09.03.2014 Views

b - NTNU

b - NTNU

b - NTNU

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 3 – Rigid-Body Kinetics<br />

3.1 Newton–Euler Equations of Motion about CG<br />

3.2 Newton–Euler Equations of Motion about CO<br />

3.3 Rigid-Body Equations of Motion<br />

In order to derive the marine craft equations of motion, it is necessary to study of the<br />

motion of rigid bodies, hydrodynamics and hydrostatics.<br />

The overall goal of Chapter 3 is to show that the rigid-body kinetics can be expressed in a<br />

vectorial setting according to:<br />

M RB C RB RB #<br />

M RB Rigid-body mass matrix<br />

C RB Rigid-body Coriolis and centripetal matrix due to the rotation of {b} about {n}<br />

ν = [u,v,w,p,q,r] T generalized velocity expressed in {b}<br />

τ RB = [X,Y,Z,K,M,N] T generalized forces expressed in {b}<br />

1<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


Chapter 3 – Rigid-Body Kinetics<br />

The equations of motion will be represented in two body-fixed reference points:<br />

1) Center of gravity (CG), subscript g<br />

2) Origin o b of {b}, subscript b<br />

These points coincides if the vector<br />

r g 0 CO CG<br />

Time differentiation of a vector<br />

in a moving reference frame {b} satisfies<br />

i d<br />

dt a b d<br />

dt a b/i a<br />

Time differentiation in {b} is denoted as<br />

a : b d<br />

dt a <br />

{b}<br />

r b/i<br />

r g/i<br />

r g<br />

2<br />

{i}={n}<br />

inertial frame


3.1 Newton-Euler Equations of Motion<br />

about CG<br />

Coordinate-free vector: A vector v b/n , velocity of {b} with respect to {n}, is defined by its<br />

magnitude and direction but without reference to a coordinate frame.<br />

i<br />

Coordinate vector: A vector v b/n<br />

decomposed in the inertial reference frame is denoted by v b/n<br />

Newton-Euler Formulation<br />

Newton's Second Law relates mass m, acceleration v g/i and force f g according to:<br />

mv g/i fg<br />

Isaac Newton (1642-1726)<br />

where the subscript g denotes the center of gravity (CG).<br />

Euler's First and Second Axioms<br />

Euler suggested to express Newton's Second Law in terms of conservation<br />

of both linear momentum p g and angular momentum h according to:<br />

g<br />

i<br />

d<br />

dt p g Leonhard Euler (1707-1783)<br />

fg<br />

p g mv g/i #<br />

f g and m g are forces/moments about CG<br />

i<br />

d<br />

is the angular velocity of frame b relative frame i<br />

dt h g m g h g I g b/i # b/i<br />

I g is the inertia dyadic about the body's CG<br />

3<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.1.1 Translational Motion about CG<br />

When deriving the equations of motion it will be assumed that:<br />

(1) The vessel is rigid<br />

(2) The NED frame is inertial—that is, {n} ≈ {i}<br />

The first assumption eliminates the consideration of forces acting between individual<br />

elements of mass while the second eliminates forces due to the Earth's motion<br />

relative to a star-fixed inertial reference system such that:<br />

v g/i v g/n<br />

b/i b/n<br />

For guidance and navigation applications in space it is usual to use a star-fixed reference<br />

frame or a reference frame rotating with the Earth. Marine crafts are, on the other<br />

hand, usually related to the NED reference frame. This is a good assumption since<br />

forces on a marine craft due to the Earth's rotation:<br />

e/i 7.2921 10 5 rad/s<br />

are quite small compared to the hydrodynamic forces.<br />

4<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.1.1 Translational Motion about CG<br />

r g/n r b/n r g #<br />

{n} is inertial<br />

r g/i r b/i r g #<br />

Time differentiation of<br />

reference frame {b} gives<br />

v g/n v b/n <br />

For a rigid body, CG satisfies<br />

b<br />

d<br />

dt<br />

r g 0 #<br />

r g/n<br />

in a moving<br />

b<br />

d<br />

dt<br />

r g b/n r g #<br />

v g/n v b/n b/n r g #<br />

f g i d<br />

dt<br />

mv g/i <br />

i d<br />

dt<br />

mv g/n <br />

b d mv dt g/n m b/n mv g/n <br />

mv g/n b/n v g/n # b<br />

mv g/n<br />

r g<br />

CO<br />

r b/i<br />

r g/i<br />

{i}={n} inertial frame<br />

{b}<br />

Body-fixed reference frame {b} is fixed in<br />

the point CO and rotating with respect<br />

to the inertial frame {i}<br />

Translational Motion about CG Expressed in {b}<br />

S b<br />

b/n<br />

v b b<br />

g/n f g<br />

#<br />

CG<br />

5<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.1.2 Rotational Motion about CG<br />

The derivation starts with the Euler’s 2nd axiom:<br />

m g i d<br />

dt<br />

I g b/i <br />

i d<br />

dt<br />

I g b/n <br />

b d<br />

dt<br />

I g b/n b/n I g b/n <br />

I g b/n I g b/n b/n #<br />

Rotational Motion about CG Expressed in {b}<br />

b<br />

I g b/n<br />

SI g b b<br />

b/n b/n<br />

m g<br />

b<br />

where I g is the inertia matrix<br />

where I x , I y , and I z are the moments of inertia about {b} and I xy =I yx , I xz =I zx and I yz =I zy are the<br />

products of inertia defined as:<br />

I g :<br />

I x I xy I xz<br />

I yx I y I yz , I g I g 0 #<br />

I zx I zy I z<br />

I x V<br />

y 2 z 2 m dV;<br />

I y V<br />

x 2 z 2 m dV;<br />

I z V<br />

x 2 y 2 m dV;<br />

I xy V<br />

xy m dV V<br />

yx m dV I yx<br />

I xz V<br />

xz m dV V<br />

zx m dV I zx<br />

I yz V<br />

yz m dV V<br />

zy m dV I zy<br />

6<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.1.3 Equations of Motion about CG<br />

The Newton-Euler equations can be represented in matrix form according to:<br />

CG<br />

M RB<br />

b<br />

v g/n<br />

b<br />

b/n<br />

CG<br />

C RB<br />

b<br />

v g/n<br />

b<br />

b/n<br />

<br />

f g<br />

b<br />

m g<br />

b<br />

#<br />

Expanding the matrices give: Isaac Newton (1642-1726)<br />

Leonhard Euler (1707-1783)<br />

mI 33<br />

0 33<br />

b<br />

v g/n<br />

b<br />

b/n<br />

<br />

mS b b/n 0 33<br />

0 33 SI g b<br />

b/n <br />

b<br />

v g/n<br />

b<br />

b/n<br />

<br />

f g<br />

b<br />

m g<br />

b<br />

#<br />

0 33 I g<br />

CG<br />

M RB<br />

CG<br />

C RB<br />

7<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.2 Newton-Euler Equations of Motion<br />

about CO<br />

For marine craft it is desirable to derive the equations of motion<br />

for an arbitrary origin CO to take advantage of the craft's<br />

geometric properties. Since the hydrodynamic forces and<br />

moments often are computed in CO, Newton's laws will be<br />

formulated in CO as well.<br />

Transform the equations of motion from CG to CO<br />

using a coordinate transformation based on:<br />

b<br />

v g/n<br />

b<br />

v b/n<br />

b<br />

v b/n<br />

b<br />

v b/n<br />

b<br />

b/n<br />

r g<br />

b<br />

b<br />

r gb b/n<br />

S b<br />

r gb b/n #<br />

b<br />

v g/n<br />

b<br />

b/n<br />

Hr gb <br />

b<br />

v b/n<br />

b<br />

b/n<br />

#<br />

Transformation matrix:<br />

I 33 S r b<br />

Hr gb :<br />

g<br />

<br />

, H r gb <br />

0 33 I 33<br />

I 33<br />

0 33<br />

Sr gb I 33<br />

#<br />

8<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.2 Newton-Euler Equations of Motion<br />

about CO<br />

Newton-Euler equations in matrix form (about CG)<br />

CG<br />

M RB<br />

b<br />

v g/n<br />

b<br />

b/n<br />

CG<br />

C RB<br />

b<br />

v g/n<br />

b<br />

b/n<br />

<br />

f g<br />

b<br />

m g<br />

b<br />

#<br />

b<br />

v g/n<br />

b<br />

b/n<br />

Hr gb <br />

b<br />

v b/n<br />

b<br />

b/n<br />

#<br />

Expanding the matrices<br />

mI 33<br />

0 33<br />

b<br />

v g/n<br />

b<br />

b/n<br />

<br />

mS b b/n 0 33<br />

0 33 SI g b<br />

b/n <br />

b<br />

v g/n<br />

b<br />

b/n<br />

<br />

f g<br />

b<br />

m g<br />

b<br />

#<br />

0 33 I g<br />

CG<br />

M RB<br />

CG<br />

C RB<br />

Newton-Euler equations in matrix form (about CO)<br />

H r gb M CG RB Hr gb <br />

b<br />

v b/n<br />

b<br />

b/n<br />

H r gb C CG RB Hr gb <br />

b<br />

v b/n<br />

b<br />

b/n<br />

H r gb <br />

f g<br />

b<br />

m g<br />

b<br />

#<br />

9<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.2 Newton-Euler Equations of Motion<br />

about CO<br />

H r gb M CG RB Hr gb <br />

b<br />

v b/n<br />

b<br />

b/n<br />

H r gb C CG RB Hr gb <br />

b<br />

v b/n<br />

b<br />

b/n<br />

H r gb <br />

f g<br />

b<br />

m g<br />

b<br />

#<br />

The mass and Coriolis-centripetal matrices in CO are defined as:<br />

M CO RB : H r gb M CG RB Hr gb <br />

C CO RB : H r gb C CG RB Hr gb <br />

Expanding the matrices<br />

#<br />

#<br />

M CO RB <br />

mI 33<br />

mSr gb <br />

mSr gb <br />

I g mS 2 r gb <br />

#<br />

C CO RB <br />

mS b/n mS b/n Sr gb <br />

mSr gb S b/n SI g mS 2 r gb b/n <br />

#<br />

10<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.2.1 Translational Motion about CO<br />

Translational Motion about CO Expressed in {b}<br />

b<br />

mv b/n<br />

S b<br />

b/n<br />

r gb S b b<br />

b/n v b/n<br />

S 2 b<br />

b<br />

b/n r gb f b<br />

#<br />

An alternative representation using vector cross products is:<br />

b<br />

mv b/n<br />

b<br />

b/n<br />

r gb b b<br />

b/n v b/n<br />

b<br />

b/n<br />

b<br />

b<br />

b/n r gb f b<br />

#<br />

11<br />

Copyright © Bjarne Stenberg/<strong>NTNU</strong><br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.2.2 Rotational Motion about CO<br />

Rotational Motion about CO Expressed in {b}<br />

b<br />

I b b/n<br />

S b b<br />

b<br />

b/n I b b/n mSr gb v b/n<br />

mSr gb S b b b<br />

b/n v b/n m b #<br />

An alternative representation using vector cross products is:<br />

b<br />

I b b/n<br />

b<br />

b/n<br />

b<br />

I b b/n<br />

b<br />

mr gb v b/n<br />

b<br />

b/n<br />

v b b<br />

b/n m b #<br />

Theorem 3.1 (Parallel Axes or Huygens-Steiner Theorem)<br />

The inertia matrix I b about an arbitrary origin o b is given by:<br />

I g mSr gb S r gb I g mS 2 r gb <br />

I b #<br />

where I g is the inertia matrix about the body's center of gravity.<br />

Christian Huygens (1629-1695)<br />

Jakob Steiner (1796-1863)<br />

12<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.3 Rigid-Body Equations of Motion<br />

f b<br />

b<br />

X,Y,Z - force through o b expressed in b<br />

m b<br />

b<br />

K,M,N - moment about o b expressed in b<br />

b<br />

v b/n u,v,w - linear velocity of o b relative o n expressed in b<br />

b<br />

b/n p,q,r - angular velocity of b relative to n expressed in b<br />

r g<br />

b<br />

x g ,y g ,z g - vector from o b to CG expressed in b<br />

Component form (SNAME 1950)<br />

mu vr wq x g q 2 r 2 y g pq r z g pr q X<br />

mv wp ur y g r 2 p 2 z g qr p x g qp r Y<br />

mw uq vp z g p 2 q 2 x g rp q y g rq p Z<br />

I x p I z I y qr r pqI xz r 2 q 2 I yz pr q I xy<br />

my g w uq vp z g v wp ur K<br />

I y q I x I z rp p qrI xy p 2 r 2 I zx qp rI yz<br />

mz g u vr wq x g w uq vp M<br />

I z r I y I x pq q rpI yz q 2 p 2 I xy rq p I zx<br />

mx g v wp ur y g u vr wq N<br />

13<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.3.1 Nonlinear 6-DOF Rigid-Body<br />

Equations of Motion<br />

Matrix-Vector Form (Fossen 1991)<br />

M RB C RB RB<br />

u, v, w, p, q, r <br />

generalized velocity<br />

Property 3.1 (Rigid-Body System Inertia Matrix)<br />

<br />

M RB M RB 0, M RB 0 66<br />

M RB <br />

mI 33<br />

mSr g b <br />

mSr g b <br />

I o<br />

I 33 is the identity matrix<br />

m 0 0 0 mzg my g<br />

0 m 0 mzg 0 mxg<br />

I b I b 0 is the inertia<br />

matrix about CO<br />

<br />

0 0 m my g mxg 0<br />

0 mzg my g Ix Ixy Ixz<br />

#<br />

Sr b g is the matrix cross<br />

product operator<br />

mzg 0 mxg Iyx Iy Iyz<br />

my g mxg 0 Izx Izy Iz<br />

14<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.3.1 Nonlinear 6-DOF Rigid-Body<br />

Equations of Motion<br />

Theorem 3.2 (Coriolis-Centripetal Matrix from System Inertia Matrix)<br />

Let M be a 6×6 system inertia matrix defined as:<br />

M M <br />

M 11 M 12<br />

M 21 M 22<br />

0<br />

where M 21 = M 12T . Then the Coriolis-centripetal matrix can always be parameterized such that<br />

C C <br />

C <br />

0 33 SM 11 1 M 12 2 <br />

SM 11 1 M 12 2 <br />

SM 21 1 M 22 2 <br />

where<br />

1 u, v, w , 2 p, q, r <br />

Proof: Sagatun and Fossen (1991).<br />

15<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.3.1 Nonlinear 6-DOF Rigid-Body<br />

Equations of Motion<br />

Property 3.2 (Rigid-Body Coriolis and Centripetal Matrix)<br />

The rigid-body Coriolis and centripetal matrix<br />

that<br />

C RB <br />

is skew-symmetric, that is<br />

C RB C RB , 6<br />

C RB <br />

can always be represented such<br />

The skew-symmetric property is very useful when designing nonlinear motion control<br />

system since the quadratic form ν T C RB (ν)ν ≡ 0.<br />

This is exploited in energy-based designs where Lyapunov functions play a key role. The<br />

same property is also used in nonlinear observer design.<br />

There exists several parameterizations that satisfies Property 3.2. Two of them are<br />

presented on the forthcoming pages:<br />

16<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.3.1 Nonlinear 6-DOF Rigid-Body<br />

Equations of Motion<br />

Lagrangian Parameterization:<br />

Application of the Theorem 3.2 with M = M RB yields the following expression:<br />

C RB <br />

0 33 mS 1 mSS 2 r g b <br />

mS 1 mSS 2 r g b <br />

mSS 1 r g b SI o 2 <br />

which can be rewritten according to (Fossen and Fjellstad 1995):<br />

C RB <br />

0 33 mS 1 mS 2 Sr gb <br />

mS 1 mSr gb S 2 <br />

SI b 2 <br />

#<br />

Joseph-Louis Lagrange (1736-1813)<br />

In order to ensure that C RB (ν) = -C RB (ν) T , it is necessary to use S(ν₁)ν₁ = 0<br />

and include S(ν₁) in C RB<br />

{21}<br />

.<br />

17<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.3.1 Nonlinear 6-DOF Rigid-Body<br />

Equations of Motion<br />

Linear Velocity Independent Parameterization:<br />

By using the cross-product property S(ν₁)ν₂ = -S(ν₂)ν₁, it is possible to move S(ν₁)ν₂ from<br />

C RB<br />

{12}<br />

to C RB<br />

{11}<br />

. This gives an expression for C RB (ν) that is independent of linear velocity ν₁<br />

(Fossen and Fjellstad 1995):<br />

C RB <br />

mS 2 <br />

mSr gb S 2 <br />

mS 2 Sr gb <br />

SI b 2 <br />

#<br />

Remark 1: This expression is useful when ocean currents enter the equations of motion.<br />

The main reason for this is that C RB (ν) does not depend on linear velocity ν₁. This can be<br />

further exploited when considering a marine craft exposed to irrotational ocean currents.<br />

According to Property 8.1 in Section 8.3:<br />

M RB C RB M RB r C RB r r #<br />

if the relative velocity vector ν r = ν-ν c is defined such that only linear ocean current<br />

velocities are used:<br />

: u c ,v c ,w c ,0,0,0 #<br />

18<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.3.2 Linearized 6-DOF Rigid-Body<br />

Equations of Motion<br />

The nonlinear rigid-body equations of motion<br />

M RB C RB RB #<br />

can be linearized about ν₀ = [U,0,0,0,0,0] T for a marine craft moving at forward speed U.<br />

M RB C RB RB #<br />

0 0 0 0 0 0<br />

<br />

C RB M RB LU #<br />

The linearized Coriolis and centripetal forces<br />

are recognized as:<br />

L <br />

0 0 0 0 0 1<br />

0 0 0 0 1 0<br />

0 0 0 0 0 0<br />

0 0 0 0 0 0<br />

0 0 0 0 0 0<br />

#<br />

0<br />

mUr<br />

f c<br />

C <br />

RB <br />

mUq<br />

my g Uq mz g Ur<br />

#<br />

mx g Uq<br />

mx g Ur<br />

19<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.3.2 Linearized 6 DOF Rigid-Body<br />

Equations of Motion<br />

Simplified 6-DOF Rigid-Body Equations of Motion<br />

(1) Origin CO coincides with the CG<br />

This implies that<br />

r gb 0,0,0 , I b I g<br />

such that<br />

M RB <br />

mI 33<br />

0 33<br />

0 33 I g<br />

#<br />

A further simplification is obtained when the body axes (x b ,y b, z b ) coincide with the principal axes of<br />

inertia. This implies that<br />

I g diagIx cg ,Iy cg ,Iz cg <br />

20<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)


3.3.2 Linearized 6-DOF Rigid-Body<br />

Equations of Motion<br />

(2) Translation of the origin CO such that I b becomes diagonal:<br />

The body-fixed frame (x b ,y b, z b ) can be chosen such that:<br />

I b diagI x ,I y ,I z <br />

If I g is a full matrix, the parallel-axes theorem:<br />

gives<br />

I b I g mS 2 r gb I g mr gb r gb r gb r gb I 33 #<br />

I x Ix cg my g2 z g2 <br />

I y Iy cg mx g2 z g2 <br />

I z Iz cg mx g2 y g2 <br />

#<br />

where x g , y g and z g must be chosen such that:<br />

mIyz<br />

cg x g2 Ixy<br />

cg cg<br />

Ixz<br />

mIxz<br />

cg y g2 Ixy<br />

cg cg<br />

Iyz<br />

mIxy<br />

cg z g2 Ixz<br />

cg cg<br />

Iyz<br />

#<br />

21<br />

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!