10.03.2014 Views

f Transcription factors in abiotic stress response Transcription ... - ITQB

f Transcription factors in abiotic stress response Transcription ... - ITQB

f Transcription factors in abiotic stress response Transcription ... - ITQB

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Transcription</strong> <strong>factors</strong><br />

<strong>in</strong> <strong>abiotic</strong> <strong>stress</strong> <strong>response</strong><br />

Nelson Saibo<br />

<strong>ITQB</strong><br />

ADONIS, 6 th March 2009<br />

Outl<strong>in</strong>e<br />

1 - Plant <strong>response</strong>s to adverse environmental conditions<br />

2 - <strong>Transcription</strong> <strong>factors</strong> and transcriptional regulation<br />

3 - <strong>Transcription</strong> <strong>factors</strong> <strong>in</strong>volved <strong>in</strong> <strong>abiotic</strong> <strong>stress</strong> <strong>response</strong>s<br />

4 -TFs and phtosynthetic <strong>response</strong>s to <strong>abiotic</strong> <strong>stress</strong><br />

5 - Identification and characterization of novel TFs<br />

ADONIS, 6 th March 2009<br />

1


Plants and the environmental conditions<br />

Environment altered beyond its normal<br />

range of variation to adversely affect<br />

the <strong>in</strong>dividual physiology of the<br />

organism <strong>in</strong> a significant way<br />

Plant <strong>stress</strong><br />

ADONIS, 6 th March 2009<br />

Plant <strong>response</strong> to <strong>abiotic</strong> <strong>stress</strong><br />

Cold Drought<br />

Sal<strong>in</strong>ity<br />

Chemical<br />

pollution<br />

Heat<br />

Cell damage<br />

Secondary <strong>stress</strong>:<br />

Osmotic <strong>stress</strong><br />

Oxidative <strong>stress</strong><br />

Signal sens<strong>in</strong>g, perception and transduction<br />

ABIOTIC STRESS<br />

50% crop loss world wide<br />

Osmosensor, second mensagers,<br />

MAPKs, Ca 2+ sensors, CDPKs<br />

<strong>Transcription</strong> control<br />

TFs: CBF/DREB, bZIB, MYC/MYB…<br />

Gene activation<br />

Osmoprotection, water and ion movement,<br />

detoxification, and chaperone functions<br />

Recovery of cellular homeostasis,<br />

functional and structural protection of<br />

prote<strong>in</strong>s and membranes<br />

Stress tolerance<br />

ADONIS, 6 th March 2009<br />

2


Abiotic <strong>stress</strong> tolerance is a<br />

multigenic trait<br />

Environmental stimuli<br />

or <strong>stress</strong><br />

TF<br />

Stress responsive genes<br />

STRESS TOLERANCE<br />

ADONIS, 6 th March 2009<br />

<strong>Transcription</strong> Factors<br />

<strong>Transcription</strong> <strong>factors</strong> (TFs) - prote<strong>in</strong>s that show sequence-specific<br />

DNA-b<strong>in</strong>d<strong>in</strong>g and that are capable acivat<strong>in</strong>g or repress<strong>in</strong>g gene transcription.<br />

+1<br />

Basic<br />

<strong>Transcription</strong><br />

mach<strong>in</strong>ery<br />

GGCATGGC TATA gene<br />

mRNA<br />

Promoter<br />

<strong>Transcription</strong> coregulators (coactivators/corepressors), chromat<strong>in</strong><br />

remodelers, histone acetylases, k<strong>in</strong>ases, and methylases play crucial<br />

roles <strong>in</strong> gene regulation, but lack DNA bid<strong>in</strong>g doma<strong>in</strong>s and therefore are<br />

not classified as TFs .<br />

ADONIS, 6 th March 2009<br />

3


<strong>Transcription</strong> <strong>in</strong> Eukaryotes<br />

a<br />

d<br />

b<br />

e<br />

c<br />

f<br />

ADONIS, 6 th March 2009<br />

<strong>Transcription</strong> <strong>in</strong> Eukaryotes<br />

Basic transcriptional<br />

mach<strong>in</strong>ery<br />

ADONIS, 6 th March 2009<br />

4


Schematic diagram of a prototypical<br />

transcription factor<br />

TFs conta<strong>in</strong> DNA-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> (DBD), signal sens<strong>in</strong>g doma<strong>in</strong> (SSD),<br />

and a transactivation doma<strong>in</strong> (TAD)<br />

The order of placement and the number of doma<strong>in</strong>s may differ <strong>in</strong> various<br />

types of TFs<br />

The transactivation and signal sens<strong>in</strong>g functions are frequently conta<strong>in</strong>ed<br />

with<strong>in</strong> the same doma<strong>in</strong><br />

ADONIS, 6 th March 2009<br />

<strong>Transcription</strong> Factor Families<br />

DNA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong><br />

FAMILY<br />

DNA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>(s)<br />

+<br />

(prote<strong>in</strong>-prote<strong>in</strong><br />

<strong>in</strong>teraction doma<strong>in</strong>s)<br />

Subfamily<br />

ADONIS, 6 th March 2009<br />

5


Arabidopsis<br />

<strong>Transcription</strong> Factors<br />

Relationships and doma<strong>in</strong><br />

shuffl<strong>in</strong>g among the different<br />

Arabidopsis transcription<br />

factor families<br />

Riechmann (2000) Science 290, 2105<br />

ADONIS, 6 th March 2009<br />

Eukaryotic <strong>Transcription</strong>al Regulators<br />

ADONIS, 6 th March 2009<br />

6


Plant TF families and their function<br />

AP2/ERF (144) Development (flower/seed/root); metabolic pathways;<br />

<strong>stress</strong> <strong>response</strong>; hormone <strong>response</strong> (ABA/C 2 H 4 )<br />

bHLH (139) Development (trichome/root/carpel) <strong>abiotic</strong> <strong>stress</strong>;<br />

secondary metabolism; light <strong>response</strong>s;<br />

MYB (190) Development; secondary metabolism; defence <strong>response</strong>;<br />

<strong>abiotic</strong> <strong>stress</strong>; hormone <strong>response</strong> (ABA/GA 3 ); cell cycle; light<br />

C2H2(Zn) (112) Flower/seed development; <strong>abiotic</strong> <strong>stress</strong>; light<br />

NAC (109) Development (meristem); aux<strong>in</strong>-<strong>response</strong>; virus resistance; *<br />

HB (90) Development (several); sucrose signall<strong>in</strong>g; cell death; *<br />

MADS (82) Reproductive organs development; flower<strong>in</strong>g time/abscission; *<br />

bZIP (77) Flower/leaf/photomorphogenic development; seed-storage;<br />

WRKY (72)<br />

defence <strong>response</strong>; hormone <strong>response</strong>/biosynthesis; *<br />

Defence <strong>response</strong>; *<br />

C2C2(Zn) (104) Seed development/metabolism; flower<strong>in</strong>g time; circadian<br />

rhythm; *<br />

* Abiotic <strong>stress</strong><br />

Riechmann 2002 <strong>Transcription</strong>al regulation: an overview. The Arabidopsis Book<br />

ADONIS, 6 th March 2009<br />

<strong>Transcription</strong>al regulatory network<br />

Environmental stimuli<br />

or <strong>stress</strong><br />

Developmental signals<br />

Induction<br />

P<br />

Modification<br />

U<br />

S<br />

A<br />

TF1<br />

Activ.<br />

B<br />

TF2 P<br />

C<br />

TF3<br />

U S<br />

promoter<br />

TFIID<br />

TFIIA<br />

TF TF TF<br />

II IIF II<br />

H<br />

P<br />

E<br />

TFIIB RNA pol II<br />

Basic mach<strong>in</strong>ery<br />

<strong>Transcription</strong><br />

TATA +1 ATGNNNNN<br />

gene<br />

mRNA<br />

ADONIS, 6 th March 2009<br />

7


Abiotic <strong>stress</strong> transcriptional network<br />

Biotic <strong>stress</strong><br />

and wound<strong>in</strong>g<br />

Drought, High sal<strong>in</strong>ity<br />

Signal perception<br />

Cold<br />

Jasmonic<br />

acid<br />

ABA<br />

ABA-<strong>in</strong>dependent<br />

ICE1<br />

HOS1<br />

SIZ1<br />

MYB15<br />

ICE1<br />

MYB<br />

MYC<br />

AREB/ABF<br />

ZF-HD<br />

NAC<br />

DREB2<br />

?<br />

CBF4/DREB1D<br />

CBF3/DREB1A<br />

CBF1/DREB1B<br />

?<br />

DREB2<br />

ZAT12<br />

AREB/ABF<br />

CBF2/DREB1C<br />

MYCR<br />

RD22<br />

MYBR<br />

ABRE<br />

rps-1like NACR<br />

RD29B<br />

ERD1<br />

CAB<br />

?<br />

STZ/ZAT10<br />

DRE/CRT<br />

RD29A<br />

? ?<br />

Annals Botany 2009 103, 609<br />

ADONIS, 6 th March 2009<br />

Manipulation of TFs to improve<br />

<strong>abiotic</strong> <strong>stress</strong> tolerance<br />

Nature Biotechnology 1999 17, 287<br />

ADONIS, 6 th March 2009<br />

8


DREB1A driven by the 35 S CaMV vs<br />

<strong>stress</strong> <strong>in</strong>ducible rd29A promoter<br />

35S:TF growth retardation<br />

Nature Biotechnology 1999 17, 287<br />

ADONIS, 6 th March 2009<br />

Both 35S:DREB1A and rd29A:DREB1A<br />

show enhanced <strong>stress</strong> tolerance<br />

Nature Biotechnology 1999 17, 287<br />

ADONIS, 6 th March 2009<br />

9


DREB1A target genes are strongly<br />

expressed under control conditions<br />

OX mimics i acclimation<br />

Higher <strong>stress</strong> tolerance<br />

Nature Biotechnology 1999 17, 287<br />

ADONIS, 6 th March 2009<br />

Overexpression of HvCBF4 <strong>in</strong> rice enhances<br />

drought tolerance<br />

NT<br />

Ubq::<br />

::HvCBF4<br />

12 days<br />

drought<br />

1 week<br />

recover<strong>in</strong>g<br />

Survival rate:<br />

• Plants overexpress<strong>in</strong>g HvCBF4 - 90%<br />

• Non transformed plants– 19%<br />

ADONIS, 6 th March 2009<br />

10


Overexpression of HvCBF4 <strong>in</strong> rice enhances<br />

drought tolerance<br />

Ubi::HvCBF4<br />

AtRD29A::HvCBF4<br />

NT<br />

0 2 3 4 6 8 9<br />

Days after withhold water<br />

0 2 4 6 8 11<br />

Days after withhold water<br />

ADONIS, 6 th March 2009<br />

AtDREB1A overexpressed <strong>in</strong> chrysanthemum<br />

enhances tolerance to heat <strong>stress</strong><br />

Survival rate:<br />

70,8%<br />

16,3%<br />

36h at 45ºC<br />

3 weeks 22ºC<br />

Plant Mol Biol<br />

DOI 10.1007/s11103-009-9468-z<br />

ADONIS, 6 th March 2009<br />

11


Higher photosynthetic capacity and<br />

elevated activity of Rubisco<br />

Plant Mol Biol<br />

DOI 10.1007/s11103-009-9468-z<br />

ADONIS, 6 th March 2009<br />

TF overexpression can improve<br />

photosynthetic performance under<br />

<strong>abiotic</strong> <strong>stress</strong><br />

ADONIS, 6 th March 2009<br />

12


Photosynthetic <strong>response</strong>s<br />

to <strong>abiotic</strong> <strong>stress</strong><br />

ABIOITIC STRESS<br />

Stomatal control of CO 2 diffusion<br />

Photosystem II repair<br />

Electron transport<br />

Rubisco activity<br />

Scaveng<strong>in</strong>g of ROS<br />

Photorespiration<br />

Photosynthetic efficiency<br />

is greatly decreased<br />

ADONIS, 6 th March 2009<br />

Are the photosynthetic <strong>response</strong>s to <strong>abiotic</strong><br />

<strong>stress</strong> modulated at transcriptional level?<br />

Annals Botany 2009 103, 609<br />

ADONIS, 6 th March 2009<br />

13


Gene expression <strong>in</strong> rice plants<br />

under drought <strong>stress</strong><br />

Drought <strong>stress</strong> causes<br />

down-regulation of rice<br />

genes cod<strong>in</strong>g for prote<strong>in</strong>s<br />

<strong>in</strong>volved <strong>in</strong> the<br />

photosynthetic light<br />

reactions<br />

Plant Mol Biol 2009 69, 133<br />

ADONIS, 6 th March 2009<br />

TFs <strong>in</strong>volved <strong>in</strong> the photosynthetic<br />

<strong>response</strong> to <strong>abiotic</strong> <strong>stress</strong><br />

Fast <strong>response</strong>s<br />

Long term <strong>response</strong>s<br />

MYB60<br />

Protodermal<br />

Cell<br />

Meristemoid<br />

Mother Cell<br />

Guard<br />

Mother Cell<br />

Mature Guard<br />

Cells<br />

ABI3<br />

MMC<br />

GMC<br />

Stomatal<br />

MYB61<br />

ABA<br />

SPCH<br />

ICE1+SCRM2<br />

ABA<br />

MAP KINASE<br />

PATHWAY<br />

Abiotic <strong>stress</strong><br />

MUTE<br />

ICE1+SCRM2<br />

FLP<br />

MYB88<br />

FAMA<br />

ICE1+SCRM2<br />

Annals Botany 2009 103, 609<br />

ADONIS, 6 th March 2009<br />

14


TFs <strong>in</strong>volved <strong>in</strong> the photosynthetic<br />

<strong>response</strong> to <strong>abiotic</strong> <strong>stress</strong><br />

Abiotic <strong>stress</strong><br />

LIGHT<br />

Non-stomatal<br />

Annals Botany 2009 103, 609<br />

MYB<br />

PSII<br />

PSI<br />

Chloroplast<br />

genes<br />

STZ<br />

AZF2<br />

Glyc<strong>in</strong>e<br />

beta<strong>in</strong>e<br />

Chloroplast<br />

bZIP<br />

Rubisco<br />

Calv<strong>in</strong><br />

cycle<br />

MYB?<br />

σ factor<br />

Mesophyll cell<br />

PpcI and GapI<br />

Nuclear<br />

genes<br />

Cytosol<br />

DOF<br />

PEPCase<br />

Bundle<br />

sheath<br />

ADONIS, 6 th March 2009<br />

NOVEL TRANSCRIPTION FACTORS<br />

REGULATING ABIOTIC STRESS<br />

TOLERANCE IN RICE (<br />

(ORYZA SATIVA L.)<br />

15


Rice <strong>in</strong> Portugal<br />

Consumption: 17 kg/capita/year<br />

Mondego<br />

Production: 60%<br />

Tejo<br />

Sorraia<br />

Sado<br />

PRESENT PROBLEMS:<br />

Pests and diseases<br />

Low production<br />

Infestants<br />

Cold<br />

Sal<strong>in</strong>ity<br />

ADONIS, 6 th March 2009<br />

What makes rice an ideal model<br />

organism?<br />

▪ Important crop<br />

ma<strong>in</strong> source of energy for<br />

2/3 of the world population<br />

▪ Rice genome fully sequenced ~ 400 Mb,<br />

(maize ~ 2500 Mb, barley ~ 5000 Mb, wheat ~ 16000 Mb)<br />

▪ High-efficiency genetic transformation<br />

▪ Genetic and physical maps of high density<br />

▪ High degree of synteny among genes <strong>in</strong> cereal genomes<br />

▪ Insertion knockout mutants available<br />

▪ Microarrays for the whole genome ~50.000 transcripts<br />

RICE - AN IDEAL MODEL ORGANISM FOR<br />

MONOCOTS AND CEREAL CROPS<br />

ADONIS, 6 th March 2009<br />

16


Low temperature signall<strong>in</strong>g pathway<br />

COLD<br />

ICE1<br />

[Ca 2+ ] cyt<br />

U<br />

HOS1<br />

P<br />

ICE1<br />

S<br />

K<strong>in</strong>ases<br />

SIZ1<br />

ICE1-like<br />

U<br />

ICE1<br />

MYB15<br />

Proteolysis<br />

DREB1A/<br />

CBF3<br />

DREB1C/<br />

CBF2<br />

DREB1B/<br />

CBF1<br />

CRT/DRE<br />

COR genes<br />

ACCLIMATION<br />

ADONIS, 6 th March 2009<br />

Yeast one-hybrid screen<strong>in</strong>g to isolate<br />

TFs or other DNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s<br />

2μ ori<br />

pACT II '<br />

PADH1<br />

GAL4-AD<br />

cDNA library<br />

Transformation<br />

Yeast reporter stra<strong>in</strong><br />

(leu2, his3)<br />

LEU2<br />

pINT1 vector<br />

library prote<strong>in</strong><br />

GAL4<br />

AD<br />

<strong>Transcription</strong><br />

if hybrid prote<strong>in</strong><br />

<strong>in</strong>teracts with bait sequence<br />

promoter X<br />

TATA<br />

HIS3 selection gene<br />

Selection for growth on histid<strong>in</strong>e-lack<strong>in</strong>g medium<br />

Ouwerkerk PBF, Meijer AH (2001) Cur. Prot. Mol. Bio.,12.12.1-12.12.22<br />

ADONIS, 6 th March 2009<br />

17


TFs controll<strong>in</strong>g the expression of OsHOS1<br />

ERF1<br />

-1500pb -1000pb -500pb<br />

ERF2<br />

ATG<br />

OsHOS1<br />

0 15´ 30´ 1h 2h 3h 5h<br />

ERF1<br />

Act<strong>in</strong><br />

ERF1 is down-regulated<br />

at low temperature (5ºC)<br />

ERF2 is not regulated at transcriptional level<br />

ADONIS, 6 th March 2009<br />

Low temperature signall<strong>in</strong>g pathway<br />

COLD<br />

ERF1<br />

U<br />

HOS1<br />

P<br />

ICE1<br />

ICE1<br />

S<br />

[Ca 2+ ] cyt<br />

K<strong>in</strong>ases<br />

SIZ1<br />

ICE1-like<br />

U<br />

ICE1<br />

MYB15<br />

Proteolysis<br />

DREB1A/<br />

CBF3<br />

DREB1C/<br />

CBF2<br />

DREB1B/<br />

CBF1<br />

CRT/DRE<br />

COR genes<br />

ACCLIMATION<br />

ADONIS, 6 th March 2009<br />

18


OsDREB1B gene is <strong>in</strong>duced by cold and<br />

drought<br />

Mock<br />

Control<br />

5ºC<br />

Control<br />

10ºC<br />

Control<br />

Drought<br />

Control<br />

0<br />

10’<br />

20’<br />

Shoot<br />

40’ 1h 2h<br />

5h<br />

10h<br />

24h<br />

0<br />

10’<br />

20’<br />

Root<br />

40’ 1h 2h<br />

5h<br />

10h<br />

24h<br />

TFs controll<strong>in</strong>g OsDREB1B expression:<br />

GFP::TF<br />

ZF-HD ZF-HD ZF-HD ZF-HD C2H2 bHLH C2H2 C2H2<br />

ATG<br />

OsDREB1B<br />

-1500pb<br />

-1000pb<br />

-500pb<br />

ADONIS, 6 th March 2009<br />

OsSTZ (C2H2) b<strong>in</strong>ds to OsDREB1B promoter<br />

OsSTZ is <strong>in</strong>duced by<br />

cold, salt, and drought<br />

Mock<br />

5ºC<br />

10ºC<br />

ABA<br />

NaCl<br />

Drought<br />

0<br />

10’<br />

20’<br />

Shoot<br />

40’ 1h 2h<br />

5h<br />

10h<br />

24h<br />

0<br />

10’<br />

20’<br />

Root<br />

40’ 1h 2h<br />

5h<br />

10h<br />

24h<br />

Mock<br />

5ºC<br />

10ºC<br />

ABA<br />

NaCl<br />

Drought<br />

0<br />

10’<br />

Internal control<br />

20’ 40’ 1h 2h 5h<br />

10h<br />

24h<br />

0<br />

10’<br />

Internal control<br />

20’ 40’ 1h 2h 5h<br />

10h<br />

24h<br />

ADONIS, 6 th March 2009<br />

19


OsPIF (bHLH) b<strong>in</strong>ds to OsDREB1B promoter<br />

The control of OsPIF expression by cold <strong>in</strong>volves<br />

alternative splic<strong>in</strong>g<br />

Mock<br />

0<br />

10’<br />

20’<br />

Shoot<br />

40’ 1h 2h<br />

5h<br />

10h<br />

24h<br />

0<br />

10’<br />

20’<br />

Root<br />

40’ 1h 2h<br />

5h<br />

10h<br />

24h<br />

5ºC<br />

10ºC<br />

ABA<br />

NaCl<br />

Drought<br />

Mock<br />

5ºC<br />

10ºC<br />

ABA<br />

NaCl<br />

Drought<br />

0<br />

10’<br />

Internal control<br />

20’ 40’ 1h 2h 5h<br />

10h<br />

24h<br />

0<br />

10’<br />

Internal control<br />

20’ 40’ 1h 2h 5h<br />

10h<br />

24h<br />

ADONIS, 6 th March 2009<br />

A C2H2 that b<strong>in</strong>ds to OsDREB1B promoter<br />

C2H2 transcription is <strong>in</strong>duced at a<br />

higher level <strong>in</strong> the roots<br />

Mock<br />

5ºC<br />

10ºC<br />

ABA<br />

NaCl<br />

Drought<br />

0<br />

10’<br />

20’<br />

Shoot<br />

40’ 1h 2h<br />

5h<br />

10h<br />

24h<br />

0<br />

10’<br />

20’<br />

Root<br />

40’ 1h 2h<br />

5h<br />

10h<br />

24h<br />

Mock<br />

5ºC<br />

10ºC<br />

ABA<br />

NaCl<br />

Drought<br />

0<br />

10’<br />

Internal control<br />

20’ 40’ 1h 2h 5h<br />

10h<br />

24h<br />

0<br />

10’<br />

Internal control<br />

20’ 40’ 1h 2h 5h<br />

10h<br />

24h<br />

ADONIS, 6 th March 2009<br />

20


Low temperature signall<strong>in</strong>g pathway<br />

COLD<br />

SALINITY<br />

DROUGHT<br />

ERF1<br />

U<br />

HOS1<br />

U<br />

ICE1<br />

ICE1<br />

P<br />

ICE1 S<br />

MYB15<br />

[Ca 2+ ] cyt<br />

K<strong>in</strong>ases<br />

SIZ1<br />

ICE1-like<br />

C2H2<br />

bHLH<br />

STZ<br />

Proteolysis<br />

DREB1A/<br />

CBF3<br />

DREB1C/<br />

CBF2<br />

DREB1B/<br />

CBF1<br />

CRT/DRE<br />

COR genes<br />

ACCLIMATION<br />

ADONIS, 6 th March 2009<br />

OsDREB1A gene is <strong>in</strong>duced by cold<br />

28ºC<br />

5ºC<br />

0<br />

15’<br />

30’<br />

1h<br />

Shoot<br />

2h<br />

3h<br />

5h<br />

7h<br />

12h 24h<br />

OsDREB1A<br />

Control<br />

Control<br />

OsAct<strong>in</strong>1<br />

Control of OsDREB1A expression:<br />

bZIP<br />

ATG<br />

-1500pb<br />

-1000pb<br />

-500pb<br />

OsDREB1A<br />

bZIP<br />

Known to be <strong>in</strong>volved <strong>in</strong><br />

biotic <strong>stress</strong> <strong>response</strong>s<br />

ADONIS, 6 th March 2009<br />

21


Low temperature signall<strong>in</strong>g pathway<br />

COLD<br />

SALINITY<br />

DROUGHT<br />

ERF1<br />

U<br />

HOS1<br />

U<br />

ICE1<br />

ICE1<br />

P<br />

ICE1 S<br />

MYB15<br />

[Ca 2+ ] cyt<br />

K<strong>in</strong>ases<br />

SIZ1<br />

ICE1-like<br />

C2H2<br />

bHLH<br />

STZ<br />

Proteolysis<br />

bZIP<br />

DREB1A/<br />

CBF3<br />

DREB1C/<br />

CBF2<br />

DREB1B/<br />

CBF1<br />

CRT/DRE<br />

COR genes<br />

BIOTIC<br />

ACCLIMATION<br />

ADONIS, 6 th March 2009<br />

Plant cell <strong>response</strong>s to sal<strong>in</strong>ity<br />

SALINITY<br />

High Na +<br />

RMC – Root Meander Curl<strong>in</strong>g<br />

- perception / <strong>response</strong> biotic <strong>stress</strong><br />

RMC<br />

Na<br />

+<br />

H +<br />

Ca +<br />

SOS3<br />

SOS2<br />

P ?<br />

ABI2<br />

H +<br />

SOS2<br />

CBL10<br />

Ca +<br />

Vacuole<br />

CAX1<br />

Ca +<br />

Ca +<br />

CBL10<br />

SOS2<br />

H +<br />

NHX1<br />

Na +<br />

H +<br />

P ?<br />

Li +<br />

SOS3<br />

SOS2<br />

NHX1 -Na<br />

Na + /H + antiport –<br />

tonoplast - <strong>response</strong> to salt <strong>stress</strong><br />

ADONIS, 6 th March 2009<br />

22


The expression of OsRMC and OsNHX1<br />

is <strong>in</strong>duced by NaCl<br />

100mM NaCl<br />

200mM NaCl<br />

OsRMC<br />

0h 2h 5h 12h 24h 2h 5h 12h 24h<br />

OsNHX1<br />

OsAct<strong>in</strong>1<br />

ADONIS, 6 th March 2009<br />

<strong>Transcription</strong>al regulation of OsRMC<br />

-1500pb<br />

ERF3<br />

-1000pb<br />

ERF4<br />

-500pb<br />

ATG<br />

OsRMC<br />

ERF3<br />

Homologue to the Arabidopsis ABR1, a<br />

negative regulator of ABA <strong>response</strong>s<br />

ERF4<br />

Phosphorylated <strong>in</strong> vitro by MPK12/BWMK1<br />

ADONIS, 6 th March 2009<br />

23


Salt signall<strong>in</strong>g pathway<br />

SALINITY<br />

BIOTIC<br />

ERF3<br />

P<br />

ERF4<br />

RMC<br />

Receptor?<br />

TF?<br />

TF?<br />

Responsive Elements<br />

Stress-responsiveresponsive genes<br />

ADONIS, 6 th March 2009<br />

Prelim<strong>in</strong>ary conclusions<br />

▪ The genes analysed are controlled by several TFs,<br />

differentially regulated by different <strong>stress</strong>es<br />

Regulation<br />

<strong>Transcription</strong>al<br />

Post-transcriptional<br />

transcriptional<br />

(and post-translational translational ?)<br />

▪ <strong>Transcription</strong>al regulation of OsDREB1A and OsRMC<br />

cold and sal<strong>in</strong>ity cross talk with<br />

biotic <strong>stress</strong> signall<strong>in</strong>g,<br />

light sens<strong>in</strong>g<br />

ADONIS, 6 th March 2009<br />

24


ACKNOWLEDGEMENTS<br />

Margarida Oliveira<br />

EGP Group<br />

Pieter Ouwerkerk<br />

Leiden University<br />

Duarte Figueiredo (DREB1B)<br />

Tânia Serra (RMC)<br />

Tiago Lourenço (HOS1)<br />

Subhash Chander (DREB1A)<br />

Pedro Barros (cDNA library)<br />

Roberto van Maanen (NHX1)<br />

FCT for the PhD and fellowships,<br />

and the project POCTI/BIA-BCM/56063/2004<br />

ADONIS – Marie Curie Action (tra<strong>in</strong><strong>in</strong>g and mobility)<br />

ADONIS, 6 th March 2009<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!