30.10.2012 Views

Dermoscopy of pigmented skin lesions - Dermatology

Dermoscopy of pigmented skin lesions - Dermatology

Dermoscopy of pigmented skin lesions - Dermatology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CLINICAL REVIEW<br />

<strong>Dermoscopy</strong> <strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong><br />

Ralph Peter Braun, MD, a Harold S. Rabinovitz, MD, b Margaret Oliviero, ARNP, MSN, b<br />

Alfred W. Kopf, MD, c and Jean-Hilaire Saurat, MD a<br />

Geneva,Switzerland;Miami,Florida;andNewYork,NewYork<br />

<strong>Dermoscopy</strong> is an in vivo method for the early diagnosis <strong>of</strong> malignant melanoma and the differential<br />

diagnosis <strong>of</strong> <strong>pigmented</strong> <strong>lesions</strong> <strong>of</strong> the <strong>skin</strong>. It has been shown to increase diagnostic accuracy over clinical<br />

visual inspection in the hands <strong>of</strong> experienced physicians. This article is a review <strong>of</strong> the principles <strong>of</strong><br />

dermoscopy as well as recent technological developments. ( J Am Acad Dermatol 2005;52:109-21.)<br />

In the last two decades a rising incidence <strong>of</strong><br />

malignant melanoma has been observed. 1-7<br />

Because <strong>of</strong> a lack <strong>of</strong> adequate therapies for<br />

metastatic melanoma, the best treatment currently<br />

is still early diagnosis and prompt surgical excision <strong>of</strong><br />

the primary cancer. 5,7 <strong>Dermoscopy</strong> (also known as<br />

epiluminescence microscopy, dermatoscopy, and<br />

amplified surface microscopy) is an in vivo method,<br />

that has been reported to be a useful tool for the early<br />

recognition <strong>of</strong> malignant melanoma. 8-11 The performance<br />

<strong>of</strong> dermoscopy has been investigated by<br />

many authors. Its use increases diagnostic accuracy<br />

between 5% and 30% over clinical visual inspection,<br />

depending on the type <strong>of</strong> <strong>skin</strong> lesion and experience<br />

<strong>of</strong> the physician. 12-16 This was confirmed by recent<br />

evidence-based publications and based on a metaanalysis<br />

<strong>of</strong> the literature. 17,18 This article is a review <strong>of</strong><br />

the principles <strong>of</strong> dermoscopy as well as recent<br />

technological developments.<br />

From the Pigmented Skin Lesion Unit, Department <strong>of</strong> <strong>Dermatology</strong>,<br />

University Hospital Geneva a ; Skin and Cancer Associates,<br />

Plantation, Fla, and Department <strong>of</strong> <strong>Dermatology</strong>, University <strong>of</strong><br />

Miami School <strong>of</strong> Medicine b ; and The Ronald O. Perelman<br />

Department <strong>of</strong> <strong>Dermatology</strong>, New York University School <strong>of</strong><br />

Medicine. c<br />

Funding sources: The work <strong>of</strong> Dr Braun has been supported by the<br />

Swiss Cancer League. Dr Kopf has the following funding<br />

sources: The Ronald O. Perelman Department <strong>of</strong> <strong>Dermatology</strong>,<br />

New York University School <strong>of</strong> Medicine, Joseph H. Hazen<br />

Foundation, Mary and Emanuel Rosenthal Foundation, Kaplan<br />

Comprehensive Cancer Center (Cancer Center Support Core<br />

Grant No. 5P30-CA-16087), Blair O. Rogers Medical Research<br />

Fund, The Rahr Family Foundation, and Stravros S. Niarchos<br />

Foundation Fund <strong>of</strong> the Skin Cancer Foundation.<br />

Conflict <strong>of</strong> interest: None.<br />

Accepted for publication November 9, 2001.<br />

Reprint requests: R. P. Braun, MD, Department <strong>of</strong> <strong>Dermatology</strong>,<br />

University Hospital Geneva, 24, rue Micheli-du-Crest, CH—<br />

1211Geneva 14, Switzerland. E-mail: braun@melanoma.ch.<br />

0190-9622/$30.00<br />

ª 2005 by the American Academy <strong>of</strong> <strong>Dermatology</strong>, Inc.<br />

doi:10.1016/j.jaad.2001.11.001<br />

HISTORY OF DERMOSCOPY<br />

Skin surface microscopy started in 1663 with<br />

Kolhaus who investigated the small vessels in the<br />

nailfold with the help <strong>of</strong> a microscope. 11,19 In 1878,<br />

Abbe described the use <strong>of</strong> immersion oil in light<br />

microscopy 20 and this principle was transferred to<br />

<strong>skin</strong> surface microscopy by the German dermatologist,<br />

Unna, in 1893. 21 He introduced the term<br />

‘‘diascopy’’ and described the use <strong>of</strong> immersion oil<br />

and a glass spatula for the interpretation <strong>of</strong> lichen<br />

planus and for the evaluation <strong>of</strong> the infiltrate in lupus<br />

erythematosus. The term ‘‘dermatoscopy’’ was introduced<br />

in 1920 by the German dermatologist<br />

Johann Saphier who published a series <strong>of</strong> communications<br />

using a new diagnostic tool resembling<br />

a binocular microscope with a built-in light source<br />

for the examination <strong>of</strong> the <strong>skin</strong>. 22-25 He used this new<br />

tool in various indications and did some interesting<br />

morphological observations on anatomical structures<br />

<strong>of</strong> the <strong>skin</strong> which indicated the high performance<br />

<strong>of</strong> his equipment. Skin surface microscopy<br />

was further developed in the United States by<br />

Goldman in the 1950s. He published a series <strong>of</strong><br />

interesting articles on new devices on what he called<br />

‘‘<strong>Dermoscopy</strong>.’’ 26-29 He was the first dermatologist to<br />

use this new technique for the evaluation <strong>of</strong> <strong>pigmented</strong><br />

<strong>skin</strong> <strong>lesions</strong>. In 1971, Rona MacKie 30 clearly<br />

identified, for the first time, the advantage <strong>of</strong> surface<br />

microscopy for the improvement <strong>of</strong> preoperative<br />

diagnosis <strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong> and for the<br />

differential diagnosis <strong>of</strong> benign versus malignant<br />

<strong>lesions</strong>. These investigations were continued mainly<br />

in Europe by several Austrian and German groups.<br />

The first Consensus Conference on Skin Surface<br />

Microscopy was held in 1989 in Hamburg 31 and the<br />

Consensus Netmeeting on <strong>Dermoscopy</strong>, which was<br />

held in 2001 in Rome 32 (http://www.dermoscopy.<br />

org), was the first international meeting <strong>of</strong> its<br />

kind. Today dermoscopy has become a routine<br />

technique in Europe and is gaining acceptance in<br />

other countries.<br />

109


110 Braun et al<br />

Table I. Vascular architecture <strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong> according to Kreusch and Koch 57<br />

PHYSICAL ASPECTS<br />

Light is either reflected, dispersed, or absorbed by<br />

the stratum corneum because <strong>of</strong> its refraction index<br />

and its optical density, which is different from air. 33<br />

Thus, deeper underlying structures cannot be adequately<br />

visualized. However, when various immersion<br />

liquids are used, they render the <strong>skin</strong> surface<br />

translucent and reduce the reflection, so that underlying<br />

structures are readily visible. The application<br />

<strong>of</strong> a glass plate flattens the <strong>skin</strong> surface and<br />

provides an even surface. Optical magnification is<br />

used for examination. Taken together, these optical<br />

means allow the visualization <strong>of</strong> certain epidermal,<br />

dermo-epidermal, and dermal structures.<br />

MATERIAL FOR DERMOSCOPY<br />

<strong>Dermoscopy</strong> requires optical magnification and<br />

liquid immersion. This can be performed with very<br />

simple, inexpensive equipment. 34,35 Specially designed<br />

handheld devices with 10 to 20 times magnification<br />

are commercially available (Dermatoscope<br />

[Heine AG]; DermoGenius Basic [Rodenstock<br />

Präzisionsoptik]; Episcope [Welch-Allyn]; DermLite<br />

[3Gen, LLC]). Photographic documentation can be<br />

performed with a dermoscopic attachment to a standard<br />

camera (Dermaphot, Heine, AG) which can be<br />

used also with some digital cameras. Most recently,<br />

digital cameras have been designed that are attached<br />

to computers. This allows easy storage, retrieval, and<br />

follow-up <strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>. For dermatologists<br />

with less experience in dermoscopy, some <strong>of</strong><br />

the systems may <strong>of</strong>fer the possibility <strong>of</strong> computerassisted<br />

diagnosis for malignant melanoma or for<br />

consulting an expert through telemedicine.<br />

Morphological aspect Type <strong>of</strong> pathology<br />

Tree-like vessels Thick, arborizing vessels, superficial Pigmented BCC <strong>of</strong> any type (discrete in<br />

superficial BCCs)<br />

Corona vessels ‘‘Surround’’ the tumor<br />

Thinner than tree-like vessels<br />

Less curved than tree-like vessels<br />

Sebaceous gland hyperplasia<br />

Comma-shaped vessels Short, strong, curved,<br />

Located on the tumor<br />

Short distance, parallel to <strong>skin</strong> surface<br />

Dermal nevi<br />

Point vessels Short capillary loops Thin malignant melanomas<br />

Dense packed red points Epithelial tumors such as actinic keratosis,<br />

Not in the holes <strong>of</strong> the pigment network Bowen’s disease, etc (short vertical height)<br />

Hairpin vessels Long capillary loops <strong>of</strong> thicker tumors at the<br />

border<br />

Thick melanomas<br />

Whitish halo in tumors with keratin SCC keratoacanthoma, seborrheic keratosis<br />

BCC, Basal cell carcinoma; SCC, squamous cell carcinoma.<br />

JAM ACAD DERMATOL<br />

JANUARY 2005<br />

DERMOSCOPIC CRITERIA<br />

Colors<br />

The use <strong>of</strong> dermoscopy allows the identification<br />

<strong>of</strong> many different structures and colors, not seen by<br />

the naked eye.<br />

Colors play an important role in dermoscopy.<br />

Common colors are light brown, dark brown, black,<br />

blue, blue-gray, red, yellow, and white. The most<br />

important chromophore in melanocytic neoplasms is<br />

melanin. 11,13,36 The color <strong>of</strong> melanin essentially<br />

depends on its localization in the <strong>skin</strong>. The color<br />

black is due to melanin located in the stratum<br />

corneum and the upper epidermis, light to dark<br />

brown in the epidermis, gray to gray-blue in the<br />

papillary dermis and steel-blue in the reticular<br />

dermis. 11,13 The color blue occurs when there is<br />

melanin localized within the deeper parts <strong>of</strong> the <strong>skin</strong><br />

because the portions <strong>of</strong> visible light with shorter<br />

wavelengths (blue-violet end <strong>of</strong> spectrum) are more<br />

dispersed than portions with longer wavelengths<br />

(red end <strong>of</strong> visible spectrum). 37,38 The color red is<br />

associated with an increased number or dilatation <strong>of</strong><br />

blood vessels, trauma, or neovascularization. The<br />

color white is <strong>of</strong>ten caused by regression and/or<br />

scarring. 11<br />

Dermoscopic structures<br />

In this context we will use the nomenclature as<br />

proposed by the recent Consensus Netmeeting (held<br />

in Rome in 2001) with some revisions 32 :<br />

Pigment network. The pigment network is<br />

a grid-like (honeycomb-like) network consisting<br />

<strong>of</strong> <strong>pigmented</strong> ‘‘lines’’ and hypo<strong>pigmented</strong><br />

‘‘holes.’’ 11,13,36,37,39 The anatomic basis <strong>of</strong> the


JAM ACAD DERMATOL<br />

VOLUME 52, NUMBER 1<br />

Fig 1. Two-step procedure for the classification <strong>of</strong> <strong>pigmented</strong><br />

<strong>skin</strong> <strong>lesions</strong>. Adapted from Argenziano G et al.<br />

J Am Acad Dermatol 2003;48:679-93. 32<br />

pigment network is either melanin pigment in<br />

keratinocytes, or in melanocytes along the dermoepidermal<br />

junction. 40 The reticulation (network) represents<br />

the rete ridge pattern <strong>of</strong> the epidermis. 41-43<br />

The relatively hypomelanotic holes in the network<br />

correspond to tips <strong>of</strong> the dermal papillae and the<br />

overlying suprapapillary plates <strong>of</strong> the epidermis.<br />

13,36,37<br />

The pigment network can be either typical or<br />

atypical. A typical network is relatively uniform,<br />

regularly meshed, homogeneous in color, and usually<br />

thinning out at the periphery. 36,39,44 An atypical<br />

network is nonuniform, with darker and/or broadened<br />

lines and ‘‘holes’’ that are heterogeneous in<br />

area and shape. The lines are <strong>of</strong>ten hyper<strong>pigmented</strong><br />

and may end abruptly at the periphery. 36,39,44<br />

If the rete ridges are short or less <strong>pigmented</strong>, the<br />

pigment network may not be visible. Areas devoid <strong>of</strong><br />

any network (but without signs <strong>of</strong> regression) are<br />

called ‘‘structureless areas.’’ 11,45<br />

Dots. Dots are small, round structures less than<br />

0.1 mm in diameter, which may be black, brown,<br />

gray, or blue-gray. 11,13,32,36 Black dots are caused by<br />

pigment accumulation in the stratum corneum and in<br />

the upper part <strong>of</strong> the epidermis. 11,37,42,46 Brown dots<br />

represent focal melanin accumulations at the dermoepidermal<br />

junction. 47 Gray-blue granules (peppering)<br />

are caused by tiny melanin structures in the<br />

papillary dermis. Gray-blue or blue granules are due<br />

to loose melanin, fine melanin particles or melanin<br />

‘‘dust’’ in melanophages or free in the deep papillary<br />

or reticular dermis. 11,37,42,46<br />

Globules. Globules are symmetrical, round to<br />

oval, well-demarcated structures that may be brown,<br />

black, or red. 11,13,32,36 They have a diameter which is<br />

usually larger than 0.1 mm and correspond to nests<br />

<strong>of</strong> <strong>pigmented</strong> benign or malignant melanocytes,<br />

clumps <strong>of</strong> melanin, and/or melanophages situated<br />

Braun et al 111<br />

Fig 2. Algorithm for the determination <strong>of</strong> melanocytic<br />

versus nonmelanocytic <strong>lesions</strong> according to the proposition<br />

<strong>of</strong> the Board <strong>of</strong> the Consensus Netmeeting. Adapted<br />

from Argenziano G et al. J Am Acad Dermatol 2003;48:<br />

679-93. 32<br />

usually in the lower epidermis, at the dermoepidermal<br />

junction, or in the papillary dermis. 11,37,42,46<br />

Both dots and globules may occur in benign as<br />

well as in malignant melanocytic proliferations. In<br />

benign <strong>lesions</strong>, they are rather regular in size and<br />

shape and quite evenly distributed (frequently in the<br />

center <strong>of</strong> a lesion). 32,36 In melanomas they tend to<br />

vary in size and shape and are frequently found in<br />

the periphery <strong>of</strong> <strong>lesions</strong>. 32,36,48<br />

Branched streaks. Branched streaks are an<br />

expression <strong>of</strong> an altered <strong>pigmented</strong> network in which<br />

the network becomes disrupted or broken up. 11,32,45<br />

Their pathological correlations are remnants <strong>of</strong> <strong>pigmented</strong><br />

rete ridges and bridging nests <strong>of</strong> melanocytic<br />

cells within the epidermis and papillary dermis. 11<br />

Radial streaming. Radial streaming appears as<br />

radially and asymmetrically arranged, parallel linear<br />

extensions at the periphery <strong>of</strong> a lesion. 13,49 Histologically,<br />

they represent confluent <strong>pigmented</strong> junctional<br />

nests <strong>of</strong> <strong>pigmented</strong> melanocytes. 13,36<br />

Pseudopods. Pseudopods represent fingerlike<br />

projections <strong>of</strong> dark pigment (brown to black) at the<br />

periphery <strong>of</strong> the lesion. 13,49,50 They may have small<br />

knobs at their tips, and are either connected to the<br />

pigment network or directly connected to the tumor<br />

body. 13,50 They correspond as well to intraepidermal<br />

or junctional confluent radial nests <strong>of</strong> melanocytes.<br />

13,50 Menzies et al 49 found pseudopods to be<br />

one <strong>of</strong> the most specific features <strong>of</strong> superficial<br />

spreading melanoma.<br />

Streaks. ‘‘Streaks’’ is a term used by some<br />

authors interchangeably with radial streaming or


112 Braun et al<br />

Fig 3. A, Macroscopic picture <strong>of</strong> a superficial spreading malignant melanoma (Breslow<br />

thickness 0.52 mm; Clark level II). B, <strong>Dermoscopy</strong> <strong>of</strong> A shows (atypical) pigment network and<br />

branched streaks and can therefore be considered a melanocytic lesion.<br />

Fig 4. A, Macroscopic picture <strong>of</strong> a blue nevus. B, <strong>Dermoscopy</strong> <strong>of</strong> A shows steel-blue areas (no<br />

pigment network, no aggregated globules, no branched streaks).<br />

Fig 5. A, Macroscopic picture <strong>of</strong> a seborrheic keratosis. B, <strong>Dermoscopy</strong> <strong>of</strong> A shows comedolike<br />

openings (a), multiple milia-like cysts (b), and fissures (c).<br />

Fig 6. A, Macroscopic picture <strong>of</strong> a seborrheic keratosis. B, <strong>Dermoscopy</strong> <strong>of</strong> A shows comedolike<br />

openings and multiple milia-like cysts.<br />

JAM ACAD DERMATOL<br />

JANUARY 2005


JAM ACAD DERMATOL<br />

VOLUME 52, NUMBER 1<br />

Fig 7. A, Macroscopic picture <strong>of</strong> a basal cell carcinoma. B, <strong>Dermoscopy</strong> <strong>of</strong> A shows maple<br />

leafelike areas, ovoid nests, and arborized telangiectasia.<br />

Fig 8. A, Macroscopic picture <strong>of</strong> a basal cell carcinoma. B, <strong>Dermoscopy</strong> <strong>of</strong> A shows multiple<br />

spoke wheel areas.<br />

Fig 9. A, Macroscopic picture <strong>of</strong> an angioma. B, <strong>Dermoscopy</strong> <strong>of</strong> A shows red lagoons.<br />

pseudopods. This is because both these structures<br />

have the same histopathological correlation. 11,37,42,46<br />

Streaks can be irregular, when they are unevenly<br />

distributed (malignant melanoma), or regular (symmetrical<br />

radial arrangement over the entire lesion).<br />

The latter is particularly found in the <strong>pigmented</strong><br />

spindle cell nevi (Reed’s nevi). 51-53<br />

Structureless areas. Structureless areas represent<br />

areas devoid <strong>of</strong> any discernible structures (eg,<br />

globules, network). They tend to be hypo<strong>pigmented</strong>,<br />

which is due to the absence <strong>of</strong> pigment or<br />

diminution <strong>of</strong> pigment intensity within a <strong>pigmented</strong><br />

<strong>skin</strong> lesion. 11<br />

Blotches. A blotch (also called black lamella by<br />

some authors) is caused by a large concentration <strong>of</strong><br />

Braun et al 113<br />

melanin pigment localized throughout the epidermis<br />

and/or dermis visually obscuring the underlying<br />

structures. 41-43,46<br />

Regression pattern. Regression appears as<br />

white scar-like depigmentation (lighter than the surrounding<br />

<strong>skin</strong>) or ‘‘peppering’’ (speckled multiple<br />

blue-gray granules within a hypo<strong>pigmented</strong> area).<br />

Histologically, regression shows fibrosis, loss <strong>of</strong> pigmentation,<br />

epidermal thinning, effacement <strong>of</strong> the rete<br />

ridges, and melanin granules free in the dermis or in<br />

melanophages scattered in the papillary dermis. 43,46<br />

Blue-white veil. Blue-white veil is an irregular,<br />

indistinct, confluent blue pigmentation with<br />

an overlying white, ground-glass haze. 13,32 The<br />

pigmentation cannot occupy the entire lesion.


114 Braun et al<br />

Table II. Pattern analysis according to Pehamberger et al 39 (modified)<br />

Lentigo simplex Junctional nevus Compound nevus Dermal nevus Blue nevus<br />

Regular pigment<br />

network without<br />

interruptions<br />

Regular border, thins<br />

out at periphery<br />

Black dots over grids<br />

<strong>of</strong> pigment<br />

network<br />

Brown-black globules<br />

at center <strong>of</strong> the<br />

lesion<br />

Regular pigment<br />

network without<br />

interruptions<br />

Regular border, thins<br />

out at periphery<br />

Heterogeneous holes<br />

<strong>of</strong> pigment<br />

network<br />

Histopathologically this corresponds to an aggregation<br />

<strong>of</strong> heavily <strong>pigmented</strong> cells or melanin in the<br />

dermis (blue color) in combination with a compact<br />

orthokeratosis. 13,32,36,43,46,54<br />

Vascular pattern. Pigmented <strong>skin</strong> <strong>lesions</strong> may<br />

have dermoscopically visible vascular patterns,<br />

which include ‘‘comma vessels,’’ ‘‘point vessels,’’<br />

‘‘tree-like vessels,’’ ‘‘wreath-like vessels,’’ and ‘‘hairpin-like<br />

vessels’’ (Table I). 55-57 Atypical vascular<br />

patterns may include linear, dotted, or globular red<br />

structures irregularly distributed within the lesion.<br />

32,36,58,59 Some <strong>of</strong> the vascular patterns may be<br />

caused by neovascularization. For the evaluation <strong>of</strong><br />

vascular patterns, there has to be as little pressure as<br />

possible on the lesion during examination because<br />

otherwise the vessels are simply compressed and<br />

will not be visible. The use <strong>of</strong> ultrasound gel for<br />

immersion helps to reduce the pressure necessary<br />

for the best evaluation <strong>of</strong> the <strong>skin</strong> lesion. 57<br />

Milia-like cysts. Milia-like cysts are round whitish<br />

or yellowish structures which are mainly seen in<br />

seborrheic keratosis.* They correspond to intraepidermal<br />

keratin-filled cysts and may also be seen in<br />

congenital nevi as well as in some papillomatous<br />

melanocytic nevi. At times, milia-like cysts are<br />

<strong>pigmented</strong>, and thus, can resemble globules.<br />

*References 8, 11, 13, 32, 36, 37, 49, 55, 60-63.<br />

Comedo-like openings (crypts, pseud<strong>of</strong>ollicular<br />

openings). Comedo-like openings (with<br />

‘‘blackhead-like plugs’’) are mainly seen in seborrheic<br />

keratoses or in some rare cases in papillomatous<br />

melanocytic nevi. y The keratin-filled invaginations<br />

<strong>of</strong> the epidermis correspond to the comedo-like<br />

structures histopathologically.<br />

Regular pigment<br />

network without<br />

interruptions<br />

Regular border, thins<br />

out at periphery<br />

Heterogeneous holes<br />

<strong>of</strong> pigment<br />

network<br />

No criteria for<br />

melanocytic lesion<br />

Brown globules Brown globules Homogeneous<br />

colors<br />

Homogeneous colors Homogeneous colors Symmetric papular<br />

appearance<br />

All criteria for<br />

melanocytic lesion<br />

possible<br />

Color heterogeneity<br />

possible<br />

Steel-blue areas<br />

No pigment network No pigment network<br />

Brown globules lll-defined<br />

White veils are<br />

possible<br />

‘‘Pseudonetwork’’ No pseudonetwork<br />

‘‘Comma’’-shaped<br />

blood vessels<br />

JAM ACAD DERMATOL<br />

JANUARY 2005<br />

y References 8, 11, 13, 32, 36, 37, 49, 55, 60-64.<br />

Fissures and ridges (‘‘brain-like appearance’’).<br />

Fissures are irregular, linear keratin-filled<br />

depressions, commonly seen in seborrheic keratoses.<br />

63 They may also be seen in melanocytic nevi<br />

with congenital patterns and in some dermal melanocytic<br />

nevi. Multiple fissures might give a ‘‘brainlike<br />

appearance’’ to the lesion. 32,36,63,65 This pattern<br />

has also been named ‘‘gyri and sulci’’ or ‘‘mountain<br />

and valley pattern’’ by some authors. 11<br />

Fingerprint-like structures. Some flat seborrheic<br />

keratoses (also known as solar lentigines) can<br />

show tiny ridges running parallel and producing<br />

a pattern that resembles fingerprints. 11,32,65,66<br />

Moth-eaten border. Some flat seborrheic keratoses<br />

(mainly on the face) have a concave border<br />

so that the pigment ends with a curved structure,<br />

which has been compared to a moth-eaten garment.<br />

11,13,32,63,65,66<br />

Leaf-like areas. Leaf-like areas (maple leafelike<br />

areas) are seen as brown to gray-blue discrete<br />

bulbous blobs, sometimes forming a leaf-like pattern.*<br />

Their distribution reminds one <strong>of</strong> the shape<br />

<strong>of</strong> finger pads. In absence <strong>of</strong> a pigment network,<br />

they are suggestive <strong>of</strong> <strong>pigmented</strong> basal cell carcinoma.<br />

11,32,67<br />

*References 8, 9, 11, 13, 32, 36, 37, 39, 55, 65,<br />

67, 68.<br />

Spoke wheelelike structures. Spoke wheele<br />

like structures are well-circumscribed, brown to<br />

gray-blue-brown, radial projections meeting at<br />

a darker brown central hub. 11,32,67 In the absence<br />

<strong>of</strong> a pigment network, they are highly suggestive <strong>of</strong><br />

basal cell carcinoma.


JAM ACAD DERMATOL<br />

VOLUME 52, NUMBER 1<br />

Table II. Cont’d<br />

Malignant melanoma Atypical (Clark) nevus Angioma Seborrheic keratosis Pigmented BCC<br />

Heterogeneous<br />

(colors and<br />

structures)<br />

Asymmetry (colors<br />

Irregular pigment<br />

network with<br />

interruptions<br />

Table III. ABCD rule <strong>of</strong> dermoscopy according to Stoiz et al (modified) 11,45<br />

Large blue-gray ovoid nests. Ovoid nests are<br />

large, well-circumscribed, confluent or near-confluent,<br />

<strong>pigmented</strong> ovoid areas, larger than globules,<br />

and not intimately connected to a <strong>pigmented</strong><br />

tumor body. 11,32,67 When a network is absent,<br />

ovoid nests are highly suggestive <strong>of</strong> basal cell<br />

carcinoma.<br />

No features <strong>of</strong><br />

melanocytic lesion<br />

No features for<br />

melanocytic lesion<br />

Braun et al 115<br />

No features for<br />

melanocytic lesion<br />

Heterogeneous holes No pigment network Pigment network Maple-leafelike<br />

and structures)<br />

usually absent pigmentation<br />

Irregular pigment Irregular border Red, red-blue, or Milia-like cysts Telangiectasia<br />

network<br />

red-black lagoons,<br />

( globules, saccules)<br />

Irregular border with Heterogeneity <strong>of</strong> Abrupt border cut-<strong>of</strong>f Pseud<strong>of</strong>ollicular Tree-like blood<br />

abrupt peripheral colors<br />

openings,<br />

vessels<br />

margin<br />

comedo-like<br />

openings (plugs)<br />

Structureless areas Gray-white veil Rough surface ‘‘Dirty’’ gray-brown to<br />

gray-black colors<br />

Gray-blue or red-rose Absence <strong>of</strong> primary<br />

Abrupt border cut-<strong>of</strong>f<br />

veils<br />

criteria for<br />

malignant<br />

melanoma<br />

Red<br />

Pseudopods/radial<br />

streaming<br />

Point and hairpin<br />

vessels<br />

Opaque gray-brown<br />

colors<br />

Points Weight factor Subscore range<br />

Asymmetry Complete symmetry 0 1.3 0-2.6<br />

Asymmetry in 1 axis 1<br />

Asymmetry in 2 axis 2<br />

Border 8 segments, 1 point for abrupt cut-<strong>of</strong>f <strong>of</strong> pigment 0-8 0.1 0-0.8<br />

Color 1 point for each color: 1-6 0.5 0.5-3.0<br />

White<br />

Red<br />

Light brown<br />

Dark brown<br />

Black<br />

Blue-gray<br />

Differential structures 1 point for every structure: 1-5 0.5 0.5-2.5<br />

Pigment network<br />

Structureless areas<br />

Dots<br />

Globules<br />

Streaks<br />

Total score range: 1.0-8.9<br />

Multiple blue-gray globules. Multiple bluegray<br />

globules are round, well-circumscribed structures<br />

that are, in the absence <strong>of</strong> a pigment network,<br />

highly suggestive <strong>of</strong> basal cell carcinoma. 11,32,67<br />

They have to be differentiated from multiple bluegray<br />

dots (which correspond to melanophages and<br />

melanin dust).


116 Braun et al<br />

Table IV. The 7-point checklist according to<br />

Argenziano et al 44<br />

Criteria<br />

Major criteria<br />

7-point score<br />

Atypical pigment network 2<br />

Blue-white veil 2<br />

Atypical vascular pattern<br />

Minor criteria<br />

2<br />

Irregular streaks 1<br />

Irregular pigmentation 1<br />

Irregular dots/globules 1<br />

Regression structures 1<br />

DIFFERENTIAL DIAGNOSIS OF<br />

PIGMENTED LESIONS OF THE SKIN<br />

There are many publications on the subject <strong>of</strong> the<br />

differential diagnosis <strong>of</strong> <strong>pigmented</strong> <strong>lesions</strong> <strong>of</strong> the<br />

<strong>skin</strong>. The 5 algorithms most commonly used are<br />

pattern analysis 8,39,62 ; the ABCD rule <strong>of</strong> dermoscopy<br />

11,45,70 ; the 7-point checklist 32,36,44 ; the<br />

Menzies method 13,32,49 ; and the revised pattern<br />

analysis. 71<br />

The Board <strong>of</strong> the Consensus Netmeeting agreed<br />

on a two-step procedure for the classification <strong>of</strong><br />

<strong>pigmented</strong> <strong>lesions</strong> <strong>of</strong> the <strong>skin</strong> (Fig 1). A similar<br />

approach has been proposed by other authors in<br />

the past.<br />

The first step is the differentiation between<br />

a melanocytic and a nonmelanocytic lesion. For<br />

this decision, the algorithm in Fig 2 is used.<br />

Are aggregated globules, pigment network,<br />

branched streaks (Fig 3), homogeneous blue pigmentation<br />

(blue nevus: Fig 4), or a parallel pattern<br />

(palms, soles, and mucosa) visible? If this is the case,<br />

the lesion should be considered as a melanocytic<br />

lesion (Fig 3). If not, the lesion should be evaluated<br />

for the presence <strong>of</strong> comedo-like plugs, multiple<br />

milia-like cysts, and comedo-like openings, irregular<br />

crypts, light brown fingerprint-like structures, or<br />

‘‘fissures and ridges’’ (brain-like appearance) pattern.<br />

If so, the lesion is suggestive <strong>of</strong> a seborrheic<br />

keratosis (Figs 5 and 6). If not, the lesion has to be<br />

evaluated for the presence <strong>of</strong> arborizing blood<br />

vessels (telangiectasia), leaf-like areas, large bluegray<br />

ovoid nests, multiple blue-gray globules, spoke<br />

wheel areas, or ulceration. If present, the lesion is<br />

suggestive <strong>of</strong> basal cell carcinoma (Figs 7 and 8). If<br />

not, one has to look for red or red-blue (to black)<br />

lagoons. If these structures are present, the lesion<br />

should be considered a hemangioma (Fig 9) oran<br />

angiokeratoma. If all the preceding questions were<br />

answered with ‘‘no,’’ the lesion should still be<br />

considered to be a melanocytic lesion.<br />

Table V. ‘‘The Menzies Method’’ according to<br />

Menzies et al 13,49<br />

Negative features<br />

Point and axial symmetry <strong>of</strong> pigmentation<br />

Presence <strong>of</strong> a single color<br />

Positive features<br />

Blue-white veil<br />

Multiple brown dots<br />

Pseudopods<br />

Radial streaming<br />

Scar-like depigmentation<br />

Peripheral black dots-globules<br />

Multiple colors (5 or 6)<br />

Multiple blue/gray dots<br />

Broadened network<br />

JAM ACAD DERMATOL<br />

JANUARY 2005<br />

Once the lesion is identified to be <strong>of</strong> melanocytic<br />

origin, the decision has to be made if the melanocytic<br />

lesion is benign, suspect, or malignant. To accomplish<br />

this, 4 different approaches are the most<br />

commonly used.<br />

Pattern analysis (Pehamberger et al)<br />

Pattern recognition has historically been used by<br />

clinicians and histopathologists to differentiate benign<br />

<strong>lesions</strong> from malignant neoplasms. A similar<br />

process has been found useful with dermoscopy,<br />

and has been termed ‘‘pattern analysis.’’ It allows<br />

distinction between benign and malignant growth<br />

features. It was described by Pehamberger and<br />

colleagues based on the analysis <strong>of</strong> more than 7000<br />

<strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>. 8,39,62 Table II shows the<br />

typical patterns <strong>of</strong> some common, <strong>pigmented</strong> <strong>skin</strong><br />

<strong>lesions</strong> using pattern analysis.<br />

ABCD rule <strong>of</strong> dermatoscopy (Stolz et al)<br />

The ABCD rule <strong>of</strong> dermatoscopy, described by<br />

Stolz et al in 1993 was based on an analysis <strong>of</strong> 157<br />

<strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>. 11,70 The complete ABCD<br />

rule is explained in Table III.<br />

For the evaluation <strong>of</strong> asymmetry, the lesion is<br />

divided into 4 segments (2 perpendicular axes). The<br />

axes are oriented so that the lowest asymmetry is<br />

obtained. For asymmetry in both axes, a value <strong>of</strong> 2 is<br />

obtained. To calculate the subscore, the value <strong>of</strong> each<br />

ABCD category has to be multiplied by the corresponding<br />

weight factor. To obtain the total score<br />

value, the different ABCD subscores have to be<br />

added.<br />

The total score ranges from 1 to 8.9. A lesion with<br />

a total score greater than 5.45 should be considered<br />

as melanoma. A lesion with a total score <strong>of</strong> 4.75<br />

or less can be considered as benign. A lesion with<br />

a score value between 4.75 and 5.45 should be


JAM ACAD DERMATOL<br />

VOLUME 52, NUMBER 1<br />

Table VI. Pattern <strong>of</strong> benign and malignant <strong>lesions</strong><br />

Benign Malignant<br />

Dots Centrally located or situated right on the Unevenly distributed and scattered focally at<br />

network<br />

the periphery<br />

Globules Uniform in size, shape, and color, symmetrically Globules that are unevenly distributed and<br />

located at the periphery, centrally located, or when reddish are highly suggestive <strong>of</strong><br />

uniform throughout the lesion as in a<br />

cobblestone pattern<br />

melanoma<br />

Streaks Radial streaming or pseudopods tend to be Radial streaming or pseudopods tend to be<br />

symmetrical and uniform at the periphery focal and irregular at periphery<br />

Blue-white veil Tends to be centrally located Tends to be asymmetrically located or diffuse<br />

almost over entire lesion<br />

Blotch Centrally located or may be diffuse<br />

Asymmetrically located or there are <strong>of</strong>ten<br />

hyper<strong>pigmented</strong> area that extends almost to<br />

periphery <strong>of</strong> the lesion<br />

multiple asymmetrical blotches<br />

Network Typical network that consists <strong>of</strong> light to dark Atypical network that may be nonuniform with<br />

uniform <strong>pigmented</strong> lines and<br />

black/brown or gray thickened lines and<br />

hypo<strong>pigmented</strong> holes<br />

holes <strong>of</strong> different sizes and shapes<br />

Network borders Either fades into the periphery or is<br />

symmetrically sharp<br />

Focally sharp<br />

considered ‘‘suspicious’’ and should therefore be<br />

monitored closely or removed. 11,70<br />

7-point checklist<br />

In 1998 Argenziano and colleagues described a 7point<br />

checklist based on the analysis <strong>of</strong> 342 <strong>pigmented</strong><br />

<strong>skin</strong> <strong>lesions</strong>. 32,36,44 They distinguish 3 major<br />

criteria and 4 minor criteria (Table IV). Each major<br />

criterion has a score <strong>of</strong> 2 points while each minor<br />

criterion has a score <strong>of</strong> 1 point. A minimum total<br />

score <strong>of</strong> 3 is required for the diagnosis <strong>of</strong> malignant<br />

melanoma.<br />

Menzies method<br />

In the Menzies method 13,32,49 for diagnosing<br />

melanoma, both <strong>of</strong> the following negative features<br />

must not be found: a single color (tan, dark brown,<br />

gray, black, blue, and red, but white is not considered)<br />

and ‘‘point and axial symmetry <strong>of</strong> pigmentation’’<br />

(refers to pattern symmetry around any axis<br />

through the center <strong>of</strong> the lesion). This does not<br />

require the lesion to have symmetry <strong>of</strong> shape.<br />

Additionally, at least one positive feature must be<br />

found (Table V).<br />

Exceptions to the algorithms<br />

The ABCD rule is not applicable for <strong>pigmented</strong><br />

<strong>lesions</strong> on the palms, soles, or face. 11 Palms and soles<br />

have a particular anatomy which is characterized by<br />

marked orthokeratosis and the presence <strong>of</strong> sulci and<br />

gyri. The sweat ducts join the surface at the summits<br />

<strong>of</strong> the gyri. 11,32 A classification <strong>of</strong> 10 different<br />

dermoscopy patterns on the palms and soles has<br />

been proposed by Saida et al. 72<br />

Braun et al 117<br />

The face has a very particular anatomic architecture<br />

especially concerning the dermoepidermal<br />

junction where rete ridges are shorter. That is why<br />

facial <strong>lesions</strong> <strong>of</strong>ten do not exhibit a regular pigment<br />

network. <strong>Dermoscopy</strong> shows a broadened pigment<br />

reticulation which is called a ‘‘pseudonetwork.’’ This<br />

does not correspond to the projection <strong>of</strong> <strong>pigmented</strong><br />

rete ridges. It is due to a homogeneous pigmentation<br />

which is interrupted by the surface openings <strong>of</strong> the<br />

adnexal structures. 11,66,73<br />

The differential diagnosis <strong>of</strong> a pseudonetwork is<br />

solar lentigo, seborrheic keratosis, lentigo simplex,<br />

melanoma in situ, lichen planuselike keratosis, and<br />

<strong>pigmented</strong> actinic keratosis. 11,66,73 These <strong>lesions</strong><br />

are <strong>of</strong>ten difficult to distinguish dermoscopically.<br />

However, when there are multiple colors and<br />

a broadened, thickened, and irregular ‘‘pseudonetwork,’’<br />

melanoma is <strong>of</strong>ten the diagnosis suggested.<br />

Other, more specific characteristics include an ‘‘annular<br />

granular’’ or ‘‘rhomboidal pattern.’’ 11,66,73<br />

Revised pattern analysis<br />

The overall general appearance <strong>of</strong> color, architectural<br />

order, symmetry <strong>of</strong> pattern, and homogeneity<br />

(CASH) are important components in distinguishing<br />

these two groups. Benign melanocytic <strong>lesions</strong> tend<br />

to have few colors, architectural order, symmetry <strong>of</strong><br />

pattern, or homogeneity. Malignant melanoma <strong>of</strong>ten<br />

has many colors and much architectural disorder,<br />

asymmetry <strong>of</strong> pattern, and heterogeneity.<br />

The reticular pattern or network pattern is the<br />

most common global feature in melanocytic <strong>lesions</strong>.<br />

This pattern represents the junctional component


118 Braun et al<br />

<strong>of</strong> a melanocytic nevus (Clark nevus, dysplastic<br />

nevus). 32,36,71<br />

Another pattern is the so-called globular pattern.<br />

It is characterized by the presence <strong>of</strong> numerous<br />

‘‘aggregated globules.’’ This pattern is commonly<br />

seen in a congenital nevus, superficial type. 32,36,71<br />

The cobblestone pattern is very similar to the<br />

globular pattern but is composed <strong>of</strong> closer aggregated<br />

globules, which are somehow angulated, resembling<br />

cobblestones.<br />

The homogeneous pattern appears as diffuse<br />

pigmentation, which might be brown, gray-blue,<br />

gray-black, or reddish black. 32,36,71 No pigment<br />

network or any other distinctive dermoscopy structure<br />

is found. An example is the homogeneous steelblue<br />

color seen in blue nevi.<br />

The so-called starburst pattern is characterized by<br />

the presence <strong>of</strong> streaks in a radial arrangement,<br />

which is visible at the periphery <strong>of</strong> the lesion. 32,36,71<br />

This pattern is commonly seen in Reed nevi or Spitz<br />

nevi.<br />

The parallel pattern is exclusively found on the<br />

palms and soles due to the particular anatomy <strong>of</strong><br />

these areas. 32,36,71<br />

The combination <strong>of</strong> 3 or more distinctive dermoscopic<br />

structures (ie, network, dots, and globules as<br />

well diffuse areas <strong>of</strong> hyperpigmentation and hypopigmentation)<br />

within a given lesion is called multicomponent<br />

pattern. 32,36,71 This pattern is highly<br />

suggestive <strong>of</strong> melanoma, but might be observed in<br />

some cases in acquired melanocytic nevi and congenital<br />

nevi.<br />

The term ‘‘<strong>lesions</strong> with indeterminate patterns’’<br />

are dermoscopic patterns that can be seen in both<br />

benign and malignant <strong>pigmented</strong> <strong>lesions</strong>. Clinically<br />

and dermoscopically, one cannot make a distinction<br />

between whether they are melanomas or atypical<br />

nevi.<br />

In addition to the global features already mentioned,<br />

the local features (dermoscopic structures<br />

such as the pigment network, dots, and globules, etc)<br />

are important to evaluate melanocytic <strong>lesions</strong><br />

(Table VI).<br />

PERSPECTIVES<br />

Because computer hardware has become userfriendly<br />

and more affordable, digital dermoscopy<br />

will become more integrated into the clinical setting.<br />

The currently available digital dermoscopic systems<br />

already have an acceptable picture quality which<br />

comes close to a photograph. 74 Digital images <strong>of</strong>fer<br />

the possibility <strong>of</strong> computer storage and retrieval <strong>of</strong><br />

dermoscopic images and patient data. 48,75-78 Some<br />

systems even <strong>of</strong>fer the potential <strong>of</strong> ‘‘computerassisted<br />

diagnosis.’’ 79-94 Because diagnostic accuracy<br />

JAM ACAD DERMATOL<br />

JANUARY 2005<br />

with dermoscopy has been shown to depend on the<br />

experience <strong>of</strong> the dermatologist, such objective<br />

systems might help less-experienced dermatologists<br />

in the future.<br />

Another expanding field is teledermoscopy. At<br />

the beginning <strong>of</strong> the digital dermoscopic era, teledermoscopy<br />

was used between experts to exchange<br />

difficult or interesting images. The development <strong>of</strong><br />

new electronic media and the evolution <strong>of</strong> the<br />

Internet will have an important impact as the infrastructure<br />

becomes available to almost everyone,<br />

and the exchange is now easy to perform. Recent<br />

studies were able to show the feasibility and importance<br />

<strong>of</strong> teledermoscopy. 95-98 This was recently used<br />

in a Consensus Netmeeting on <strong>Dermoscopy</strong> held in<br />

Rome during the first World 57,69 Congress on <strong>Dermoscopy</strong><br />

(http://www.dermoscopy.org). 32<br />

We thank Dr G. Argenziano, Dr J. Kreusch, Pr<strong>of</strong>essor S.<br />

Menzies, Pr<strong>of</strong>essor H. Pehamberger, and Pr<strong>of</strong>essor W.<br />

Stolz for their suggestions and their permission for the<br />

reproductions. We also thank Dr S. Rabinovitz for her help<br />

during the entire editing process and for her valuable<br />

suggestions.<br />

REFERENCES<br />

1. Rigel DS, Friedman RJ, Kopf AW. The incidence <strong>of</strong> malignant<br />

melanoma in the United States: Issues as we approach the<br />

21st century. J Am Acad Dermatol 1996;34:839-47.<br />

2. Rigel DS, Friedman RJ, Kopf AW. Lifetime risk for development<br />

<strong>of</strong> <strong>skin</strong> cancer in the U.S. population: current estimate is now 1<br />

in 5. J Am Acad Dermatol 1996;35:1012-3.<br />

3. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics,<br />

1999. CA Cancer J Clin 1999;49:8-31.<br />

4. Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics,<br />

1998. CA Cancer J Clin 1998;48:6-29.<br />

5. Rigel DS, Carucci JA. Malignant melanoma: prevention, early<br />

detection, and treatment in the 21st century. CA Cancer J Clin<br />

2000;50:215-36.<br />

6. Burton RC. Malignant melanoma in the year 2000. CA Cancer<br />

J Clin 2000;50:209-13.<br />

7. Rigel DS. Malignant melanoma: perspectives on incidence and<br />

its effects on awareness, diagnosis, and treatment. CA Cancer<br />

J Clin 1996;46:195-8.<br />

8. Pehamberger H, Binder M, Steiner A, Wolff K. In vivo<br />

epiluminescence microscopy: improvement <strong>of</strong> early diagnosis<br />

<strong>of</strong> melanoma. J Invest Dermatol 1993;100:356S-62S.<br />

9. Soyer HP, Argenziano G, Chimenti S, Ruocco V. <strong>Dermoscopy</strong> <strong>of</strong><br />

<strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>. Eur J Dermatol 2001;11:270-6.<br />

10. Soyer HP, Argenziano G, Talamini R, Chimenti S. Is dermoscopy<br />

useful for the diagnosis <strong>of</strong> melanoma? Arch Dermatol<br />

2001;137:1361-3.<br />

11. Stolz W, Braun-Falco O, Bilek P, Landthaler M, Burgdorf WHC,<br />

Cognetta AB. Color alas <strong>of</strong> drmatoscopy. 2nd ed. Berlin:<br />

Blackwell Wissenschafts-Verlag; 2002.<br />

12. Mayer J. Systematic review <strong>of</strong> the diagnostic accuracy <strong>of</strong><br />

dermatoscopy in detecting malignant melanoma. Med J Aust<br />

1997;167:206-10.<br />

13. Menzies SW, Crotty KA, Ingvar C, McCarthy WH. An atlas <strong>of</strong><br />

surface microscopy <strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>. Sydney:<br />

McGraw-Hill Book Company; 2003.


JAM ACAD DERMATOL<br />

VOLUME 52, NUMBER 1<br />

14. Binder M, Schwarz M, Winkler A, Steiner A, Kaider A, Wolff K,<br />

et al. Epiluminescence microscopy. A useful tool for the diagnosis<br />

<strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong> for formally trained<br />

dermatologists. Arch Dermatol 1995;131:286-91.<br />

15. Binder M, Puespoeck-Schwarz M, Steiner A, Kittler H, Muellner<br />

M, Wolff K, et al. Epiluminescence microscopy <strong>of</strong> small<br />

<strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>: short-term formal training improves<br />

the diagnostic performance <strong>of</strong> dermatologists. J Am Acad<br />

Dermatol 1997;36:197-202.<br />

16. Westerh<strong>of</strong>f K, McCarthy WH, Menzies SW. Increase in the<br />

sensitivity for melanoma diagnosis by primary care physicians<br />

using <strong>skin</strong> surface microscopy. Br J Dermatol 2000;143:<br />

1016-20.<br />

17. Bafounta ML, Beauchet A, Aegerter P, Saiag P. Is dermoscopy<br />

(epiluminescence microscopy) useful for the diagnosis <strong>of</strong><br />

melanoma? Results <strong>of</strong> a meta-analysis using techniques<br />

adapted to the evaluation <strong>of</strong> diagnostic tests. Arch Dermatol<br />

2001;137:1343-50.<br />

18. Kittler H, Pehamberger H, Wolff K, Binder M. Diagnostic<br />

accuracy <strong>of</strong> dermoscopy. Lancet Oncol 2002;3:159-65.<br />

19. Gilje O, O’Leary PA, Baldes EY. Capillary microscopic examination<br />

in <strong>skin</strong> siease. Arch Dermatol 1958;68:136-45.<br />

20. Diepgen P. Geschichte der Medizin. Berlin: De Gruyter; 1965.<br />

21. Unna P. Die Diaskopie der Hautkrankheiten. Berl Klin Wochen<br />

1885;42:1016-21.<br />

22. Saphier J. Die Dermatoskopie. I. Mitteilung. Arch Dermatol<br />

Syphiol 1920;128:1-19.<br />

23. Saphier J. Die Dermatoskopie. II. Mitteilung. Arch Dermatol<br />

Syphiol 1921;132:69-86.<br />

24. Saphier J. Die Dermatoskopie. IV. Mitteilung. Arch Dermatol<br />

Syphiol 1921;136:149-58.<br />

25. Saphier J. Die Dermatoskopie. III. Mitteilung. Arch Dermatol<br />

Syphiol 2002;134:314-22.<br />

26. Goldman L. Some investigative studies <strong>of</strong> <strong>pigmented</strong> nevi<br />

with cutaneous microscopy. J Invest Dermatol 1951;16:407-26.<br />

27. Goldman L. Clinical studies in microscopy <strong>of</strong> the <strong>skin</strong> at<br />

moderate magnification. Arch Dermatol 1957;75:345-60.<br />

28. Goldman L. A simple portable <strong>skin</strong> microscope for surface<br />

microscopy. Arch Dermatol 1958;78:246-7.<br />

29. Goldman L. Direct <strong>skin</strong> microscopy as an aid in the early<br />

diagnosis <strong>of</strong> precancer and cancer <strong>of</strong> the <strong>skin</strong> in the elderly.<br />

J Am Geriatr Soc 1980;28:337-40.<br />

30. MacKie RM. An aid to the preoperative assessment <strong>of</strong><br />

<strong>pigmented</strong> <strong>lesions</strong> <strong>of</strong> the <strong>skin</strong>. Br J Dermatol 1971;85:232-8.<br />

31. Bahmer FA, Fritsch P, Kreusch J, Pehamberger H, Rohrer C,<br />

Schindera I, et al. Diagnostische Kriterien in der Auflichtsmikroskopie.<br />

Konsensus-Treffen der Arbeitsgruppe Analytische<br />

Morphologie der Arbeitsgemeinschaft Dermatologische Forschung,<br />

17 November 1989 in Hamburg. Hautarzt 1990;41:513-4.<br />

32. Argenziano G, Soyer HP, Chimenti S, Talamini R, Corona R, Sera<br />

F, et al. <strong>Dermoscopy</strong> <strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>: results <strong>of</strong><br />

a consensus meeting via the Internet. J Am Acad Dermatol<br />

2003;48:679-93.<br />

33. Anderson RR, Parrish JA. The optics <strong>of</strong> human <strong>skin</strong>. J Invest<br />

Dermatol 1981;77:13-9.<br />

34. Braun RP, Saurat JH, Krischer J. Diagnostic pearl: unmagnified<br />

diascopy for large <strong>pigmented</strong> <strong>lesions</strong> reveals features similar<br />

to those <strong>of</strong> epiluminescence microscopy. J Am Acad Dermatol<br />

1999;41:765-6.<br />

35. Bahmer FA, Rohrer C. Rapid and simple macrophotography <strong>of</strong><br />

the <strong>skin</strong>. Br J Dermatol 1986;114:135-6.<br />

36. Argenziano G, Soyer HP, De Giorgi V, Piccolo D, Carli P, Delfino<br />

M, et al. <strong>Dermoscopy</strong>: a tutorial. 1st ed. Milano: EDRA; 2000.<br />

37. Kenet RO, Kang S, Kenet BJ, Fitzpatrick TB, Sober AJ, Barnhill<br />

RL. Clinical diagnosis <strong>of</strong> <strong>pigmented</strong> <strong>lesions</strong> using digital<br />

Braun et al 119<br />

epiluminescence microscopy. Grading protocol and atlas.<br />

Arch Dermatol 1993;129:157-74.<br />

38. Reisfeld PL. Blue in the <strong>skin</strong>. J Am Acad Dermatol 2000;42:<br />

597-605.<br />

39. Pehamberger H, Steiner A, Wolff K. In vivo epiluminescence<br />

microscopy <strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>. I. Pattern analysis <strong>of</strong><br />

<strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>. J Am Acad Dermatol 1987;17:571-83.<br />

40. Krischer J, Skaria A, Guillod J, Lemonnier E, Salomon D, Braun<br />

R, et al. Epiluminescent light microscopy <strong>of</strong> melanocytic<br />

<strong>lesions</strong> after dermoepidermal split. <strong>Dermatology</strong> 1997;<br />

195:108-11.<br />

41. Massi D, De Giorgi V, Soyer HP. Histopathologic correlates <strong>of</strong><br />

dermoscopic criteria. Dermatol Clin 2001;19:259-68.<br />

42. Soyer HP, Kenet RO, Wolf IH, Kenet BJ, Cerroni L. Clinicopathological<br />

correlation <strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong> using dermoscopy.<br />

Eur J Dermatol 2000;10:22-8.<br />

43. Yadav S, Vossaert KA, Kopf AW, Silverman M, Grin-Jorgensen<br />

C. Histopathologic correlates <strong>of</strong> structures seen on dermoscopy<br />

(epiluminescence microscopy). Am J Dermatopathol<br />

1993;15:297-305.<br />

44. Argenziano G, Fabbrocini G, Carli P, De Giorgi V, Sammarco E,<br />

Delfino M. Epiluminescence microscopy for the diagnosis <strong>of</strong><br />

doubtful melanocytic <strong>skin</strong> <strong>lesions</strong>. Comparison <strong>of</strong> the ABCD<br />

rule <strong>of</strong> dermatoscopy and a new 7-point checklist based on<br />

pattern analysis. Arch Dermatol 1998;134:1563-70.<br />

45. Nachbar F, Stolz W, Merkle T, Cognetta AB, Vogt T, Landthaler<br />

M, et al. The ABCD rule <strong>of</strong> dermatoscopy: high prospective<br />

value in the diagnosis <strong>of</strong> doubtful melanocytic <strong>skin</strong> <strong>lesions</strong>.<br />

J Am Acad Dermatol 1994;30:551-9.<br />

46. Soyer HP, Smolle J, Hödl S, Pachernegg H, Kerl H. Surface<br />

microscopy: a new approach to the diagnosis <strong>of</strong> cutaneous<br />

<strong>pigmented</strong> tumors. Am J Dermatopathol 1989;11:1-10.<br />

47. Guillod JF, Skaria AM, Salomon D, Saurat JH. Epiluminescence<br />

videomicroscopy: black dots and brown globules revisited by<br />

stripping the stratum corneum. J Am Acad Dermatol<br />

1997;36:371-7.<br />

48. Kittler H, Seltenheim M, Dawid M, Pehamberger H, Wolff K,<br />

Binder M. Frequency and characteristics <strong>of</strong> enlarging common<br />

melanocytic nevi. Arch Dermatol 2000;136:316-20.<br />

49. Menzies SW, Ingvar C, McCarthy WH. A sensitivity and<br />

specificity analysis <strong>of</strong> the surface microscopy features <strong>of</strong><br />

invasive melanoma. Melanoma Res 1996;6:55-62.<br />

50. Menzies SW, Crotty KA, McCarthy WH. The morphologic<br />

criteria <strong>of</strong> the pseudopod in surface microscopy. Arch<br />

Dermatol 1995;131:436-40.<br />

51. Argenziano G, Scalvenzi M, Staibano S, Brunetti B, Piccolo D,<br />

Delfino M, et al. Dermatoscopic pitfalls in differentiating<br />

<strong>pigmented</strong> Spitz naevi from cutaneous melanomas. Br J<br />

Dermatol 1999;141:788-93.<br />

52. Argenziano G, Soyer HP, Ferrara G, Piccolo D, H<strong>of</strong>mann-<br />

Wellenh<strong>of</strong> R, Peris K, et al. Superficial black network: an<br />

additional dermoscopic clue for the diagnosis <strong>of</strong> <strong>pigmented</strong><br />

spindle and/or epithelioid cell nevus. <strong>Dermatology</strong> 2001;<br />

203:333-5.<br />

53. Steiner A, Pehamberger H, Binder M, Wolff K. Pigmented Spitz<br />

nevi: improvement <strong>of</strong> the diagnostic accuracy by epiluminescence<br />

microscopy. J Am Acad Dermatol 1992;27:697-701.<br />

54. Massi D, De Giorgi V, Carli P, Santucci M. Diagnostic<br />

significance <strong>of</strong> the blue hue in dermoscopy <strong>of</strong> melanocytic<br />

<strong>lesions</strong>: a dermoscopic-pathologic study. Am J Dermatopathol<br />

2001;23:463-9.<br />

55. Kreusch J, Rassner G. Auflichtmikroskopie pigmentierter<br />

Hauttumoren. Stuttgart: Thieme; 1991.<br />

56. Kreusch J, Rassner G, Trahn C, Pietsch-Breitfeld B, Henke D,<br />

Selbmann HK. Epiluminescent microscopy: a score <strong>of</strong>


120 Braun et al<br />

morphological features to identify malignant melanoma.<br />

Pigment Cell Res 1992:295-8.<br />

57. Kreusch J, Koch F. Auflichtmikroskopische Charakterisierung<br />

von Gefassmustern in Hauttumoren. Hautarzt 1996;47:264-72.<br />

58. Argenziano G, Fabbrocini G, Carli P, De Giorgi V, Delfino M.<br />

Epiluminescence microscopy: criteria <strong>of</strong> cutaneous melanoma<br />

progression. J Am Acad Dermatol 1997;37:68-74.<br />

59. Argenziano G, Fabbrocini G, Carli P, De Giorgi V, Delfino M.<br />

Clinical and dermatoscopic criteria for the preoperative<br />

evaluation <strong>of</strong> cutaneous melanoma thickness. J Am Acad<br />

Dermatol 1999;40:61-8.<br />

60. Argenyi ZB. <strong>Dermoscopy</strong> (epiluminescence microscopy) <strong>of</strong><br />

<strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>. Current status and evolving trends.<br />

Dermatol Clin 1997;15:79-95.<br />

61. Carli P, De Giorgi V, Soyer HP, Stante M, Mannone F, Giannotti<br />

B. Dermatoscopy in the diagnosis <strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>:<br />

a new semiology for the dermatologist. J Eur Acad Dermatol<br />

Venereol 2000;14:353-69.<br />

62. Steiner A, Pehamberger H, Wolff K. In vivo epiluminescence<br />

microscopy <strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>. II. Diagnosis <strong>of</strong> small<br />

<strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong> and early detection <strong>of</strong> malignant<br />

melanoma. J Am Acad Dermatol 1987;17:584-91.<br />

63. Braun RP, Rabinovitz H, Krischer J, Kreusch J, Oliviero M, Naldi<br />

L, et al. <strong>Dermoscopy</strong> <strong>of</strong> <strong>pigmented</strong> seborrheic keratosis. Arch<br />

Dermatol 2002;138:1556-60.<br />

64. Provost N, Kopf AW, Rabinovitz HS, Oliviero MC, Toussaint S,<br />

Kamino HH. Globulelike dermoscopic structures in <strong>pigmented</strong><br />

seborrheic keratosis. Arch Dermatol 1997;133:540-1.<br />

65. Braun RP, Rabinovitz H, Oliviero M, Kopf AW, Saurat JH,<br />

Thomas L. Dermatoscopy <strong>of</strong> <strong>pigmented</strong> <strong>lesions</strong>. Ann Dermatol<br />

Venereol 2002;129:187-202.<br />

66. Schiffner R, Schiffner-Rohe J, Vogt T, Landthaler M, Wlotzke U,<br />

Cognetta AB, et al. Improvement <strong>of</strong> early recognition <strong>of</strong><br />

lentigo maligna using dermatoscopy. J Am Acad Dermatol<br />

2000;42:25-32.<br />

67. Menzies SW, Westerh<strong>of</strong>f K, Rabinovitz H, Kopf AW, McCarthy<br />

WH, Katz B. Surface microscopy <strong>of</strong> <strong>pigmented</strong> basal cell<br />

carcinoma. Arch Dermatol 2000;136:1012-6.<br />

68. Soyer HP, Argenziano G, Ruocco V, Chimenti S. <strong>Dermoscopy</strong> <strong>of</strong><br />

<strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong> (Part II). Eur J Dermatol 2001;11:<br />

483-98.<br />

69. Wang SQ, Katz B, Rabinovitz H, Kopf AW, Oliviero M. Lessons<br />

on dermoscopy #4. Poorly defined <strong>pigmented</strong> lesion. Diagnosis:<br />

<strong>pigmented</strong> BCC. Dermatol Surg 2000;26:605-6.<br />

70. Stolz W, Riemann A, Cognetta AB, Pillet L, Abmayr W, Hölzel D,<br />

et al. ABCD rule <strong>of</strong> Dermatoscopy: a new practical method for<br />

early recognition <strong>of</strong> malignant melanoma. Eur J Dermatol<br />

1994;4:521-7.<br />

71. Braun RP, Rabinovitz H, Oliviero M, Kopf AW, Saurat JH.<br />

Pattern analysis: a two step procedure for the dermoscopic<br />

diagnosis <strong>of</strong> melanoma. Clin Dermatol 2002;20:236-9.<br />

72. Saida T, Oguchi S, Ishihara Y. In vivo observation <strong>of</strong> magnified<br />

features <strong>of</strong> <strong>pigmented</strong> <strong>lesions</strong> on volar <strong>skin</strong> using video<br />

macroscope. Usefulness <strong>of</strong> epiluminescence techniques in<br />

clinical diagnosis. Arch Dermatol 1995;131:298-304.<br />

73. Cognetta AB Jr, Stolz W, Katz B, Tullos J, Gossain S. Dermatoscopy<br />

<strong>of</strong> lentigo maligna. Dermatol Clin 2001;19:307-18.<br />

74. Kittler H, Seltenheim M, Pehamberger H, Wolff K, Binder M.<br />

Diagnostic informativeness <strong>of</strong> compressed digital epiluminescence<br />

microscopy images <strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong> compared<br />

with photographs. Melanoma Res 1998;8:255-60.<br />

75. Braun RP, Lemonnier E, Guillod J, Skaria A, Salomon D, Saurat<br />

JH. Two types <strong>of</strong> pattern modification detected on the followup<br />

<strong>of</strong> benign melanocytic <strong>skin</strong> <strong>lesions</strong> by digitized epiluminescence<br />

microscopy. Melanoma Res 1998;8:431-7.<br />

JAM ACAD DERMATOL<br />

JANUARY 2005<br />

76. Kittler H, Pehamberger H, Wolff K, Binder M. Follow-up <strong>of</strong><br />

melanocytic <strong>skin</strong> <strong>lesions</strong> with digital epiluminescence microscopy:<br />

patterns <strong>of</strong> modifications observed in early melanoma,<br />

atypical nevi, and common nevi. J Am Acad Dermatol<br />

2000;43:467-76.<br />

77. Menzies SW, Gutenev A, Avramidis M, Batrac A, McCarthy WH.<br />

Short-term digital surface microscopic monitoring <strong>of</strong> atypical or<br />

changing melanocytic <strong>lesions</strong>. Arch Dermatol 2001;137:1583-9.<br />

78. Stolz W, Schiffner R, Pillet L, Vogt T, Harms H, Schindewolf T,<br />

et al. Improvement <strong>of</strong> monitoring <strong>of</strong> melanocytic <strong>skin</strong> <strong>lesions</strong><br />

with the use <strong>of</strong> a computerized acquisition and surveillance<br />

unit with a <strong>skin</strong> surface microscopic television camera. J Am<br />

Acad Dermatol 1996;35:202-7.<br />

79. Binder M, Steiner A, Schwarz M, Knollmayer S, Wolff K,<br />

Pehamberger H. Application <strong>of</strong> an artificial neural network in<br />

epiluminescence microscopy pattern analysis <strong>of</strong> <strong>pigmented</strong><br />

<strong>skin</strong> <strong>lesions</strong>: a pilot study. Br J Dermatol 1994;130:460-5.<br />

80. Binder M, Kittler H, Seeber A, Steiner A, Pehamberger H, Wolff<br />

K. Epiluminescence microscopy-based classification <strong>of</strong> <strong>pigmented</strong><br />

<strong>skin</strong> <strong>lesions</strong> using computerized image analysis and<br />

an artificial neural network. Melanoma Res 1998;8:261-6.<br />

81. Binder M, Kittler H, Dreiseitl S, Ganster H, Wolff K, Pehamberger<br />

H. Computer-aided epiluminescence microscopy <strong>of</strong><br />

<strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>: the value <strong>of</strong> clinical data for the<br />

classification process. Melanoma Res 2000;10:556-61.<br />

82. Day GR, Barbour RH. Automated melanoma diagnosis: where<br />

are we at? Skin Res Technol 2000;6:1-5.<br />

83. Debeir O, Decaestecker C, Pasteels JL, Salmon I, Kiss R, Van<br />

Ham P. Computer-assisted analysis <strong>of</strong> epiluminescence microscopy<br />

images <strong>of</strong> <strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>. Cytometry<br />

1999;37:255-66.<br />

84. Elbaum M, Kopf AW, Rabinovitz HS, Langley RG, Kamino H,<br />

Mihm MC Jr, et al. Automatic differentiation <strong>of</strong> melanoma<br />

from melanocytic nevi with multispectral digital dermoscopy:<br />

a feasibility study. J Am Acad Dermatol 2001;44:207-18.<br />

85. Fleming MG, Steger C, Zhang J, Gao J, Cognetta AB, Pollak I,<br />

et al. Techniques for a structural analysis <strong>of</strong> dermatoscopic<br />

imagery. Comput Med Imaging Graph 1998;22:375-89.<br />

86. Gutenev A, Skladnev VN, Varvel D. Acquisition-time image<br />

quality control in digital dermatoscopy <strong>of</strong> <strong>skin</strong> <strong>lesions</strong>. Comput<br />

Med Imaging Graph 2001;25:495-9.<br />

87. Gutkowicz-Krusin D, Elbaum M, Jacobs A, Keem S, Kopf AW,<br />

Kamino H, et al. Precision <strong>of</strong> automatic measurements <strong>of</strong><br />

<strong>pigmented</strong> <strong>skin</strong> lesion parameters with a MelaFind(TM) multispectral<br />

digital dermoscope. Melanoma Res 2000;10:563-70.<br />

88. Menzies SW. Automated epiluminescence microscopy: human<br />

vs machine in the diagnosis <strong>of</strong> melanoma. Arch Dermatol<br />

1999;135:1538-40.<br />

89. Moncrieff M, Cotton S, Claridge E, Hall P. Spectrophotometric<br />

intracutaneous analysis: a new technique for imaging <strong>pigmented</strong><br />

<strong>skin</strong> <strong>lesions</strong>. Br J Dermatol 2002;146:448-57.<br />

90. Murali A, Stoecker WV, Moss RH. Detection <strong>of</strong> solid pigment in<br />

dermatoscopy images using texture analysis. Skin Res Technol<br />

2000;6:193-8.<br />

91. Rubegni P, Ferrari A, Cevenini G, Piccolo D, Burroni M, Perotti<br />

R, et al. Differentiation between <strong>pigmented</strong> Spitz naevus and<br />

melanoma by digital dermoscopy and stepwise logistic<br />

discriminant analysis. Melanoma Res 2001;11:37-44.<br />

92. Schmid P. Segmentation <strong>of</strong> digitized dermatoscopic images<br />

by two-dimensional color clustering. IEEE Trans Med Imaging<br />

1999;18:164-71.<br />

93. Smolle J. Computer recognition <strong>of</strong> <strong>skin</strong> structures using<br />

discriminant and cluster analysis. Skin Res Technol 2000;6:58-63.<br />

94. Stoecker WV, Moss RH. Digital imaging in dermatology.<br />

Comput Med Imaging Graph 1992;16:145-50.


JAM ACAD DERMATOL<br />

VOLUME 52, NUMBER 1<br />

95. Braun RP, Meier M, Pelloni F, Ramelet AA, Schilling M,<br />

Tapernoux B, et al. Teledermatoscopy in Switzerland: a preliminary<br />

evaluation. J Am Acad Dermatol 2000;42:770-5.<br />

96. Piccolo D, Smolle J, Argenziano G, Wolf IH, Braun R, Cerroni L,<br />

et al. Teledermoscopy—results <strong>of</strong> a multicentre study on 43<br />

<strong>pigmented</strong> <strong>skin</strong> <strong>lesions</strong>. J Telemed Telecare 2000;6:132-7.<br />

97. Piccolo D, Smolle J, Wolf IH, Peris K, H<strong>of</strong>mann-Wellenh<strong>of</strong> R,<br />

Dell’Eva G, et al. Face-to-face diagnosis vs telediagnosis <strong>of</strong><br />

<strong>pigmented</strong> <strong>skin</strong> tumors: a teledermoscopic study. Arch Dermatol<br />

1999;135:1467-71.<br />

98. Provost N, Kopf AW, Rabinovitz HS, Stolz W, DeDavid M, Wasti<br />

Q, et al. Comparison <strong>of</strong> conventional photographs and telephonically<br />

transmitted compressed digitized images <strong>of</strong> melanomas<br />

and dysplastic nevi. <strong>Dermatology</strong> 1998;196:299-304.<br />

ADDITIONAL READING<br />

1. Argenziano G, Soyer HP, De Giorgi V, Piccolo D, Carli P, et al.<br />

<strong>Dermoscopy</strong>: A tutorial. 1st ed. Milan: EDRA; 2000.<br />

Braun et al 121<br />

2. Menzies SW, Crotty KA, Ingvar C, McCarthy WH. An atlas <strong>of</strong><br />

surface microscopy <strong>of</strong> <strong>pigmented</strong> <strong>lesions</strong>. Sydney: McGraw-Hill<br />

Company; 1996.<br />

3. Stolz W, Braun-Falco O, Bilek P, Landthaler M, Burgdorf WHC,<br />

Cognetta AB. Color atlas <strong>of</strong> dermatoscopy. 2nd ed. Berlin:<br />

Blackwell Wessenschafts-Verlag; 2002.<br />

4. Soyer HP, Argenziano G, Chimenti S, Rabinovitz HS, Stolz W,<br />

Kopf AW, et al. <strong>Dermoscopy</strong> <strong>of</strong> <strong>pigmented</strong> <strong>lesions</strong>. Milan: EDRA;<br />

2001.<br />

5. Rabinovitz HS, Cognetta AB. Dermatologic clinics. Philadelphia<br />

(PA): WB Saunders; 2001.<br />

6. Johr R, Soyer HP, Argenziano G, H<strong>of</strong>mann-Wellenh<strong>of</strong> R,<br />

Scalvenzi M. <strong>Dermoscopy</strong>: The essentials. London: Mosby; 2004.<br />

8. Marghoob AA, Braun RP, Kopf AW. Atlas <strong>of</strong> dermoscopy.<br />

London: Taylor & Francis; 2005.<br />

9. Malvehy J, Puig S. Principles <strong>of</strong> dermoscopy. Barcelona: CEGE<br />

Editors; 2002.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!