10.03.2014 Views

Nonlinear stochastic differential equations and 1/f noise

Nonlinear stochastic differential equations and 1/f noise

Nonlinear stochastic differential equations and 1/f noise

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong><br />

<strong>and</strong> 1/f <strong>noise</strong><br />

Julius Ruseckas <strong>and</strong> Bronsilovas Kaulakys<br />

Institute of Theoretical Physics <strong>and</strong> Astronomy, Vilnius University, Lithuania<br />

August 28, 2012<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 1 / 32


Outline<br />

1 Introduction: 1/f <strong>noise</strong><br />

2 Stochastic <strong>differential</strong> <strong>equations</strong> giving 1/f <strong>noise</strong><br />

3 Some models resulting in proposed SDE<br />

Point processes<br />

Simple model of herding behavior<br />

4 Summary<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 2 / 32


Outline<br />

1 Introduction: 1/f <strong>noise</strong><br />

2 Stochastic <strong>differential</strong> <strong>equations</strong> giving 1/f <strong>noise</strong><br />

3 Some models resulting in proposed SDE<br />

Point processes<br />

Simple model of herding behavior<br />

4 Summary<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 2 / 32


Outline<br />

1 Introduction: 1/f <strong>noise</strong><br />

2 Stochastic <strong>differential</strong> <strong>equations</strong> giving 1/f <strong>noise</strong><br />

3 Some models resulting in proposed SDE<br />

Point processes<br />

Simple model of herding behavior<br />

4 Summary<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 2 / 32


Outline<br />

1 Introduction: 1/f <strong>noise</strong><br />

2 Stochastic <strong>differential</strong> <strong>equations</strong> giving 1/f <strong>noise</strong><br />

3 Some models resulting in proposed SDE<br />

Point processes<br />

Simple model of herding behavior<br />

4 Summary<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 2 / 32


What is 1/f <strong>noise</strong>?<br />

1/f <strong>noise</strong><br />

a type of <strong>noise</strong> whose power spectral density S(f ) behaves like<br />

S(f ) ∼ 1/f β , β is close to 1<br />

occasionally called “flicker <strong>noise</strong>”<br />

or “pink <strong>noise</strong>”<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 3 / 32


What is 1/f <strong>noise</strong>?<br />

1/f <strong>noise</strong><br />

a type of <strong>noise</strong> whose power spectral density S(f ) behaves like<br />

S(f ) ∼ 1/f β , β is close to 1<br />

occasionally called “flicker <strong>noise</strong>”<br />

or “pink <strong>noise</strong>”<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 3 / 32


What is 1/f <strong>noise</strong>?<br />

1/f <strong>noise</strong><br />

a type of <strong>noise</strong> whose power spectral density S(f ) behaves like<br />

S(f ) ∼ 1/f β , β is close to 1<br />

occasionally called “flicker <strong>noise</strong>”<br />

or “pink <strong>noise</strong>”<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 3 / 32


1/f <strong>noise</strong><br />

First observed (in 1925) by Johnson in vacuum tubes.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 4 / 32


1/f <strong>noise</strong><br />

Fluctuations of signals exhibiting 1/f behavior of the power spectral<br />

density at low frequencies have been observed in a wide variety of<br />

physical, geophysical, biological, financial, traffic, Internet,<br />

astrophysical <strong>and</strong> other systems.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 5 / 32


1/f <strong>noise</strong><br />

Many mathematical models:<br />

Superposition of relaxation processes<br />

S(f ) =<br />

∫ γ2<br />

γ 1<br />

N πN<br />

γ 2 dγ ≈<br />

+ ω2 2ω , γ 1 ≪ ω ≪ γ 2<br />

Dynamical systems at the edge of chaos<br />

x n+1 = x n + x z n mod 1<br />

Alternating fractal renewal process<br />

Self-Organized Criticallity<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 6 / 32


1/f <strong>noise</strong><br />

Many mathematical models:<br />

Superposition of relaxation processes<br />

S(f ) =<br />

∫ γ2<br />

γ 1<br />

N πN<br />

γ 2 dγ ≈<br />

+ ω2 2ω , γ 1 ≪ ω ≪ γ 2<br />

Dynamical systems at the edge of chaos<br />

x n+1 = x n + x z n mod 1<br />

Alternating fractal renewal process<br />

Self-Organized Criticallity<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 6 / 32


1/f <strong>noise</strong><br />

Many mathematical models:<br />

Superposition of relaxation processes<br />

S(f ) =<br />

∫ γ2<br />

γ 1<br />

N πN<br />

γ 2 dγ ≈<br />

+ ω2 2ω , γ 1 ≪ ω ≪ γ 2<br />

Dynamical systems at the edge of chaos<br />

x n+1 = x n + x z n mod 1<br />

Alternating fractal renewal process<br />

Self-Organized Criticallity<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 6 / 32


1/f <strong>noise</strong><br />

Many mathematical models:<br />

Superposition of relaxation processes<br />

S(f ) =<br />

∫ γ2<br />

γ 1<br />

N πN<br />

γ 2 dγ ≈<br />

+ ω2 2ω , γ 1 ≪ ω ≪ γ 2<br />

Dynamical systems at the edge of chaos<br />

x n+1 = x n + x z n mod 1<br />

Alternating fractal renewal process<br />

Self-Organized Criticallity<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 6 / 32


1/f <strong>noise</strong><br />

Many mathematical models:<br />

Superposition of relaxation processes<br />

S(f ) =<br />

∫ γ2<br />

γ 1<br />

N πN<br />

γ 2 dγ ≈<br />

+ ω2 2ω , γ 1 ≪ ω ≪ γ 2<br />

Dynamical systems at the edge of chaos<br />

x n+1 = x n + x z n mod 1<br />

Alternating fractal renewal process<br />

Self-Organized Criticallity<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 6 / 32


A bibliography on 1/f <strong>noise</strong> is vast<br />

Published items in each year. Topic: 1/f <strong>noise</strong>, 1/f fluctuations, flicker<br />

<strong>noise</strong>, pink <strong>noise</strong> (Web of Science)<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 7 / 32


1/f <strong>noise</strong><br />

Goal<br />

1/f <strong>noise</strong> is intermediate between white <strong>noise</strong>, S(f ) ∼ 1/f 0 <strong>and</strong><br />

Brownian motion S(f ) ∼ 1/f 2<br />

In contrast to the Brownian motion generated by the linear<br />

<strong>stochastic</strong> <strong>equations</strong>, the signals <strong>and</strong> processes with 1/f<br />

spectrum cannot be understood <strong>and</strong> modeled in such a way.<br />

to find a simple nonlinear <strong>stochastic</strong> <strong>differential</strong> equation (SDE)<br />

generating signals exibiting 1/f <strong>noise</strong><br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 8 / 32


1/f <strong>noise</strong><br />

Goal<br />

1/f <strong>noise</strong> is intermediate between white <strong>noise</strong>, S(f ) ∼ 1/f 0 <strong>and</strong><br />

Brownian motion S(f ) ∼ 1/f 2<br />

In contrast to the Brownian motion generated by the linear<br />

<strong>stochastic</strong> <strong>equations</strong>, the signals <strong>and</strong> processes with 1/f<br />

spectrum cannot be understood <strong>and</strong> modeled in such a way.<br />

to find a simple nonlinear <strong>stochastic</strong> <strong>differential</strong> equation (SDE)<br />

generating signals exibiting 1/f <strong>noise</strong><br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 8 / 32


1/f <strong>noise</strong><br />

Goal<br />

1/f <strong>noise</strong> is intermediate between white <strong>noise</strong>, S(f ) ∼ 1/f 0 <strong>and</strong><br />

Brownian motion S(f ) ∼ 1/f 2<br />

In contrast to the Brownian motion generated by the linear<br />

<strong>stochastic</strong> <strong>equations</strong>, the signals <strong>and</strong> processes with 1/f<br />

spectrum cannot be understood <strong>and</strong> modeled in such a way.<br />

to find a simple nonlinear <strong>stochastic</strong> <strong>differential</strong> equation (SDE)<br />

generating signals exibiting 1/f <strong>noise</strong><br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 8 / 32


Notes about 1/f <strong>noise</strong><br />

Often 1/f <strong>noise</strong> is defined by a long-memory process,<br />

characterized by S(f ) ∼ 1/f β as f → 0.<br />

A pure 1/f power spectrum is physically impossible because<br />

the total power would be infinity.<br />

We search for a model where the spectrum of signal has 1/f β<br />

behavior only in some intermediate region of frequencies,<br />

f min ≪ f ≪ f max , whereas for small frequencies f ≪ f min the<br />

spectrum is bounded.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 9 / 32


Notes about 1/f <strong>noise</strong><br />

Often 1/f <strong>noise</strong> is defined by a long-memory process,<br />

characterized by S(f ) ∼ 1/f β as f → 0.<br />

A pure 1/f power spectrum is physically impossible because<br />

the total power would be infinity.<br />

We search for a model where the spectrum of signal has 1/f β<br />

behavior only in some intermediate region of frequencies,<br />

f min ≪ f ≪ f max , whereas for small frequencies f ≪ f min the<br />

spectrum is bounded.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 9 / 32


Notes about 1/f <strong>noise</strong><br />

Often 1/f <strong>noise</strong> is defined by a long-memory process,<br />

characterized by S(f ) ∼ 1/f β as f → 0.<br />

A pure 1/f power spectrum is physically impossible because<br />

the total power would be infinity.<br />

We search for a model where the spectrum of signal has 1/f β<br />

behavior only in some intermediate region of frequencies,<br />

f min ≪ f ≪ f max , whereas for small frequencies f ≪ f min the<br />

spectrum is bounded.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 9 / 32


Heuristic derivation of SDE<br />

If S(f ) ∼ f −β then power spectral density has a scaling property<br />

S(af ) = a −β S(f )<br />

Wiener-Khintchine theorem<br />

C(t) =<br />

∫ +∞<br />

0<br />

S(f ) cos(2πft) df<br />

Autocorrelation function C(t) has scaling property<br />

C(at) ∼ a β−1 C(t)<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 10 / 32


Heuristic derivation of SDE<br />

If S(f ) ∼ f −β then power spectral density has a scaling property<br />

S(af ) = a −β S(f )<br />

Wiener-Khintchine theorem<br />

C(t) =<br />

∫ +∞<br />

0<br />

S(f ) cos(2πft) df<br />

Autocorrelation function C(t) has scaling property<br />

C(at) ∼ a β−1 C(t)<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 10 / 32


Heuristic derivation of SDE<br />

If S(f ) ∼ f −β then power spectral density has a scaling property<br />

S(af ) = a −β S(f )<br />

Wiener-Khintchine theorem<br />

C(t) =<br />

∫ +∞<br />

0<br />

S(f ) cos(2πft) df<br />

Autocorrelation function C(t) has scaling property<br />

C(at) ∼ a β−1 C(t)<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 10 / 32


Heuristic derivation of SDE<br />

Autocorrelation function can be written as<br />

∫ ∫<br />

C(t) = dx dx ′ xx ′ P 0 (x)P x (x ′ , t|x, 0)<br />

P 0 (x) is the steady state PDF<br />

P x (x ′ , t|x, 0) is the transition probability<br />

The transition probability can be obtained from the solution of the<br />

Fokker-Planck equation with the initial condition<br />

P x (x ′ , 0|x, 0) = δ(x ′ − x).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 11 / 32


Heuristic derivation of SDE<br />

Autocorrelation function can be written as<br />

∫ ∫<br />

C(t) = dx dx ′ xx ′ P 0 (x)P x (x ′ , t|x, 0)<br />

P 0 (x) is the steady state PDF<br />

P x (x ′ , t|x, 0) is the transition probability<br />

The transition probability can be obtained from the solution of the<br />

Fokker-Planck equation with the initial condition<br />

P x (x ′ , 0|x, 0) = δ(x ′ − x).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 11 / 32


Heuristic derivation of SDE<br />

Autocorrelation function can be written as<br />

∫ ∫<br />

C(t) = dx dx ′ xx ′ P 0 (x)P x (x ′ , t|x, 0)<br />

P 0 (x) is the steady state PDF<br />

P x (x ′ , t|x, 0) is the transition probability<br />

The transition probability can be obtained from the solution of the<br />

Fokker-Planck equation with the initial condition<br />

P x (x ′ , 0|x, 0) = δ(x ′ − x).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 11 / 32


Heuristic derivation of SDE<br />

Autocorrelation function can be written as<br />

∫ ∫<br />

C(t) = dx dx ′ xx ′ P 0 (x)P x (x ′ , t|x, 0)<br />

P 0 (x) is the steady state PDF<br />

P x (x ′ , t|x, 0) is the transition probability<br />

The transition probability can be obtained from the solution of the<br />

Fokker-Planck equation with the initial condition<br />

P x (x ′ , 0|x, 0) = δ(x ′ − x).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 11 / 32


Heuristic derivation of SDE<br />

Let us assume that<br />

Steady state PDF has power-law form<br />

P 0 (x) ∼ x −ν<br />

Trasnsition probability has a scaling property<br />

P(ax ′ , t|ax, 0) = a −1 P(x ′ , a 2(η−1) t|x, 0)<br />

Then the autocorrelation function will have the required scaling<br />

with<br />

β = 1 + ν − 3<br />

2(η − 1)<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 12 / 32


Heuristic derivation of SDE<br />

Let us assume that<br />

Steady state PDF has power-law form<br />

P 0 (x) ∼ x −ν<br />

Trasnsition probability has a scaling property<br />

P(ax ′ , t|ax, 0) = a −1 P(x ′ , a 2(η−1) t|x, 0)<br />

Then the autocorrelation function will have the required scaling<br />

with<br />

β = 1 + ν − 3<br />

2(η − 1)<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 12 / 32


Heuristic derivation of SDE<br />

Let us assume that<br />

Steady state PDF has power-law form<br />

P 0 (x) ∼ x −ν<br />

Trasnsition probability has a scaling property<br />

P(ax ′ , t|ax, 0) = a −1 P(x ′ , a 2(η−1) t|x, 0)<br />

Then the autocorrelation function will have the required scaling<br />

with<br />

β = 1 + ν − 3<br />

2(η − 1)<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 12 / 32


Heuristic derivation of SDE<br />

Let us assume that<br />

Steady state PDF has power-law form<br />

P 0 (x) ∼ x −ν<br />

Trasnsition probability has a scaling property<br />

P(ax ′ , t|ax, 0) = a −1 P(x ′ , a 2(η−1) t|x, 0)<br />

Then the autocorrelation function will have the required scaling<br />

with<br />

β = 1 + ν − 3<br />

2(η − 1)<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 12 / 32


Heuristic derivation of SDE<br />

To get the required scaling of transition probability:<br />

SDE should contain only powers of x<br />

The diffusion coefficient should be of the form x 2η<br />

The drift term is fixed by the requirement that the steady-state<br />

PDF should be x −ν<br />

Proposed SDE<br />

dx = σ 2 (η − ν/2)x 2η−1 dt + σx η dW t<br />

B. Kaulakys <strong>and</strong> J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).<br />

B. Kaulakys <strong>and</strong> J. Ruseckas, V. Gontis, <strong>and</strong> M. Alaburda, Physica A 365, 217 (2006).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 13 / 32


Heuristic derivation of SDE<br />

To get the required scaling of transition probability:<br />

SDE should contain only powers of x<br />

The diffusion coefficient should be of the form x 2η<br />

The drift term is fixed by the requirement that the steady-state<br />

PDF should be x −ν<br />

Proposed SDE<br />

dx = σ 2 (η − ν/2)x 2η−1 dt + σx η dW t<br />

B. Kaulakys <strong>and</strong> J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).<br />

B. Kaulakys <strong>and</strong> J. Ruseckas, V. Gontis, <strong>and</strong> M. Alaburda, Physica A 365, 217 (2006).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 13 / 32


Heuristic derivation of SDE<br />

To get the required scaling of transition probability:<br />

SDE should contain only powers of x<br />

The diffusion coefficient should be of the form x 2η<br />

The drift term is fixed by the requirement that the steady-state<br />

PDF should be x −ν<br />

Proposed SDE<br />

dx = σ 2 (η − ν/2)x 2η−1 dt + σx η dW t<br />

B. Kaulakys <strong>and</strong> J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).<br />

B. Kaulakys <strong>and</strong> J. Ruseckas, V. Gontis, <strong>and</strong> M. Alaburda, Physica A 365, 217 (2006).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 13 / 32


Heuristic derivation of SDE<br />

To get the required scaling of transition probability:<br />

SDE should contain only powers of x<br />

The diffusion coefficient should be of the form x 2η<br />

The drift term is fixed by the requirement that the steady-state<br />

PDF should be x −ν<br />

Proposed SDE<br />

dx = σ 2 (η − ν/2)x 2η−1 dt + σx η dW t<br />

B. Kaulakys <strong>and</strong> J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).<br />

B. Kaulakys <strong>and</strong> J. Ruseckas, V. Gontis, <strong>and</strong> M. Alaburda, Physica A 365, 217 (2006).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 13 / 32


Heuristic derivation of SDE<br />

To get the required scaling of transition probability:<br />

SDE should contain only powers of x<br />

The diffusion coefficient should be of the form x 2η<br />

The drift term is fixed by the requirement that the steady-state<br />

PDF should be x −ν<br />

Proposed SDE<br />

dx = σ 2 (η − ν/2)x 2η−1 dt + σx η dW t<br />

B. Kaulakys <strong>and</strong> J. Ruseckas, Phys. Rev. E 70, 020101(R) (2004).<br />

B. Kaulakys <strong>and</strong> J. Ruseckas, V. Gontis, <strong>and</strong> M. Alaburda, Physica A 365, 217 (2006).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 13 / 32


Transformation property<br />

Introducing<br />

z = x α<br />

we get the equation of the same type<br />

dz = σ ′2 (η ′ − ν ′ /2)z 2η′ −1 dt + σ ′ z η′ dW t<br />

only with different parameters<br />

σ ′ = ασ , η ′ = (η − 1)/α + 1 , ν ′ = (ν − 1)/α + 1<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 14 / 32


Restriction of diffusion<br />

Because of the divergence of the power-law distribution <strong>and</strong> the<br />

requirement of the stationarity of the process, the SDE should be<br />

analyzed together with the appropriate restrictions of the<br />

diffusion in some finite interval.<br />

When diffusion is restricted, scaling properties are only<br />

approximate, but 1/f spectrum remains in a wide interval of<br />

frequencies.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 15 / 32


Restriction of diffusion<br />

Because of the divergence of the power-law distribution <strong>and</strong> the<br />

requirement of the stationarity of the process, the SDE should be<br />

analyzed together with the appropriate restrictions of the<br />

diffusion in some finite interval.<br />

When diffusion is restricted, scaling properties are only<br />

approximate, but 1/f spectrum remains in a wide interval of<br />

frequencies.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 15 / 32


Restriction of diffusion<br />

Possible forms of restriction:<br />

Reflective boundary conditions at x = x min <strong>and</strong> x = x max<br />

Exponential restriction of the diffusion<br />

dx = σ 2 (<br />

η − ν 2 + m 2<br />

Steady state PDF:<br />

( xmin<br />

x<br />

) m<br />

−<br />

m<br />

2<br />

(<br />

P 0 (x) ∼ x −ν exp −<br />

( xmin<br />

x<br />

( x<br />

x max<br />

) m )<br />

x 2η−1 dt + σx η dW t<br />

) m<br />

−<br />

( x<br />

x max<br />

) m )<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 16 / 32


Restriction of diffusion<br />

Possible forms of restriction:<br />

Reflective boundary conditions at x = x min <strong>and</strong> x = x max<br />

Exponential restriction of the diffusion<br />

dx = σ 2 (<br />

η − ν 2 + m 2<br />

Steady state PDF:<br />

( xmin<br />

x<br />

) m<br />

−<br />

m<br />

2<br />

(<br />

P 0 (x) ∼ x −ν exp −<br />

( xmin<br />

x<br />

( x<br />

x max<br />

) m )<br />

x 2η−1 dt + σx η dW t<br />

) m<br />

−<br />

( x<br />

x max<br />

) m )<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 16 / 32


Restriction of diffusion<br />

Possible forms of restriction:<br />

Reflective boundary conditions at x = x min <strong>and</strong> x = x max<br />

Exponential restriction of the diffusion<br />

dx = σ 2 (<br />

η − ν 2 + m 2<br />

Steady state PDF:<br />

( xmin<br />

x<br />

) m<br />

−<br />

m<br />

2<br />

(<br />

P 0 (x) ∼ x −ν exp −<br />

( xmin<br />

x<br />

( x<br />

x max<br />

) m )<br />

x 2η−1 dt + σx η dW t<br />

) m<br />

−<br />

( x<br />

x max<br />

) m )<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 16 / 32


Restriction of diffusion<br />

q-exponential steady-state PDF<br />

dx = σ 2 (η − ν/2)(x + x 0 ) 2η−1 dt + σ(x + x 0 ) η dW t<br />

P 0 (x) ∼ exp 1+1/ν (−νx/x 0 )<br />

Reflective boundary condition at x = 0<br />

q-Gaussian steady-state PDF<br />

dx = σ 2 (η − ν/2)(x 2 + x0 2 )η−1 xdt + σ(x 2 + x0 2 )η/2 dW t<br />

P 0 (x) ∼ exp 1+2/ν (−νx 2 /2x0 2 )<br />

q-exponential function: exp q (x) ≡ (1 + (1 − q)x) 1/(1−q)<br />

J. Ruseckas <strong>and</strong> B. Kaulakys, Phys. Rev. E 84, 051125 (2011).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 17 / 32


Restriction of diffusion<br />

q-exponential steady-state PDF<br />

dx = σ 2 (η − ν/2)(x + x 0 ) 2η−1 dt + σ(x + x 0 ) η dW t<br />

P 0 (x) ∼ exp 1+1/ν (−νx/x 0 )<br />

Reflective boundary condition at x = 0<br />

q-Gaussian steady-state PDF<br />

dx = σ 2 (η − ν/2)(x 2 + x0 2 )η−1 xdt + σ(x 2 + x0 2 )η/2 dW t<br />

P 0 (x) ∼ exp 1+2/ν (−νx 2 /2x0 2 )<br />

q-exponential function: exp q (x) ≡ (1 + (1 − q)x) 1/(1−q)<br />

J. Ruseckas <strong>and</strong> B. Kaulakys, Phys. Rev. E 84, 051125 (2011).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 17 / 32


Connection with other <strong>equations</strong><br />

For some choces of parameters our SDE takes the form of well-known<br />

<strong>equations</strong>.<br />

η = 0 <strong>and</strong> σ = 1 corresponds to the Bessel process<br />

of dimension δ = 1 − ν<br />

dx = δ − 1<br />

2<br />

1<br />

x dt + dW t<br />

η = 1/2, σ = 2 corresponds to the squared Bessel process<br />

of dimension δ = 2(1 − ν)<br />

dx = δdt + 2 √ x dW t<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 18 / 32


Connection with other <strong>equations</strong><br />

For some choces of parameters our SDE takes the form of well-known<br />

<strong>equations</strong>.<br />

η = 0 <strong>and</strong> σ = 1 corresponds to the Bessel process<br />

of dimension δ = 1 − ν<br />

dx = δ − 1<br />

2<br />

1<br />

x dt + dW t<br />

η = 1/2, σ = 2 corresponds to the squared Bessel process<br />

of dimension δ = 2(1 − ν)<br />

dx = δdt + 2 √ x dW t<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 18 / 32


Connection with other <strong>equations</strong><br />

For some choces of parameters our SDE takes the form of well-known<br />

<strong>equations</strong>.<br />

η = 0 <strong>and</strong> σ = 1 corresponds to the Bessel process<br />

of dimension δ = 1 − ν<br />

dx = δ − 1<br />

2<br />

1<br />

x dt + dW t<br />

η = 1/2, σ = 2 corresponds to the squared Bessel process<br />

of dimension δ = 2(1 − ν)<br />

dx = δdt + 2 √ x dW t<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 18 / 32


Connection with other <strong>equations</strong><br />

SDE with exponential restriction with η = 1/2, x min = 0 <strong>and</strong> m = 1<br />

gives Cox-Ingersoll-Ross (CIR) process<br />

dx = k(θ − x)dt + σ √ x dW t<br />

where k = σ 2 /2x max , θ = x max (1 − ν)<br />

When ν = 2η, x max = ∞ <strong>and</strong> m = 2η − 2 then we get the<br />

Constant Elasticity of Variance (CEV) process<br />

where µ = σ 2 (η − 1)x 2(η−1)<br />

min<br />

dx = µxdt + σx η dW t<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 19 / 32


Connection with other <strong>equations</strong><br />

SDE with exponential restriction with η = 1/2, x min = 0 <strong>and</strong> m = 1<br />

gives Cox-Ingersoll-Ross (CIR) process<br />

dx = k(θ − x)dt + σ √ x dW t<br />

where k = σ 2 /2x max , θ = x max (1 − ν)<br />

When ν = 2η, x max = ∞ <strong>and</strong> m = 2η − 2 then we get the<br />

Constant Elasticity of Variance (CEV) process<br />

where µ = σ 2 (η − 1)x 2(η−1)<br />

min<br />

dx = µxdt + σx η dW t<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 19 / 32


Numerical example<br />

I(t)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6<br />

t<br />

Typical signal<br />

P(x)<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

10 -12<br />

10 -14<br />

10 -16<br />

10 -18<br />

0.1 1 10 100 1000 10000<br />

Distribution of x<br />

x<br />

10 1 0.1 1 10 100 1000 10000<br />

S(f)<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

Power spectral density<br />

f<br />

dx =<br />

(<br />

1 + x min<br />

2x − x<br />

2x max<br />

)x 4 dt + x 5 2 dW t<br />

ν = 3, η = 5 2 , x min = 1, x max = 10 3 .<br />

1/f spectrum.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 20 / 32


Intermittent behavior of solutions<br />

60<br />

50<br />

40<br />

I(t)<br />

30<br />

20<br />

10<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6<br />

t<br />

Signals generated by proposed SDE exhibit<br />

intemittent behavior: there are bursts corresponding to large<br />

deviations, separated by laminar phases.<br />

Bursts are characterized by power-law distributions of burst size,<br />

burst duration, <strong>and</strong> interburst time.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 21 / 32


Intermittent behavior of solutions<br />

60<br />

50<br />

40<br />

I(t)<br />

30<br />

20<br />

10<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6<br />

t<br />

Signals generated by proposed SDE exhibit<br />

intemittent behavior: there are bursts corresponding to large<br />

deviations, separated by laminar phases.<br />

Bursts are characterized by power-law distributions of burst size,<br />

burst duration, <strong>and</strong> interburst time.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 21 / 32


Outline<br />

1 Introduction: 1/f <strong>noise</strong><br />

2 Stochastic <strong>differential</strong> <strong>equations</strong> giving 1/f <strong>noise</strong><br />

3 Some models resulting in proposed SDE<br />

Point processes<br />

Simple model of herding behavior<br />

4 Summary<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 22 / 32


Point processes<br />

The signal of the model consists of pulses or events<br />

I(t) = a ∑ k<br />

δ(t − t k )<br />

Point processes arise in different fields such as physics,<br />

economics, ecology, neurology, seismology, traffic flow, financial<br />

systems <strong>and</strong> the Internet.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 23 / 32


Point processes<br />

The signal of the model consists of pulses or events<br />

I(t) = a ∑ k<br />

δ(t − t k )<br />

Point processes arise in different fields such as physics,<br />

economics, ecology, neurology, seismology, traffic flow, financial<br />

systems <strong>and</strong> the Internet.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 23 / 32


Point processes<br />

Let us assume that the signal x is the number of pulses per unit time.<br />

How to obtain equation for inter-event time τ k = t k − t k−1 :<br />

Transform the equation from the variable x to τ = 1/x<br />

Discretize the equation according to Euler-Marujama<br />

approximation<br />

Take time step equal to τ k<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 24 / 32


Point processes<br />

Let us assume that the signal x is the number of pulses per unit time.<br />

How to obtain equation for inter-event time τ k = t k − t k−1 :<br />

Transform the equation from the variable x to τ = 1/x<br />

Discretize the equation according to Euler-Marujama<br />

approximation<br />

Take time step equal to τ k<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 24 / 32


Point processes<br />

Let us assume that the signal x is the number of pulses per unit time.<br />

How to obtain equation for inter-event time τ k = t k − t k−1 :<br />

Transform the equation from the variable x to τ = 1/x<br />

Discretize the equation according to Euler-Marujama<br />

approximation<br />

Take time step equal to τ k<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 24 / 32


Point processes<br />

Let us assume that the signal x is the number of pulses per unit time.<br />

How to obtain equation for inter-event time τ k = t k − t k−1 :<br />

Transform the equation from the variable x to τ = 1/x<br />

Discretize the equation according to Euler-Marujama<br />

approximation<br />

Take time step equal to τ k<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 24 / 32


Point processes<br />

Example: equation<br />

dx = σ 2 x 4 dt + σx 5/2 dW<br />

leads to<br />

τ k+1 = τ k + σε k<br />

We obtained a simple r<strong>and</strong>om walk of inter-event time<br />

One of possible origins of 1/f <strong>noise</strong><br />

Brownian motion in time axis leads to 1/f <strong>noise</strong><br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 25 / 32


Point processes<br />

Example: equation<br />

dx = σ 2 x 4 dt + σx 5/2 dW<br />

leads to<br />

τ k+1 = τ k + σε k<br />

We obtained a simple r<strong>and</strong>om walk of inter-event time<br />

One of possible origins of 1/f <strong>noise</strong><br />

Brownian motion in time axis leads to 1/f <strong>noise</strong><br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 25 / 32


Point processes<br />

Example: equation<br />

dx = σ 2 x 4 dt + σx 5/2 dW<br />

leads to<br />

τ k+1 = τ k + σε k<br />

We obtained a simple r<strong>and</strong>om walk of inter-event time<br />

One of possible origins of 1/f <strong>noise</strong><br />

Brownian motion in time axis leads to 1/f <strong>noise</strong><br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 25 / 32


Point processes<br />

General case<br />

τ k+1 = τ k + γτ 2µ−1<br />

k<br />

where µ = 5/2 − η, γ = σ 2 (1 − η + ν/2).<br />

+ στ µ k ε k<br />

Used for modeling of the internote interval sequences of the<br />

musical rhythms<br />

D. J. Levitin, P. Chordia, <strong>and</strong> V. Menon, Proc. Natl. Acad. Sci. U.S.A. 109, 3716 (2012).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 26 / 32


Point processes<br />

General case<br />

τ k+1 = τ k + γτ 2µ−1<br />

k<br />

where µ = 5/2 − η, γ = σ 2 (1 − η + ν/2).<br />

+ στ µ k ε k<br />

Used for modeling of the internote interval sequences of the<br />

musical rhythms<br />

D. J. Levitin, P. Chordia, <strong>and</strong> V. Menon, Proc. Natl. Acad. Sci. U.S.A. 109, 3716 (2012).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 26 / 32


Herding model<br />

Simple model describing heterogeneous interacting agens:<br />

fixed number N of agents<br />

each of them can be in state 1 or in state 2<br />

agents do not have memory, dynamics described as a Markov<br />

chain<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 27 / 32


Herding model<br />

Simple model describing heterogeneous interacting agens:<br />

fixed number N of agents<br />

each of them can be in state 1 or in state 2<br />

agents do not have memory, dynamics described as a Markov<br />

chain<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 27 / 32


Herding model<br />

Simple model describing heterogeneous interacting agens:<br />

fixed number N of agents<br />

each of them can be in state 1 or in state 2<br />

agents do not have memory, dynamics described as a Markov<br />

chain<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 27 / 32


Herding model<br />

Transition probabilities per unit time:<br />

p(n → n + 1) = (N − n)(σ 1 + hn)<br />

p(n → n − 1) = n(σ 2 + h(N − n))<br />

n is the number of agents in state 1<br />

N − n is the number of agents in state 2<br />

σ 1 <strong>and</strong> σ 2 are probabilities to change the state spontaneously<br />

h describes herding tendency<br />

non-linear terms represent interaction between agents<br />

connectivity between agents increases with the number of agents<br />

N. The interactions have a global character, the range of the<br />

correlations involves a macroscopic fraction of agents.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 28 / 32


Herding model<br />

Transition probabilities per unit time:<br />

p(n → n + 1) = (N − n)(σ 1 + hn)<br />

p(n → n − 1) = n(σ 2 + h(N − n))<br />

n is the number of agents in state 1<br />

N − n is the number of agents in state 2<br />

σ 1 <strong>and</strong> σ 2 are probabilities to change the state spontaneously<br />

h describes herding tendency<br />

non-linear terms represent interaction between agents<br />

connectivity between agents increases with the number of agents<br />

N. The interactions have a global character, the range of the<br />

correlations involves a macroscopic fraction of agents.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 28 / 32


Herding model<br />

Transition probabilities per unit time:<br />

p(n → n + 1) = (N − n)(σ 1 + hn)<br />

p(n → n − 1) = n(σ 2 + h(N − n))<br />

n is the number of agents in state 1<br />

N − n is the number of agents in state 2<br />

σ 1 <strong>and</strong> σ 2 are probabilities to change the state spontaneously<br />

h describes herding tendency<br />

non-linear terms represent interaction between agents<br />

connectivity between agents increases with the number of agents<br />

N. The interactions have a global character, the range of the<br />

correlations involves a macroscopic fraction of agents.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 28 / 32


Herding model<br />

Transition probabilities per unit time:<br />

p(n → n + 1) = (N − n)(σ 1 + hn)<br />

p(n → n − 1) = n(σ 2 + h(N − n))<br />

n is the number of agents in state 1<br />

N − n is the number of agents in state 2<br />

σ 1 <strong>and</strong> σ 2 are probabilities to change the state spontaneously<br />

h describes herding tendency<br />

non-linear terms represent interaction between agents<br />

connectivity between agents increases with the number of agents<br />

N. The interactions have a global character, the range of the<br />

correlations involves a macroscopic fraction of agents.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 28 / 32


Herding model<br />

Transition probabilities per unit time:<br />

p(n → n + 1) = (N − n)(σ 1 + hn)<br />

p(n → n − 1) = n(σ 2 + h(N − n))<br />

n is the number of agents in state 1<br />

N − n is the number of agents in state 2<br />

σ 1 <strong>and</strong> σ 2 are probabilities to change the state spontaneously<br />

h describes herding tendency<br />

non-linear terms represent interaction between agents<br />

connectivity between agents increases with the number of agents<br />

N. The interactions have a global character, the range of the<br />

correlations involves a macroscopic fraction of agents.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 28 / 32


Herding model<br />

Transition probabilities per unit time:<br />

p(n → n + 1) = (N − n)(σ 1 + hn)<br />

p(n → n − 1) = n(σ 2 + h(N − n))<br />

n is the number of agents in state 1<br />

N − n is the number of agents in state 2<br />

σ 1 <strong>and</strong> σ 2 are probabilities to change the state spontaneously<br />

h describes herding tendency<br />

non-linear terms represent interaction between agents<br />

connectivity between agents increases with the number of agents<br />

N. The interactions have a global character, the range of the<br />

correlations involves a macroscopic fraction of agents.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 28 / 32


Herding model<br />

Transition probabilities per unit time:<br />

p(n → n + 1) = (N − n)(σ 1 + hn)<br />

p(n → n − 1) = n(σ 2 + h(N − n))<br />

n is the number of agents in state 1<br />

N − n is the number of agents in state 2<br />

σ 1 <strong>and</strong> σ 2 are probabilities to change the state spontaneously<br />

h describes herding tendency<br />

non-linear terms represent interaction between agents<br />

connectivity between agents increases with the number of agents<br />

N. The interactions have a global character, the range of the<br />

correlations involves a macroscopic fraction of agents.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 28 / 32


Herding model<br />

Ratio of the number of agents in the state 2 to the number of<br />

agents in the state 1:<br />

y = N − n<br />

n<br />

For large N we can represent the dynamics by SDE<br />

dy = [(2h − σ 1 )y + σ 2 ](1 + y)dt + √ 2hy(1 + y)dW<br />

When y ≫ 1 we get our non-linear SDE with parameters η = 3/2,<br />

ν = 1 + σ 1 /h<br />

If σ 1 = 2h, we obtain 1/f spectrum<br />

J. Ruseckas, B. Kaulakys <strong>and</strong> V. Gontis, EPL 96, 60007 (2011).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 29 / 32


Herding model<br />

Ratio of the number of agents in the state 2 to the number of<br />

agents in the state 1:<br />

y = N − n<br />

n<br />

For large N we can represent the dynamics by SDE<br />

dy = [(2h − σ 1 )y + σ 2 ](1 + y)dt + √ 2hy(1 + y)dW<br />

When y ≫ 1 we get our non-linear SDE with parameters η = 3/2,<br />

ν = 1 + σ 1 /h<br />

If σ 1 = 2h, we obtain 1/f spectrum<br />

J. Ruseckas, B. Kaulakys <strong>and</strong> V. Gontis, EPL 96, 60007 (2011).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 29 / 32


Herding model<br />

Ratio of the number of agents in the state 2 to the number of<br />

agents in the state 1:<br />

y = N − n<br />

n<br />

For large N we can represent the dynamics by SDE<br />

dy = [(2h − σ 1 )y + σ 2 ](1 + y)dt + √ 2hy(1 + y)dW<br />

When y ≫ 1 we get our non-linear SDE with parameters η = 3/2,<br />

ν = 1 + σ 1 /h<br />

If σ 1 = 2h, we obtain 1/f spectrum<br />

J. Ruseckas, B. Kaulakys <strong>and</strong> V. Gontis, EPL 96, 60007 (2011).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 29 / 32


Herding model<br />

Ratio of the number of agents in the state 2 to the number of<br />

agents in the state 1:<br />

y = N − n<br />

n<br />

For large N we can represent the dynamics by SDE<br />

dy = [(2h − σ 1 )y + σ 2 ](1 + y)dt + √ 2hy(1 + y)dW<br />

When y ≫ 1 we get our non-linear SDE with parameters η = 3/2,<br />

ν = 1 + σ 1 /h<br />

If σ 1 = 2h, we obtain 1/f spectrum<br />

J. Ruseckas, B. Kaulakys <strong>and</strong> V. Gontis, EPL 96, 60007 (2011).<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 29 / 32


Herding model<br />

10 2 10 -1 10 0 10 1 10 2 10 3 10 4<br />

S(f)<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

Power spectral density of the ratio of the numbers of agents.<br />

N = 10 000<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 30 / 32<br />

f


Summary<br />

We obtain a class of nonlinear SDEs giving the power-law<br />

behavior of the power spectral density in any desirably wide range<br />

of frequencies<br />

<strong>and</strong> power-law steady state distribution of the signal intensity.<br />

In special cases we obtain other well-known SDEs.<br />

One of the reasons for the appearance of the 1/f spectrum are<br />

scaling properties of the SDE.<br />

Proposed SDEs can be obtained from<br />

point processes with Brownian motion of inter-event time<br />

a simple agent model describing a herding behavior.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 31 / 32


Summary<br />

We obtain a class of nonlinear SDEs giving the power-law<br />

behavior of the power spectral density in any desirably wide range<br />

of frequencies<br />

<strong>and</strong> power-law steady state distribution of the signal intensity.<br />

In special cases we obtain other well-known SDEs.<br />

One of the reasons for the appearance of the 1/f spectrum are<br />

scaling properties of the SDE.<br />

Proposed SDEs can be obtained from<br />

point processes with Brownian motion of inter-event time<br />

a simple agent model describing a herding behavior.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 31 / 32


Summary<br />

We obtain a class of nonlinear SDEs giving the power-law<br />

behavior of the power spectral density in any desirably wide range<br />

of frequencies<br />

<strong>and</strong> power-law steady state distribution of the signal intensity.<br />

In special cases we obtain other well-known SDEs.<br />

One of the reasons for the appearance of the 1/f spectrum are<br />

scaling properties of the SDE.<br />

Proposed SDEs can be obtained from<br />

point processes with Brownian motion of inter-event time<br />

a simple agent model describing a herding behavior.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 31 / 32


Summary<br />

We obtain a class of nonlinear SDEs giving the power-law<br />

behavior of the power spectral density in any desirably wide range<br />

of frequencies<br />

<strong>and</strong> power-law steady state distribution of the signal intensity.<br />

In special cases we obtain other well-known SDEs.<br />

One of the reasons for the appearance of the 1/f spectrum are<br />

scaling properties of the SDE.<br />

Proposed SDEs can be obtained from<br />

point processes with Brownian motion of inter-event time<br />

a simple agent model describing a herding behavior.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 31 / 32


Summary<br />

We obtain a class of nonlinear SDEs giving the power-law<br />

behavior of the power spectral density in any desirably wide range<br />

of frequencies<br />

<strong>and</strong> power-law steady state distribution of the signal intensity.<br />

In special cases we obtain other well-known SDEs.<br />

One of the reasons for the appearance of the 1/f spectrum are<br />

scaling properties of the SDE.<br />

Proposed SDEs can be obtained from<br />

point processes with Brownian motion of inter-event time<br />

a simple agent model describing a herding behavior.<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 31 / 32


Thank you for your attention!<br />

Julius Ruseckas (Lithuania) <strong>Nonlinear</strong> <strong>stochastic</strong> <strong>differential</strong> <strong>equations</strong> August 28, 2012 32 / 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!