30.03.2014 Views

Assignment 7: Integration and ODEs Problem 1

Assignment 7: Integration and ODEs Problem 1

Assignment 7: Integration and ODEs Problem 1

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CEE 3804: Computer Applications in Civil Engineering Spring 2010<br />

Date Due: April 8, 2010 (Class Time)<br />

<strong>Problem</strong> 1<br />

<strong>Assignment</strong> 7: <strong>Integration</strong> <strong>and</strong> <strong>ODEs</strong><br />

Instructor: Trani<br />

Steel is one of the most important materials used in Civil Engineering. A civil engineer wants to estimate the distribution of the<br />

Modulus of Elasticity (Young’s modulus) for various specimens of steel beams received from a factory. The engineer collects data<br />

<strong>and</strong> finds that the modulus of elasticity is normally distributed. The equation of the Probability Density Function (PDF) of the<br />

Gaussian (or Normal) distribution is given in any statistics textbook <strong>and</strong> repeated here for completeness (http://en.wikipedia.org/<br />

wiki/Normal_distribution).<br />

−<br />

1<br />

f (x) =<br />

σ 2π e<br />

⎡ (x− µ )2 ⎤<br />

⎢<br />

⎣ 2σ 2 ⎥<br />

⎦<br />

where: x is the r<strong>and</strong>om variable in question (modulus of elasticity in psi) <strong>and</strong> µ <strong>and</strong> σ are the mean <strong>and</strong> st<strong>and</strong>ard deviation (in<br />

psi) of the r<strong>and</strong>om phenomena modeled. After testing 100 samples, the engineer estimates the mean modulus of elasticity to be<br />

2.856 e7 psi. The st<strong>and</strong>ard deviation is found to be 4.1e5.<br />

The area under probability density function has a fundamental interpretation in r<strong>and</strong>om processes. For example, the area under<br />

the curve in Figure 1 can be interpreted as the probability that r<strong>and</strong>om variable x will take values between a <strong>and</strong> infinity.<br />

Figure 1. Sample Normal Probability Density Function. Interpretation of the Area Under the Curve.<br />

Create a Matlab script to estimate the probably that steel samples meet the design criteria that more than<br />

75% of the samples need to be above 2.75e7 psi.<br />

Take the area under the curve from 2.75e7 to infinity (a large number). The area under the curve is:<br />

0.9949<br />

CEE 3804 Trani Page 1 of 6


Task 4<br />

Using your Matlab function <strong>and</strong> scripts, verify that the area under the Normal curve is equal to one.<br />

Script to calculate area under the curve.<br />

___________<br />

% Normal Distribution Analysis<br />

% A.A. Trani<br />

% Function calls:<br />

global MU SIGMA<br />

% Define the parameter of the distribution (MU) <strong>and</strong> st<strong>and</strong>ard deviation (SIGMA)<br />

MU = 2.856e7;<br />

SIGMA = 4.1e5;<br />

% Define upper <strong>and</strong> lower bounds to get a nice plot of the Gaussian PDF<br />

npoints = 100;<br />

parameter = 3.5;<br />

low = MU - parameter*SIGMA;<br />

high = MU + parameter* SIGMA;<br />

interval = (high - low) / npoints;<br />

ub = MU + parameter* SIGMA;<br />

lb = 2.75e7;<br />

CEE 3804 Trani Page 2 of 6


% Define r<strong>and</strong>om variable<br />

x=low:interval:high;<br />

% Define the function of the r<strong>and</strong>om variable x (PDF function)<br />

fx = 1/(SIGMA * sqrt(2*pi)) * exp(-1/2 * ((x-MU)/SIGMA).^2 );<br />

% Plot the r<strong>and</strong>om variable x versus the PDF function<br />

plot(x,fx)<br />

xlabel('R<strong>and</strong>om variable - x')<br />

ylabel('f(x)')<br />

grid<br />

% Compute area under the curve f(x) from -infinity to infinity<br />

% Change the values of the last two arguments if you<br />

% want another range of values<br />

area=quad('normalg',lb,ub);<br />

disp(' ')<br />

disp([blanks(5),'Area under the Normal Distribution : '])<br />

disp(' ')<br />

disp([blanks(5),' P(x>0)=',num2str(area)])<br />

disp(' ')<br />

_____________<br />

Function Normalg.m<br />

____________<br />

% Function to evaluate the area under the normal distribution<br />

% Passes back a single argument containing f(x) for the normal PDF function<br />

function f = normalg(x);<br />

global MU SIGMA<br />

f = 1./(SIGMA .* sqrt(2*pi)) .* exp(-1/2 .* ((x-MU)./SIGMA).^2 );<br />

CEE 3804 Trani Page 3 of 6


<strong>Problem</strong>s 2-3<br />

The differential equation to predict the acceleration dv<br />

dt<br />

dv<br />

dt = k 1 + k 2 v + k 3 v2<br />

of a high-speed train is given by the formula:<br />

where: k 1<br />

, k 2<br />

, <strong>and</strong> k 3<br />

are coefficients of the high-speed train <strong>and</strong> v is the speed of the high-speed train (in meters/second) .<br />

In the equation presented, the dimensions of the acceleration are m/s 2 . The values of the coefficients are: 0.39, -0.0033 <strong>and</strong><br />

-3.2e-5, respectively.<br />

Solution:<br />

dV<br />

= k 1<br />

+ k 2<br />

V + k 3<br />

V 2<br />

dt<br />

x 1<br />

= speed<br />

x 2<br />

= position<br />

xdot 2<br />

= x 1<br />

xdot 1<br />

= k 1<br />

+ k 2<br />

V + k 3<br />

V 2<br />

The Matlab main script is:<br />

__________________<br />

% Main file to execute the equations of motion of the HS Train<br />

% A. Trani<br />

% Solution to a set of equations of the form:<br />

%<br />

% x(1) = speed (m/s)<br />

% x(2) = position (m)<br />

%<br />

% xdot(2) = x(1);<br />

% xdot(1) = k1 + k2 * x1 + k3 * x1^2<br />

%<br />

% subject to initial conditions:<br />

%<br />

% x (t=0) = xo<br />

%<br />

% where:<br />

clear<br />

CEE 3804 Trani Page 4 of 6


global k1 k2 k3<br />

% Define the Initial Conditions of the <strong>Problem</strong><br />

xo = [0 0];<br />

to = 0.0;<br />

tf = 300;<br />

% xo are the initial position <strong>and</strong> speed of the train<br />

% to is the initial time to solve this equation<br />

% tf is the final time (seconds)<br />

% define m <strong>and</strong> b<br />

k1 = 0.39; %<br />

k2 = -0.0033; %<br />

k3 = -3.2e-5; %<br />

tspan =[to tf];<br />

[t,x] = ode15s('trainProfile',tspan,xo);<br />

% call ODE solver<br />

% Plot the results of the numerical integration procedure<br />

figure<br />

plot(t,x(:,1),'o-r')<br />

xlabel('Time (seconds)')<br />

ylabel('Speed (m/s)')<br />

grid<br />

figure<br />

plot(t,x(:,2),'^--k')<br />

xlabel('Time (seconds)')<br />

ylabel('Position (m)')<br />

grid<br />

___________<br />

Function trainProfile.m<br />

________________<br />

% Two first-order DEQ to solve the train system<br />

function xdot = trainProfile(t,x)<br />

global k1 k2 k3<br />

% define the rate equations of the train system<br />

%<br />

% x(1) = speed (m/s)<br />

% x(2) = distance traveled (m)<br />

% xdot(1) = rate of change of speed vs time = acceleration<br />

CEE 3804 Trani Page 5 of 6


% xdot(2) = rate of change of distance vs time = speed<br />

xdot(2) = x(1);<br />

xdot(1) = k1 + k2 * x(1) + k3 * x(1).^2;<br />

xdot = xdot';<br />

The plots are shown below.<br />

CEE 3804 Trani Page 6 of 6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!