes more or less annually <strong>and</strong> appears<br />

unpredictable. However, because <strong>of</strong> the low percentage<br />

<strong>of</strong> juveniles in the population, a reduction<br />

<strong>of</strong> the number <strong>of</strong> individuals <strong>of</strong> all <strong>species</strong> is to<br />

expect within the next years. This decline can have<br />

certain effects on the future self-purification<br />

capacity <strong>of</strong> the river.<br />

Furthermore, the population <strong>structure</strong>s found<br />

at the <strong>three</strong> stations, their peculiarities <strong>and</strong> similarities,<br />

are going to be discussed.<br />

In the river Ryck, extensive works for river<br />

maintenance are carried out annually. During<br />

these works a lot <strong>of</strong> <strong>mussel</strong>s is injured or killed by<br />

machines or left on the bank, respectively. At<br />

station II in 1997, no 7-year, 8-year, <strong>and</strong> 9-yearold<br />

clams were found. The absence <strong>of</strong> some<br />

successive age classes could lead to the assumption<br />

that within this river section an annihilation <strong>of</strong> the<br />

unionids occurred <strong>and</strong> later on, a resettlement.<br />

Because <strong>of</strong> the fact that plenty individuals <strong>of</strong> older<br />

age classes were collected, this possibility can be<br />

excluded.<br />

Furthermore, factors which influence the survival<br />

<strong>of</strong> animals at different developmental stages<br />

have to be considered. The glochidia <strong>of</strong> unionid<br />

<strong>mussel</strong>s are attached on host fish as ectoparasites<br />

for a certain period <strong>of</strong> time. Species lists <strong>of</strong> the<br />

ichthy<strong>of</strong>auna prove the existence <strong>of</strong> a lot <strong>of</strong> fish<br />

<strong>species</strong> in the river Ryck from which several <strong>species</strong><br />

are potential suitable hosts for every <strong>mussel</strong><br />

<strong>species</strong> (see Appendix 1).<br />

There are no hints for a complete collapse <strong>of</strong><br />

the fish population during the last years, which<br />

could have been the reason for the absence <strong>of</strong><br />

different age classes. Kornmilch (pers. comm.)<br />

observed the ichthy<strong>of</strong>auna in this river for several<br />

years <strong>and</strong> found frequently shoals <strong>of</strong> juvenile fish.<br />

If the state <strong>of</strong> the ichthy<strong>of</strong>auna was a reason <strong>of</strong> the<br />

described situation <strong>of</strong> unionids, the same age<br />

classes <strong>of</strong> <strong>mussel</strong>s should be absent at all or<br />

neighboring stations. But a comparison <strong>of</strong> the age<br />

<strong>structure</strong>s showed a higher similarity between the<br />

stations I <strong>and</strong> III as well as a special position <strong>of</strong> the<br />

amidst located sampling station . Therefore, a<br />

certain influence <strong>of</strong> the fish population on unionid<br />

<strong>mussel</strong>s <strong>and</strong> their reproductive success could exist,<br />

but it does not seem to be the most decisive one.


179<br />

There can also be assumed connections between<br />

the <strong>mussel</strong>s <strong>and</strong> the water quality or the<br />

sediment composition. Unio tumidus is considered<br />

to be highly sensitive to phenomena <strong>of</strong> eutrophication<br />

whilst the Anodonta <strong>species</strong> are less pretentious<br />

(Agrell, 1949; Scholz, 1991, 1992; Jueg,<br />

1993; Mouthon, 1996). Bahr (1994) showed a big<br />

influence <strong>of</strong> oxygen concentration on U. tumidus.<br />

Hereby, a concentration <strong>of</strong> 6.2 mg O 2 /l was given<br />

as the limiting value below that the <strong>mussel</strong>s were<br />

impaired by oxygen deficiency. In the river Ryck,<br />

oxygen concentrations lower than the abovementioned<br />

limiting value got frequently measured<br />

(Fig. 2e). Such shortage situations existed from<br />

time to time for several weeks.<br />

The Anodonta <strong>species</strong> suffer from low oxygen<br />

concentrations less than U. tumidus. The different<br />

tolerance <strong>of</strong> the <strong>species</strong> with regard to environmental<br />

factors is closely connected with the type <strong>of</strong><br />

habitat the <strong>mussel</strong>s live in. In this context e.g. the<br />

stability <strong>of</strong> environmental conditions in waters is a<br />

very important criterion. U. tumidus prefers larger<br />

waters (e.g. rivers <strong>and</strong> lakes) with s<strong>and</strong>y sediments.<br />

The Anodonta <strong>species</strong> inhabit additionally little<br />

waters like ponds <strong>and</strong> peat turbaries with a frequently<br />

muddy substratum. There they have to<br />

endure extreme conditions which result from the<br />

small water body <strong>and</strong> the accumulation <strong>of</strong> nutrients<br />

from surrounding areas (e.g. extreme temperatures,<br />

oxygen over- or undersaturation <strong>of</strong> the water).<br />

Thus, at falling oxygen partial pressure A. cygnea<br />

can keep the respiration rate constant or change to<br />

an anaerobic metabolism (Holwerda & Veenh<strong>of</strong>,<br />

1984; Massabuau et al., 1991). Therefore, this <strong>species</strong><br />

will react less sensitive to a shortage <strong>of</strong> oxygen.<br />

Sheldon & Walker (1989) described similar<br />

observations comparing two Australian naiad<br />

<strong>species</strong>. Velesunio ambiguus can be found in billabongs<br />

<strong>and</strong> creeks. When the oxygen concentration<br />

is low, these <strong>mussel</strong>s are able to stabilize their respiration<br />

rate or they close the valves until the<br />

oxygen content in the water rises again. In contrast,<br />

the respiration rate <strong>of</strong> the <strong>species</strong> Alathyria jacksoni<br />

which inhabits large rivers decreases with a<br />

declining oxygen concentration. This <strong>species</strong> depends<br />

on a relatively stable environment <strong>and</strong> is not<br />

able to regulate the respiration rate under unfavorable<br />

conditions (Sheldon & Walker, 1989).<br />

Bahr (1994) declared furthermore that an<br />

increase <strong>of</strong> nitrate, nitrite, <strong>and</strong> phosphate concentrations<br />

can reduce the periods <strong>of</strong> activity <strong>of</strong><br />

U. tumidus to 82–38%. The ion concentrations<br />

used in these experiments were repeatedly traced in<br />

the river Ryck (see Fig. 2a, b, d):<br />

NO ) 3 : 0.2 mmol/l (2.801 mg/l NO 3 -N, author’s<br />

rem.);<br />

NO ) 2 : 0.002 mmol/l, 0.01 mmol/l (0.028 mg/l<br />

NO 2 -N, 0.140 mg/l NO 2 -N, author’s rem.);<br />

PO/ 3) 4 : 0.005 mmol/l (0.155 mg/l PO 4 -P, author’s<br />

rem.).<br />

Perhaps U. tumidus in the Ryck is better<br />

adapted to unfavorable conditions than the test<br />

animals <strong>of</strong> Bahr (1994). But nevertheless, there<br />

seems to be the possibility that the <strong>mussel</strong>s <strong>of</strong> the<br />

Ryck are being damaged or influenced at times by<br />

low oxygen or higher ion concentrations. This can<br />

enlarge the sensitivity <strong>of</strong> <strong>mussel</strong>s towards further<br />

stress-factors <strong>and</strong> in that way possibly cause a<br />

higher mortality. Thus, a certain influence <strong>of</strong> the<br />

properties <strong>of</strong> the water body on the stability <strong>of</strong> the<br />

<strong>mussel</strong> populations can be expected. But as these<br />

factors are relatively stabile or form gradients in<br />

the course <strong>of</strong> the river they cannot explain the<br />

similarity between the stations I <strong>and</strong> III as well the<br />

peculiarities <strong>of</strong> station II.<br />

Fleischauer-Ro¨ ssing (1990) <strong>and</strong> Engel (1990)<br />

investigated influences on the survival <strong>of</strong> juveniles<br />

<strong>of</strong> the Unio <strong>species</strong>. Because juveniles live within<br />

the upper stratum <strong>of</strong> the sediment, sediment<br />

composition <strong>and</strong> interstitial water were analyzed<br />

by the mentioned authors. Both investigators explained<br />

that ammonium <strong>and</strong> oxygen concentrations<br />

<strong>and</strong> the content <strong>of</strong> organic <strong>and</strong> fine-grained<br />

material determine the rate <strong>of</strong> mortality. Bauer<br />

(1988) declared as well, considering the freshwater<br />

pearl <strong>mussel</strong> that a high percentage <strong>of</strong> organic<br />

material in the sediment influences the development<br />

<strong>of</strong> juvenile <strong>mussel</strong>s negatively.<br />

The given factors are closely connected. During<br />

the decomposition <strong>of</strong> organic matter in the sediment,<br />

oxygen is consumed <strong>and</strong> poisonous ammonium<br />

is accumulated. If fine-grained or organic<br />

material clogs the pores <strong>of</strong> the sediment the exchange<br />

<strong>of</strong> the interstitial water will become limited<br />

<strong>and</strong> the conditions will aggravate. Furthermore,<br />

since the water temperature influences the turnover<br />

rate <strong>of</strong> organic matter <strong>and</strong> nutrients it can also<br />

modify the situation in the sediment seasonally<br />

(Fischer, 2000).


180<br />

The above-described bearings seem to be<br />

transferable to the river Ryck. At the sampling<br />

sites I <strong>and</strong> II, where the content <strong>of</strong> organic material<br />

in the sediments is lower, there were juvenile<br />

U. tumidus found. Within the river stretch at<br />

station II characterized by the lowest losses on<br />

ignition <strong>of</strong> the sediments, U. tumidus reached its<br />

highest abundance. At station III, where the<br />

highest losses on ignition were measured juvenile<br />

U. tumidus did not exist, <strong>and</strong> the stock was obviously<br />

overaged.<br />

In contrast to the results regarding U. tumidus,<br />

juveniles <strong>of</strong> the Anodonta <strong>species</strong> were found at all<br />

stations. The absence <strong>of</strong> some age classes can<br />

probably be traced back to the same causes as for<br />

U. tumidus, even if the clams <strong>of</strong> the genus Anodonta<br />

are less sensitive to their environment.<br />

Therefore, at station II the clearly higher current<br />

velocity causes a diverging composition <strong>of</strong> the<br />

sediment <strong>and</strong> creates living conditions for <strong>mussel</strong>s<br />

which are different from those at the other two<br />

stations. The living conditions influence particularly<br />

the survival <strong>of</strong> the juvenile unionids during<br />

the first months after leaving the host fish which<br />

is reflected in abundance, dominance, <strong>and</strong> age<br />

<strong>structure</strong> <strong>of</strong> the <strong>species</strong>.<br />

As mentioned above, brackish water flows<br />

occasionally into the river stretch at station III. A<br />

determinant influence <strong>of</strong> this water on the unionid<br />

<strong>mussel</strong>s there is not to be expected because <strong>of</strong> two<br />

reasons. First, living A. anatina <strong>and</strong> A. cygnea were<br />

found further down the river, too. Secondly, the<br />

similarity <strong>of</strong> the <strong>mussel</strong> stock <strong>of</strong> station III to that<br />

<strong>of</strong> station I which was not influenced by brackish<br />

water rejects this thesis.<br />

Summary <strong>and</strong> conclusions<br />

The results <strong>of</strong> this survey showed that unionids<br />

attained very high densities in the river Ryck.<br />

Species composition <strong>and</strong> abundance corresponded<br />

with this type <strong>of</strong> running waters, i.e. small <strong>and</strong><br />

slowly flowing rivers. But changes <strong>of</strong> stocks can be<br />

predicted. The number <strong>of</strong> individuals is going to<br />

decrease, <strong>and</strong> U. tumidus may disappear in several<br />

river sections.<br />

The data suggest that the dominance values <strong>of</strong><br />

the <strong>species</strong> as well as the peculiarities <strong>of</strong> their age<br />

<strong>structure</strong>s are influenced first <strong>of</strong> all by current<br />

velocity <strong>and</strong> sediment composition, which change<br />

seasonally <strong>and</strong> along the river. Especially the<br />

juvenile unionids inhabiting the upper stratum <strong>of</strong><br />

sediment are dependent on the conditions in the<br />

interstitium. A strong current ensures a better<br />

ventilation <strong>of</strong> the sediment, prevents an enrichment<br />

<strong>of</strong> poisonous substances, <strong>and</strong> reduces the<br />

sedimentation <strong>of</strong> further fine material that clogs<br />

the interstitium. In contrast, the concentrations <strong>of</strong><br />

ions <strong>and</strong> oxygen in the water body appear to have<br />

only a low influence on the <strong>mussel</strong> populations.<br />

Thus, the decline <strong>of</strong> unionid populations in the<br />

Ryck seems to result from the eutrophication <strong>of</strong><br />

this river. The sediments that are largely enriched<br />

with organic material will – for the longer term –<br />

maintain the internal eutrophication <strong>of</strong> the river.<br />

This situation will continue even if the influx <strong>of</strong><br />

matter into the river decreases. Therefore, there is<br />

no rapid improvement in the living conditions <strong>of</strong><br />

the water organisms to be expected.<br />

The presented results suggest to register not<br />

only the presence <strong>of</strong> unionid <strong>species</strong>, but also the<br />

age <strong>structure</strong> <strong>of</strong> their populations in monitoring<br />

programs to characterize waters. Age <strong>structure</strong>s<br />

present important hints for the actual state <strong>of</strong> the<br />

populations (e.g. present ability for reproduction),<br />

their future stability <strong>and</strong> development (undisturbed,<br />

impaired, or overaged populations).<br />

Therefore, age <strong>structure</strong>s appear as sensitive indicators<br />

for the situation in the waters <strong>and</strong> as a<br />

necessary supplement for a solely recording <strong>of</strong> the<br />

<strong>species</strong> <strong>and</strong> their abundances.<br />

Acknowledgements<br />

The study was carried out at the Zoological Institute<br />

<strong>and</strong> Museum <strong>of</strong> the Ernst Moritz Arndt University<br />

<strong>of</strong> Greifswald <strong>and</strong> supported by grants <strong>of</strong> the<br />

foundations ‘Studienstiftung des deutschen Volkes’<br />

<strong>and</strong> ‘Fazit-Stiftung’. Thanks to Mrs M. S<strong>and</strong>hop<br />

for her encouragement <strong>and</strong> help in improving the<br />

manuscript. Mr J.-C. Kornmilch kindly provided<br />

data on the ichthy<strong>of</strong>auna <strong>of</strong> the river Ryck. I also<br />

wish to thank Dr C. Weber for the translation <strong>of</strong> the<br />

manuscript into English <strong>and</strong> Dr A. J. Anderson<br />

(Daberkow) as well as S. Schubert (Greifswald) for<br />

linguistic advice. I am grateful to an anonymous<br />

reviewer for important comments on an earlier<br />

version <strong>of</strong> this manuscript.


181<br />

Appendix 1.<br />

Fish <strong>species</strong> in the upper course <strong>of</strong> the river Ryck <strong>and</strong> their suitability for serving as host. Investigators <strong>of</strong> the ichthy<strong>of</strong>auna: a ¼ Hille<br />

(1997); b = Kornmilch (pers. comm.); c ¼ Meyer (1962); d ¼ Wanke (1996).<br />

Fish <strong>species</strong> Investigator Suitability <strong>of</strong> the fish <strong>species</strong> as host<br />

Aa Ac Ut<br />

Abramis brama (L.) Carp bream b, c +6 )5<br />

Alburnus alburnus (L.) Bleak b, c<br />

Anguilla anguilla (L.) Eel c, d )7 )7<br />

Blicca bjo¨rkna (L.) White bream b, c, d +6 +6<br />

Carassius carassius (L.) Crucian carp b, c, d )3, )7 )1, )7 )5<br />

Cobitis taenia L. Spined loach a, b, c, d<br />

Esox lucius L. Pike a, b, c, d 4, +7 +7, +6<br />

Gasterosteus aculeatus L. Three-spined stickleback a, b, c, d +7 +7 +2<br />

Gymnocephalus cernuus (L.) Ruffe c 4, )6 +1, )6 ±5<br />

Leucaspius delineatus (HECKEL) Belica a, b, c +3<br />

Leuciscus idus (L.) Ide d<br />

Perca fluviatilis L. Perch a, b, c, d +3, 4, +6, +7 +1, +7 +2, +5<br />

Pungitius pungitius (L.) Ninespine stickleback a, b, c, d<br />

Rhodeus sericeus (BLOCH) Bitterling a, b, c )3, )6, )7 )1, )6, )7<br />

Rutilus rutilus (L.) Roach a, b, c, d +3, 4 )2, +5<br />

Scardinius erythrophthalmus (L.) Rudd b, c, d +7 +1, +6, +7 )2, +5<br />

Tinca tinca (L.) Tench a, b, c, d +3 )1 +5<br />

Vimba vimba (L.) Baltic vimba c<br />

Suitability <strong>of</strong> these fish <strong>species</strong> for serving as host: 1 = Claes (1987); 2 = Fleischauer-Ro¨ ssing (1990); 3 = Franke (1993); 4 = Jokela<br />

et al. (1991; finding <strong>of</strong> infected fish – no check, whether glochidia developed successfully); 5 = Maaß (1987); 6 = Nagel (1985);<br />

7 = Niemeyer (1993). + = fish <strong>species</strong> that is suitable as host (metamorphosis <strong>of</strong> glochidia into juvenile <strong>mussel</strong>s); – = unsuitable<br />

<strong>species</strong> (glochidia were shed); Aa = A. anatina; Ac=A. cygnea; Ut=U. tumidus.<br />

References<br />

Agrell, I., 1949. The shell morphology <strong>of</strong> some Swedish unionides<br />

as affected by ecological conditions. Arkiv fo¨ r zoologi<br />

41A: 1–30.<br />

Amt fu¨ r Wasserwirtschaft, 1970. Fla¨ chenverzeichnis der Flußgebieteder<br />

DDR-Ku¨ ste. Verlag fu¨ r Bauwesen, Berlin,153 pp.<br />

Amyot, J.-P. & J. A. Downing, 1991. Endo- <strong>and</strong> epibenthic<br />

distribution <strong>of</strong> the unionid mollusc Elliptio complanata.<br />

Journal <strong>of</strong> the North American Benthological Society 10:<br />

280–285.<br />

Arter, H. E., 1989. Effect <strong>of</strong> eutrophication on <strong>species</strong> composition<br />

<strong>and</strong> growth <strong>of</strong> freshwater <strong>mussel</strong>s (Mollusca,<br />

Unionidae) in Lake Hallwil (Aargau, Switzerl<strong>and</strong>). Aquatic<br />

Sciences 51: 87–99.<br />

Bahr, K., 1994. Untersuchungen zu Schalenbewegung und<br />

Sauerst<strong>of</strong>fverbrauch einheimischer Großmuscheln unter<br />

verschiedenen experimentellen Bedingungen. PhD thesis,<br />

Tierärztliche Hochschule Hannover.<br />

Bauer, G., 1988. Threats to the freshwater pearl <strong>mussel</strong> Margaritifera<br />

margaritifera L. in Central Europe. Biological<br />

Conservation 45: 239–253.<br />

Byrne, M., 1998. Reproduction <strong>of</strong> river <strong>and</strong> lake populations <strong>of</strong><br />

Hyridella depressa (Unionacea: Hyriidae) in New South<br />

Wales: implications for their conservation. Hydrobiologia<br />

389: 29–43.<br />

Claes, M., 1987. Untersuchungen zur Entwicklungsbiologie der<br />

Teichmuschel Anodonta cygnea. Ms thesis, Tierärztliche<br />

Hochschule Hannover.<br />

Crowley, T. E., 1957. Age determination in Anodonta. Journal<br />

<strong>of</strong> Conchology 24: 201–207.<br />

Downing, J. A., Y. Rochon, M. Perusse & H. Harvey, 1993.<br />

Spatial aggregation, body <strong>size</strong>, <strong>and</strong> reproductive success in<br />

the freshwater <strong>mussel</strong> Elliptio complanata. Journal <strong>of</strong> the<br />

North American Benthological Society 12: 148–156.<br />

Engel, H., 1990. Untersuchungen zur Auto¨ kologie von Unio<br />

crassus (PHILIPSSON) in Norddeutschl<strong>and</strong>. PhD thesis,<br />

Universität Hannover.<br />

Falkner, G., 1990. Binnenmollusken. In Fechter, R. & G.<br />

Falkner, Weichtiere-Europäische Meeres- und Binnenmollusken.<br />

Mosaik Verlag, Mu¨ nchen: 112–273.<br />

Fischer, H., 2000. The abundance <strong>and</strong> production <strong>of</strong> bacteria in<br />

river sediments, <strong>and</strong> their relation to the biochemical composition<br />

<strong>of</strong> organic matter. PhD thesis, Universita¨ t Freiburg.


182<br />

Fleischauer-Ro¨ ssing, S., 1990. Untersuchungen zur Autökologie<br />

von Unio tumidus PHILIPSSON<br />

und Unio pictorum<br />

LINNAEUS<br />

(<strong>Bivalvia</strong>) unter besonderer Beru¨ cksichtigung der<br />

fru¨ hen postparasitären Phase. PhD thesis, Universität Hannover.<br />

Franke, G., 1993. Zur <strong>Population</strong>sökologie und Geschlechtsbiologie<br />

der Teichmuscheln A. anatina L. und A. cygnea L.<br />

(<strong>Bivalvia</strong>: Unionidae). Ms thesis, Universität Bayreuth.<br />

Glo¨ er, P. & C. Meier-Brook, 1994. Su¨ ßwassermollusken. DJN<br />

(ed.), Hamburg, 136 pp.<br />

Hanson, J. M., W. C. Mackay & E. E. Prepas, 1988. <strong>Population</strong><br />

<strong>size</strong>, growth, <strong>and</strong> production <strong>of</strong> a unionid clam, Anodonta<br />

gr<strong>and</strong>is simpsoniana, in a small, deep Boreal Forest lake in<br />

central Alberta. Canadian Journal <strong>of</strong> Zoology 66: 247–253.<br />

Haskin, H. H., 1954. Age determination in molluscs. Transactions<br />

<strong>of</strong> the New York Academy <strong>of</strong> Sciences, Series II 16:<br />

300–304.<br />

Haukioja, E. & T. Hakala, 1974. Vertical distribution <strong>of</strong><br />

freshwater <strong>mussel</strong>s (Pelecypoda, Unionidae) in southwestern<br />

Finl<strong>and</strong>. Annales Zoologici Fennici 11: 127–130.<br />

Haukioja, E. & T. Hakala, 1978. Measuring growth from shell<br />

rings in populations <strong>of</strong> Anodonta piscinalis (Pelecypoda,<br />

Unionidae). Annales Zoologici Fennici 15: 60–65.<br />

Heard, W. H., 1998. Brooding patterns in freshwater <strong>mussel</strong>s.<br />

Malacological Review, Supplement 7: 105–121.<br />

Hickley, P., 1983. Ecological notes on <strong>three</strong> <strong>species</strong> <strong>of</strong> <strong>mussel</strong>s<br />

(Anodonta anatina, Unio pictorum, Unio tumidus) in the River<br />

Eden, Kent. Transactions <strong>of</strong> the Kent Field Club 9: 71–81.<br />

Hille, S., 1997. Untersuchungen zur Ichthy<strong>of</strong>auna des Rycks.<br />

Author’s copy, Ernst-Moritz-Arndt-Universität Greifswald.<br />

Hochwald, S., 1997. <strong>Population</strong>sökologie der Bachmuschel<br />

(Unio crassus). Bayreuther Forum Ökologie 50, Bayreuth,<br />

181 pp.<br />

Hochwald, S. & G. Bauer, 1990. Untersuchungen zur <strong>Population</strong>so¨<br />

kologie und Fortpflanzungsbiologie der Bachmuschel<br />

Unio crassus (PHIL.) 1788. Schriftenreihe des Bayerischen<br />

L<strong>and</strong>esamtes fu¨ r Umweltschutz 97: 31–49.<br />

Holwerda, D. A. & P. R. Veenh<strong>of</strong>, 1984. Aspects <strong>of</strong> anaerobic<br />

metabolism in Anodonta cygnea L.. Comparative Biochemistry<br />

<strong>and</strong> Physiology 78B: 707–711.<br />

Jokela, J., E. T. Valtonen & M. Lappalainen, 1991. Development<br />

<strong>of</strong> glochidia <strong>of</strong> Anodonta piscinalis <strong>and</strong> their infection<br />

<strong>of</strong> fish in a small lake in northern Finl<strong>and</strong>. Archiv fu¨ r Hydrobiologie<br />

120: 345–355.<br />

Jueg, U., 1993. Die Situation der Großmuscheln in Mecklenburg-Vorpommern.<br />

Naturschutzarbeit in Mecklenburg-<br />

Vorpommern 36: 38–41.<br />

Klemm, A., T. Ludwig, M. Opitz & M. Zschutzschke, 1994/<br />

1995. Zur Best<strong>and</strong>ssituation charakteristischer Muschelarten<br />

des Gu¨ lper Sees. Naturschutz und L<strong>and</strong>schaftspflege in<br />

Br<strong>and</strong>enburg 4/1994–1/1995: 19–23.<br />

Krzyzanek, E., 1994. Changes in the bivalve groups (<strong>Bivalvia</strong>-<br />

Unionidae) in the Goczalkowice Reservoir (southern<br />

Pol<strong>and</strong>) in the period 1983–1992. Acta Hydrobiologica 36:<br />

103–113.<br />

LAWA, 1998. Beurteilung der Wasserbeschaffenheit von<br />

Fließgewässern in der Bundesrepublik Deutschl<strong>and</strong>-Chemische<br />

Gewässergu¨ teklassifikation. Kulturbuchverlag, Berlin,<br />

35 pp.<br />

Lew<strong>and</strong>owski, K., 1990. Unionidae <strong>of</strong> Szeszupa River <strong>and</strong> <strong>of</strong><br />

the lakes along its course in Suwalski L<strong>and</strong>scape Park. Ekologia<br />

Polska 38: 271–286.<br />

Lew<strong>and</strong>owski, K., 1991. Long-term changes in the fauna <strong>of</strong><br />

family Unionidae bivalves in the Mikolajskie Lake. Ekologia<br />

Polska 39: 265–272.<br />

Lew<strong>and</strong>owski, K. & A. Stanczykowska, 1975. The occurrence<br />

<strong>and</strong> role <strong>of</strong> bivalves <strong>of</strong> the family Unionidae in Mikolajskie<br />

Lake. Ekologia Polska 23: 317–334.<br />

Libois, R. M. & C. Hallet-Libois, 1987. The unionid <strong>mussel</strong>s<br />

(Mollusca, <strong>Bivalvia</strong>) <strong>of</strong> the Belgian upper River Meuse: an<br />

assessment <strong>of</strong> the impact <strong>of</strong> hydraulic works on the river<br />

water self-purification. Biological Conservation 42: 115–132.<br />

Maaß, S., 1987. Untersuchungen zur Fortpflanzungsbiologie<br />

einheimischer Süßwassermuscheln der Gattung Unio. PhD<br />

thesis, Tierärztliche Hochschule Hannover.<br />

Massabuau, J.-C., B. Burtin & M. Wheathly, 1991. How is O 2<br />

consumption maintained independent <strong>of</strong> ambient oxygen<br />

in <strong>mussel</strong> Anodonta cygnea? Respiration Physiology 83:<br />

103–114.<br />

Mentzen, R., 1926. Bemerkungen zur Biologie und Ökologie<br />

der mitteleuropa¨ ischen Unioniden. Archiv fu¨ r Hydrobiologie<br />

und Planktonkunde 17: 381–394.<br />

Meyer, H.-J., 1962. Faunistisch-o¨ kologische Untersuchungen<br />

des Ryck-Flusses bei Greifswald. Ms thesis, Ernst-Moritz-<br />

Arndt-Universita¨ t Greifswald.<br />

Miller, A. C. & B. S. Payne, 1988. The need for quantitative<br />

sampling to characterize <strong>size</strong> demography <strong>and</strong> density <strong>of</strong><br />

freshwater communities. American Malacological Bulletin 6:<br />

49–54.<br />

Miller, A. C. & B. S. Payne, 1993. Qualitative versus quantitative<br />

sampling to evaluate population <strong>and</strong> community<br />

characteristics at a large-river <strong>mussel</strong> bed. The American<br />

Midl<strong>and</strong> Naturalist 130: 133–145.<br />

Mouthon, J., 1996. Molluscs <strong>and</strong> biodegradable pollution in<br />

rivers: proposal for a scale <strong>of</strong> sensitivity <strong>of</strong> <strong>species</strong>. Hydrobiologia<br />

317: 221–229.<br />

Mu¨ hlenberg, M., 1989. Freil<strong>and</strong>o¨ kologie. Quelle & Meyer<br />

Verlag, Heidelberg; Wiesbaden, 340 pp.<br />

Mu¨ ller, D. & R. A. Patzner, 1996. Growth <strong>and</strong> age <strong>structure</strong> <strong>of</strong><br />

the swan <strong>mussel</strong> Anodonta cygnea (L.) at different depths<br />

in Lake Mattsee (Salzburg, Austria). Hydrobiologia 341:<br />

65–70.<br />

Mu¨ ller, G., 1978. Parameter fu¨ r Carabiden-Sukzessionen auf<br />

der Basis von Aktivitätsdichte-Werten. Pedobiologia 18:<br />

442–447.<br />

Mu¨ ller, G., 1987. Die Carabidenfauna der drei Nordbezirke der<br />

DDR-eine o¨ kologische Analyse zum Problem der Faunenveränderungen.<br />

PhD thesis II, Ernst-Moritz-Arndt-Universita¨<br />

t Greifswald.<br />

Nagel, K.-O., 1985. Glochidien und Fortpflanzungsbiologie<br />

von Najaden des Rheins (<strong>Bivalvia</strong>-Unionidae-Anodontinae).<br />

Mainzer Naturwissenschaftliches Archiv, Beiheft 5: 163–174.<br />

Negus, C., 1966. A quantitative study <strong>of</strong> growth <strong>and</strong> production<br />

<strong>of</strong> unionid <strong>mussel</strong>s in the River Thames at Reading.<br />

Journal <strong>of</strong> Animal Ecology 35: 513–532.<br />

Neves, R. J. & S. N. Moyer, 1988. Evaluation <strong>of</strong> techniques for<br />

age determination <strong>of</strong> freshwater <strong>mussel</strong>s (Unionidae).<br />

American Malacological Bulletin 6: 179–188.


183<br />

Niemeyer, B., 1993. Vergleichende Untersuchungen zur bionomischen<br />

Strategie der Teichmuschelarten Anodonta cygnea<br />

L. und Anodonta anatina L.. PhD thesis, Universität<br />

Hannover.<br />

Ogilvie, S. C. & S. F. Mitchell, 1995. A model <strong>of</strong> <strong>mussel</strong> filtration<br />

in a shallow New Zeal<strong>and</strong> lake, with reference to<br />

eutrophication control. Archiv fu¨ r Hydrobiologie 133: 471–<br />

482.<br />

Ökl<strong>and</strong>, J., 1963. Notes on population density, age distribution,<br />

growth, <strong>and</strong> habitat <strong>of</strong> Anodonta piscinalis NILSS. (Moll.,<br />

Lamellibr.) in a eutrophic Norwegian lake. Nytt Magasin for<br />

Zoologi 11: 19–43.<br />

Ostrovsky, I., M. Gophen & I. Kalikhman, 1993. Distribution,<br />

growth, production, <strong>and</strong> ecological significance <strong>of</strong> the clam<br />

Unio terminalis in Lake Kinneret, Israel. Hydrobiologia 271:<br />

49–63.<br />

Richardson, T. D. & P. Yokley, 1996. A note on sampling<br />

technique <strong>and</strong> evidence <strong>of</strong> recruitment in freshwater <strong>mussel</strong>s<br />

(Unionidae). Archiv fu¨ r Hydrobiologie 137: 135–140.<br />

Scholz, A., 1991. Su¨ ßwassermuscheln der Familie Unionidae im<br />

Regierungsbezirk Detmold-Gefa¨ hrdung und Schutz. Naturschutz-L<strong>and</strong>schaftspflege<br />

im Regierungsbezirk Detmold<br />

8: 8–14.<br />

Scholz, A., 1992. Die Großmuscheln (Unionidae) im Regierungsbezirk<br />

Detmold-Verbreitung, Biologie und Ökologie<br />

der ostwestfälischen Najaden. Naturschutz-L<strong>and</strong>schaftspflege<br />

im Regierungsbezirk Detmold, Sonderheft, Detmold,<br />

73 pp.<br />

Sheldon, F. & K. F. Walker, 1989. Effects <strong>of</strong> hypoxia on oxigen<br />

consumption by two <strong>species</strong> <strong>of</strong> freshwater <strong>mussel</strong> (Unionacea:<br />

Hyriidae) from the River Murray. Australian Journal <strong>of</strong><br />

Marine <strong>and</strong> Freshwater Research 40: 491–499.<br />

Soto, D. & G. Mena, 1999. Filter feeding by the freshwater<br />

<strong>mussel</strong>, Diplodon chilensis, as a biocontrol <strong>of</strong> salmon farming<br />

eutrophication. Aquaculture 171: 65–81.<br />

Tudorancea, C., 1972. Studies on Unionidae populations from<br />

the Crapina Jijila complex <strong>of</strong> pools (Danube zone liable to<br />

inundation). Hydrobiologia 39: 527–561.<br />

V<strong>and</strong>erploeg, H. A., J. R. Liebig & T. F. Nalepa, 1995. From<br />

picoplankton to microplankton: temperature-driven filtration<br />

by the unionid bivalve Lampsilis radiata siliquoidea in<br />

Lake St. Clair. Canadian Journal <strong>of</strong> Fisheries <strong>and</strong> Aquatic<br />

Sciences 52: 63–74.<br />

VE Meliorationskombinat Rostock, 1968. Vorflutausbau Ryck,<br />

Kreis Greifswald, Reg.-Nr. 13-1/05/LW/600/68.<br />

VE Meliorationskombinat Rostock, 1970. Vorflutausbau Ryck,<br />

Kreis Grimmen, Reg.-Nr. 13-1/07/LW/663/70.<br />

Wächtler, K., M. C. Dreher-Mansur & T. Richter, 2001. Larval<br />

types <strong>and</strong> early postlarval biology in naiads (Unionoida). In<br />

Bauer, G. & K. Wächtler (eds), Ecology <strong>and</strong> Evolution <strong>of</strong><br />

the Freshwater Mussels Unionoida. Springer-Verlag, Berlin,<br />

Heidelberg: 93–125.<br />

Wanke, H., 1996. Fließgewässer im L<strong>and</strong>kreis Nordvorpommern-Informationen<br />

der Kreisnaturschutzbehörde.<br />

Grimmen, 19 pp.<br />

Welker, M. & N. Walz, 1998. Can <strong>mussel</strong>s control the plankton in<br />

rivers? – a planktological approach applying a Lagrangian<br />

sampling strategy.Limnology<strong>and</strong>Oceanography 43:753–762.<br />

Wolff, W. J., 1968. The mollusca <strong>of</strong> the estuarine region <strong>of</strong> the<br />

rivers Rhine, Meuse <strong>and</strong> Scheldt in relation to the hydrography<br />

<strong>of</strong> the area. I. The Unionidae. Basteria 32: 13–47.<br />

Zˇ adin, V. I., 1938. Molljuski semejstva Unionidae. Fauna SSSR<br />

T. IV. Izdatel‘stvo akademii nauk SSSR, Moskva; Leningrad,<br />

170 pp.<br />

Zettler, M. L., 1996. The aquatic malac<strong>of</strong>auna (Gastropoda et<br />

<strong>Bivalvia</strong>) in the catchment area <strong>of</strong> a north German lowl<strong>and</strong><br />

river, the Warnow. Limnologica 26: 327–337.<br />

Zettler, M. L., 1998. Die Wassermollusken im Einzugsgebiet<br />

der Peene (Nordostdeutschl<strong>and</strong>). Malakologische Abh<strong>and</strong>lungen<br />

19: 127–138.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!