31.03.2014 Views

User Guide Release 3.0 - Biomedical Simulations Resource ...

User Guide Release 3.0 - Biomedical Simulations Resource ...

User Guide Release 3.0 - Biomedical Simulations Resource ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PNEUMA <strong>Release</strong> <strong>3.0</strong> software described in this document is furnished by the <strong>Biomedical</strong> <strong>Simulations</strong><br />

<strong>Resource</strong> under the terms of a release agreement.<br />

PNEUMA may be used only under the terms of the release agreement.<br />

PNEUMA <strong>User</strong>’s <strong>Guide</strong><br />

Contact: pneuma.bmsr@gmail.com<br />

<strong>Release</strong> <strong>3.0</strong> – January 2013<br />

<strong>Release</strong> 2.0 – January 2011<br />

<strong>Release</strong> 1.1 – March 2003<br />

<strong>Release</strong> 1.0 – August 2002<br />

Beta <strong>Release</strong> – September 2001<br />

Supported by: NIH Grant P41-EB001978<br />

© 2013 <strong>Biomedical</strong> <strong>Simulations</strong> <strong>Resource</strong> (BMSR)<br />

University of Southern California


PNEUMA <strong>Release</strong> Agreement<br />

Before you use PNEUMA, please read the following conditions for using our package.<br />

Thank you for your cooperation.<br />

<br />

<br />

<br />

<br />

PNEUMA is restricted to non-profit research and instructional purposes aimed at<br />

further knowledge in the area of cardiorespiratory system modeling and<br />

simulation. PNEUMA is supported by University of Southern California (USC)<br />

<strong>Biomedical</strong> <strong>Simulations</strong> <strong>Resource</strong> (BMSR) (NIH Grant P41-EB001978 ).<br />

Any publications of research results that were obtained in part by the use of<br />

PNEUMA will contain proper acknowledgement of the BMSR at USC. Reprints<br />

of such publications will be sent to the BMSR for the record.<br />

I will not distribute PNEUMA, in whole or part, to others without the expressed<br />

permission of the BMSR.<br />

I understand that neither USC nor the BMSR make any warranties, expressed or<br />

implied, that PNEUMA is free of errors or is consistent with any standard of<br />

merchantability, or that it will meet my requirements for any particular<br />

application. I understand that PNEUMA should not be relied on for solving a<br />

problem whose incorrect solution could result in injury to a person or loss of<br />

property, and that if I do use PNEUMA in such a manner it is at my own risk. I<br />

understand that USC, the BMSR and the authors disclaim any and all liability for<br />

direct or consequential damages resulting from my use of PNEUMA.


Contents<br />

Getting Started……………………………………………………………….............<br />

Individual Model……………………………………………………………..............<br />

Overall Pneuma Model………………………………………………………............<br />

Open Pneuma…………………………………………………………………...........<br />

Constant Parameters………………………………………………………….............<br />

Adjustable Inputs…………………………………………………………….............<br />

Interventions…………………………………………………………………............<br />

Block Description……………………………………………………………............<br />

Contact and Support………………………………………………………….............<br />

Blocks Reference…………………………………………………………….............<br />

Overall Pneuma………………….……………………………………………...........<br />

Reflexes (Reflex_Ursino.mdl)……………………………………………….............<br />

Carotid Baroreceptors……………………………………………….……...........<br />

Chemoreflex…...…………………………………………………………...........<br />

Lung Stretch Receptors Reflex………………………………………….............<br />

Offsets……………………………………………………………………............<br />

Autonomic Control…………………………...….…………………………..............<br />

SA Node (SA_Node_Ursino.mdl)…………………..……………………….............<br />

-Sympathetic Control…………………………...………………….…..............<br />

Parasympathetic Control…………………………….…………………..............<br />

-Sympathetic Control of Peripheral Resistance (TPR_Ursino.mdl)….……............<br />

Variable Breathing Period (PNEUMA.mdl)…...…………………………….............<br />

Variable Heart Period (PNEUMA.mdl)….………………………….……….............<br />

Cardiovascular System (PNEUMA.mdl)…………………………………….............<br />

Neuromuscular Drive (NeuroMuscular.mdl)…………………………………...........<br />

Respiratory Muscle Activity (Pmus_Flow_Younes.mdl)……………………............<br />

Pleural Pressure (Pleural_Schuessler.mdl)…………………………………..............<br />

Gas Exchange and Transport (Gas_Exchange.mdl)…………………………............<br />

Dead Space (Dead_Space_Khoo.mdl)………………..………………………...........<br />

Alveolar Gas Exchange (Lungs_Khoo.mdl)……..………………………….............<br />

Cardiovasuclar Mixing, Convection and Dissociation (Cardio_Mix_Lange.mdl,<br />

Dissociation_Spencer.mdl).………………..……..……..…...…….…….…….…….<br />

Brain Compartment (Brain_Khoo.mdl)…………………………………….…….….<br />

Body Tissues Compartment (Body_Khoo.mdl)……………………………....……..<br />

Ventilatory Response (Vent_Drive_Khoo.mdl)……………………………....……..<br />

Upper Airway / State Change (State_UA_Khoo_Borbely.mdl)……………....……..<br />

Upper Airway………………………………………………….……….….…….<br />

Sleep Mechanism……………………………………………………..…...…….<br />

Metabolic Control (PNEUMA.mdl)..……………………………………..…...…<br />

Autonomic and Metabolic Interactions………………………………….……….<br />

Appendix I: Software Package..……………………………………………….……..<br />

Appendix II: Saved Data Files…...…………………………………………....……..<br />

Appendix III: Save/Load Date for Advance <strong>User</strong>s………..…………………………<br />

Appendix IV: Overall Parameter Set and Initial Conditions……………...…………<br />

2<br />

2<br />

2<br />

2<br />

6<br />

8<br />

9<br />

15<br />

15<br />

16<br />

17<br />

19<br />

20<br />

22<br />

24<br />

25<br />

27<br />

31<br />

33<br />

34<br />

35<br />

37<br />

40<br />

42<br />

48<br />

50<br />

53<br />

55<br />

57<br />

60<br />

62<br />

66<br />

68<br />

70<br />

72<br />

73<br />

75<br />

79<br />

86<br />

88<br />

91<br />

92<br />

94


2<br />

Getting Started<br />

Thank you for trying out PNEUMA and its modularized component models. Before using<br />

PNEUMA, please take a moment to read the <strong>Release</strong> Agreement first. To download the<br />

associated files or their updates, please go to bmsr.usc.edu and click on Software. Before<br />

you begin to use PNEUMA or its individual model components, please take a moment to<br />

make sure that you have downloaded the most recent files that you will be using. In<br />

Appendix I, there is a full list of files that are included in zipped format on the BMSR-<br />

PNEUMA web site. After you unzip the downloaded file, please refer to the appendix<br />

and check that you have the correct files.<br />

Individual Sub-Models<br />

PNEUMA is implemented using Simulink and Matlab version R2007b or higher (© The<br />

Mathworks Inc., Natick, MA), which provides a graphical programming environment that<br />

promotes modularization of the overall model into hierarchically smaller subsystems.<br />

This allows the user to customize parts of the overall model in accordance to his/her<br />

simulations needs. Alternatively, the user may also choose to focus on a specific<br />

PNEUMA block and use it to study the corresponding mechanism of interest. Therefore,<br />

depending on the user’s interest and needs, individual component blocks may be<br />

downloaded and used.<br />

Please refer to the reference and the “.m” file for variable names and values of each<br />

compartment. Some of the components are difficult to decompose into smaller modules<br />

and therefore may not be suitable for your application. If you have suggestions or would<br />

like to request modifications to PNEUMA components that would better suit your<br />

simulation needs, please feel free to send us feedback. Contact information is provided in<br />

the Support and Contact section of this manual.<br />

PNEUMA V.<strong>3.0</strong>: What’s New<br />

In Pneuma <strong>Release</strong> <strong>3.0</strong>, we have incorporated a metabolic component with autonomicmetabolic<br />

interactions into the existing integrative comprehensive simulation model. This<br />

metabolic component of PNEUMA is based on prior models of glucose-insulin regulation<br />

by Bergman et al. (1979) and free fatty acid (FFA) regulation by Roy and Parker (2006).<br />

Changes in sympathetic activity from the autonomic portion of PNEUMA produce<br />

changes in epinephrine output, which in turn affects the metabolism of glucose, insulin<br />

and FFA. Inputs from the dietary intake of glucose and external interventions, such as<br />

insulin injections, have also been incorporated into the model. Also incorporated is<br />

autonomic “feedback” from the metabolic component to the rest of PNEUMA in the<br />

following way: changes in insulin level are assumed to lead to changes in sympathetic<br />

tone. The “Control Panel” along with other input panels have been improved to facilitate<br />

greater user interaction and control of the simulations


3<br />

References<br />

Bergman, R. N., Ider, Y. Z., Bowden, C.R.,and Cobelli,C.(1979).Quantitative estimation<br />

of insulin sensitivity. Am. J. Physiol. 236, E667–E677.<br />

Roy, A., and Parker, R. S. (2006). Dynamic modeling of free fatty acid, glucose, and<br />

insulin: an extended “Minimal Model”. Diabetes Technol. Ther. 8, 617–626.<br />

Using Pneuma<br />

To begin using Pneuma, unzip the “Pneuma<strong>Release</strong>3.zip” file and check that you have<br />

all the necessary files. For the list of files in “Pneuma<strong>Release</strong>3.zip” file, please refer to<br />

“Getting Started” section. After you have unzipped the file and you are ready to run the<br />

program in the MATLAB environment, make sure that you are in the directory where the<br />

unzipped files are located. To Open Pneuma, in the Matlab command prompt, type<br />

“PNEUMA_MAIN_CONTROL_PANEL”.<br />

If you are running Pneuma using a version of Matlab higher than Matlab75 (version<br />

2007b), a series of warnings may appear due to compatibility issues, but these warnings<br />

should disappear after the first time you open PNEUMA.


The Control Panel graphic user interface (GUI) will appear, as shown below.<br />

4


5<br />

Next, input the parameter values.<br />

Start Time: time to start the simulation. (default is zero seconds)<br />

End Time: end-time (in seconds) of the simulation (for example:<br />

3600*24*7 will end up with 7-day simulation.<br />

Max Step: the simulation is using variable integration time steps, and it<br />

requires that the user specify the maximum allowable time step. A large<br />

max time step is not recommended (the default is 0.01 second).<br />

Saved Sample Time: some of the parameter/variable values can be saved<br />

to data files after each simulation and the user has the option of specifying<br />

the sample time of the saved segment. If given value -1, it will be default<br />

sample time of the simulation which can be used for saving data with<br />

“Saved Segment Time” as 0.5 day. The suggested sample time for saving<br />

is 0.1 second for neural-cardio-respiratory system. The sample time for<br />

metabolic system is constant as 6 seconds.<br />

Saved Segment Time: each data file can be saved as long as the segment<br />

time. The suggested time is 7 days.<br />

The “Run” and “Stop” buttons allow the user to run and terminate the simulation.<br />

Currently, the Real Time Workshop allows the simulation to run using the accelerated<br />

mode even with standard Matlab Simulink package. So the “Run” operation will run in<br />

accelerated mode that allows the simulation to run faster. If the user prefers to execute<br />

the model in normal mode, it will have to be run under Simulink model itself rather than<br />

using that GUI button (see options under Simulation tab in Simulink model window). If<br />

you decide to stop the simulation before the End Time that you have specified, some<br />

data will be stored to files (Saved Sample Time option) and all the variables are in the<br />

workspace which can be saved later. The “Reset” button will reset all variable values to<br />

their defaults.<br />

Under “Open” menu, the user has three options. “Open Pneuma Model Ctrl+O” will<br />

show the Pneuma model in Simulink. <strong>User</strong> can explore the modules in Pneuma and<br />

incorporate other blocks if needed. “Open Display Panel Ctrl+D” allows the user to see<br />

the output from some of the more common measurements such as arterial blood pressure,<br />

heart rate and so on. Having achieved some familiarity with PNEUMA, the user may<br />

want to add more inputs to the display panel or create new displays. “Open Program<br />

Status Ctrl+P” will show the Pneuma Progress module in Simulink, that displays the<br />

total duration of simulation, current simulation time and percentage of simulation<br />

completed, based on total duration of simulation and current simulation time.<br />

If the user wants to load or save the simulation workspace, click under “File” menu and<br />

two selections will show up. “Load Data Ctrl+L” opens the standard Matlab open file<br />

window, which allows the user to specify the data file and load the data into workspace.<br />

“Save Data Ctrl+S” opens the standard Matlab save file window, which allows saving<br />

the workspace data to the directory of user's choice.


6<br />

Constant Parameters<br />

When the user clicks on “CONSTANT PARAMETERS” button, another graphical<br />

interface will appear, as shown below:<br />

These are the constant parameters used in the model. The values may be changed before<br />

the simulation, if desired. It is recommended that these parameters be left at their default<br />

values. Each model subsystem is listed along with the constant parameter in that<br />

compartment. Each title button gives user the opportunity to open the Simulink<br />

implementation of that particular subsystem.


If the mouse cursor is placed and held at a particular box with number, the help text for<br />

the corresponding parameter will appear so that the user will know what physiological<br />

entity that parameter represents, as shown below:<br />

7


8<br />

Adjustable Parameters<br />

This panel allows the user to vary parameters before or during the simulation. Click on<br />

“ADJUSTABLE PARAMETERS” button and the following panel will appear:<br />

The user can adjust the value either by using the slider bar or by typing directly into the<br />

box. Both the “min” and the “max” values are shown for each slider bar. These values<br />

can be changed as well. But the values that fall within the default spans indicated are<br />

recommended, since these are consistent with physiologically feasible ranges.


9<br />

The above panel shows the parameters that may be altered in value while the simulation<br />

is being executed. Since the model is continually being revised, the actual parameters that<br />

can be adjusted may be different in different versions of the program.<br />

External Interventions<br />

Here, the user is permitted to apply a variety of external interventions to the model.<br />

Click on “EXTERNAL INTERVENTIONS” and the graphical panel opens up, shown<br />

below:<br />

The panel shows the interventions that have been included in the model at the present<br />

time. Before you run each intervention, please click “Reset” button on “Control Panel” to<br />

reload the original parameter set, then enter your new start/stop time and other parameters<br />

on the Control Panel, then go back to the External Interventions. Again, as this software<br />

gets updated, other interventions will be added.<br />

The followings are some typical examples for the interventions.<br />

A. Hypoxia. To simulate hypoxia, simply enter values into “Start Time” and “Duration<br />

Time” such as start at 800 sec with duration 300 sec, then enter value into “Change in<br />

PIO2” such as “-90” by default, then go back to Control Panel and click on “Run”<br />

button, make sure the simulation “End Time” is equal or longer than the hypoxia end<br />

time, shown below:


10<br />

B. Normocapnic Hypoxia. To simulate normocapnia in hypoxia, first click on check box<br />

of “Normocapnia”, then define the hypoxia condition as in Hypoxia, then give the<br />

same “Start Time” and “Duration” in CO2 Inhalation part as O2 Inhalation part, then<br />

go back to Control Panel and click on “Run” button, shown below:<br />

C. Non-Normocapnic Hypoxia. To simulate non-normocapnic including hypercapnic<br />

hypoxia, first click on check box of “Non-Normocapnia”, then define the hypoxia<br />

condition as in Hypoxia, then give the same “Start Time” and “Duration” in CO2<br />

Inhalation part as O2 Inhalation part, then enter value into “Change in PICO2” such<br />

as “40” by default, then go back to Control Panel and click on “Run” button, make<br />

sure the simulation “End Time” is equal or longer than the hypercapnia end time,<br />

shown below:


11<br />

D. Normal Sleep. To simulate normal sleep, simply click on check box “Sleep Enable”,<br />

then go back to Control Panel and click on “Run” button. You can change the<br />

parameter set for sleep to simulation different interventions. For overnight sleep,<br />

make sure your “End Time” in Control Panel is longer than 3600*8+200 seconds (>8<br />

hrs) , shown below:<br />

E. OSA Sleep. To simulate obstructive sleep apnea (OSA) sleep, first click on check box<br />

“Sleep Enable”, then drag the slider button in “Upper Airway Mechanism” or directly<br />

enter value into “Pcrit” such as -2.66 which will simulate a moderate OSA, then go<br />

back to Control Panel and click on “Run” button. For overnight sleep, make sure your


12<br />

“End Time” in Control Panel is longer than 3600*9+200 seconds (>9 hrs) , shown<br />

below:<br />

F. CPAP with OSA Sleep. To simulate continuous positive airway pressure (CPAP),<br />

first set up OSA sleep as the above example in OSA Sleep. Then click on check box<br />

“CPAP”, enter values into “Start Time” and “Duration”, give values for the positive<br />

pressure such as 15 cmH2O, then go back to Control Panel and click on “Run”<br />

button. You can try 1 hour CPAP shown as below or overnight CPAP for OSA Sleep.<br />

In our model, the default mode is to repeat CPAP every night if the CPAP duration is<br />

longer than 1 day. For example, if the simulation runs for 30-day OSA sleep with 10-<br />

day CPAP, on in the middle of the 30-day run time simulation, then the CPAP “Start<br />

Time” could be 3600*24*10-1800 sec (which is 0.5 hour short than 10 days) and<br />

“Duration Time” could be 3600*24*10+3600*2 sec (which is 2 hours longer than 10<br />

days).


13<br />

G. Maneuvers. To simulate Mueller Maneuver, click on check box “Mueller Maneuver”,<br />

then use the default setup which can be entered with different values as you desire,<br />

then go back to Control Panel and click on “Run” button. To simulate Valsalva<br />

Maneuver, click on check box “Valsalva Maneuver”, then use the default setup which<br />

can be entered with different values as you desired, then go back to Control Panel and<br />

click on “Run” button, shown below:<br />

H. CSR-CHF Sleep. To simulate central sleep apnea (CSA characterized with Cheney-<br />

Stokes Respiration CSR) with congestive heart failure (CHF), first activate Sleep<br />

as in Normal Sleep. Then to change heart contractility, go to “Adjustable<br />

Parameters”, enter value such as “0.475*0.3” or drag the slider bar for


14<br />

“Gain_Emaxlv” and enter value such as “2392*0.3” or drag the slider bar for<br />

“Basal_Emaxlv” in “Heart Contractility” area, then increase chemoreflex gain such as<br />

increase “Peripheral Chemo-Gain” by directly entering value as “0.0063*6” (example<br />

value) or dragging the slider bar, then increase “Lung-Chemo Volume” by directly<br />

entering value as “0.588*1.5” (example value) or dragging the slider bar. Lastly, go<br />

back to Control Panel and click on the “Run” button, as shown below:<br />

These are brief descriptions to help the user get started using our package. Please feel free<br />

to explore the model. Since this is an open source environment, contribution of newer<br />

code or model will also help us to improve our implementation and to better suit the<br />

needs of other users as well.


15<br />

Block Description<br />

For the complete descriptions of all the individual Simulink model blocks, please refer to<br />

the “Blocks Reference” section.<br />

Contact and Support<br />

The whole model and its modularized components will be updated from time to time. So,<br />

please check the website for newer update or if you wish to join the mailing list,<br />

notification will be sent to you regarding our progress on the update.<br />

FAQ will be set up as we get more questions and comments. In the meantime, please<br />

send all your valuable comments and feedbacks to pneuma.bmsr@gmail.com. Once we<br />

have the solution, then we will post it in the forum so that other users can benefit from it.<br />

The PNEUMA project is supported by the USC <strong>Biomedical</strong> <strong>Simulations</strong> <strong>Resource</strong> (NIH<br />

Grant P41-EB001978). Comments and feedback on all aspects of this software are<br />

welcome.


Blocks Reference<br />

16


17<br />

PNEUMA V.<strong>3.0</strong><br />

Description<br />

PNEUMA is implemented using SIMULINK. The open architecture of PNEUMA allows<br />

to group models into hierarchies to create a simplified view of components or<br />

subsystems. High-level information is presented clearly and concisely, while detailed<br />

information is easily hidden in subsystems within the model hierarchy. Current<br />

PNEUMA implementation builds up on 557 model parameters and allows the tracing of<br />

93 model states. It is a hybrid model that simultaneously addresses fast and slow<br />

physiological processes (i.e. single heart beat and circadian rhythm) that are implemented<br />

in mixed discrete and continuous modes.<br />

The modular design of PNEUMA makes it possible to perform simulations in which<br />

specific physiological mechanisms are excluded or added in order to better determine<br />

their contribution to the closed-loop operation of the overall system of interconnected<br />

components. This allows the user to explore alternative models of physiologic function in<br />

silico, which could be very useful in circumventing the challenges of attempting to study<br />

the systems in question experimentally or clinically. As well, the modularity of<br />

PNEUMA enables users to replace one or more of the model blocks with their own<br />

modules of specific physiological components.<br />

General References:<br />

1. Cheng, L., and Khoo, M. C. K. Modeling the autonomic and metabolic effects of<br />

obstructive sleep apnea: a simulation study. Front Physiol 2:111, 2012. doi:<br />

10.3389/fphys.2011.00111.<br />

2. Cheng, L., Ivanova, O., Fan, H., and Khoo, M. C. K. An integrative model of<br />

respiratory and cardiovascular control in sleep-disordered breathing. Respiratory<br />

Physiology and Neurobiology 174, 4-28, 2010.


18<br />

Simulink Model. Overall Pneuma<br />

Maneuvers<br />

Double Click<br />

to load Initial Conditions<br />

200<br />

t_stop<br />

Progress<br />

Display<br />

Panel<br />

Variable Respiratory Rhythm<br />

Mech Vent Neural<br />

External Pressure<br />

Tidal Volume Vt<br />

Sleep/Awake<br />

PaO2<br />

PaCO2<br />

SAO2<br />

RespMus Drive<br />

Total Ventilatory Drive<br />

ftas<br />

Metabolic Control<br />

PbCO2<br />

ftas _v<br />

ftbs<br />

Central Neural Control<br />

ftp<br />

AI -Arousal Index<br />

PaCO2<br />

CaO2<br />

AI -Arousal Index<br />

fcs<br />

Cardiovascular System<br />

SI-Sleep Wake State Index<br />

Ppl<br />

Blood Flow<br />

deltaFtas<br />

REM<br />

Respiratory System


19<br />

Reflexes (Reflex_Ursino.mdl)<br />

Description<br />

The reflexes model includes the key cardiorespiratory reflexes: baroreflex, chemoreflex<br />

and lung stretch receptor influences on respiration and heart-rate control.<br />

Reflexes<br />

ABP<br />

D state<br />

Carotid<br />

Baroreceptors<br />

f cs<br />

P CO2<br />

P O2<br />

Chemoreflex<br />

f chemo<br />

V t<br />

Lung Stretch<br />

Receptors Reflex<br />

f ls


20<br />

Carotid Baroreceptors<br />

This block represents the pressor receptors that are located in the carotid sinus. In<br />

response to arterial blood pressure changes, it produces both parasympathetic and the<br />

sympathetic neural activity changes. During sleep, baro-sensitivity is assumed to<br />

increase slightly. The input for this compartment is the arterial blood pressure, ABP, and<br />

the output is the carotid sinus firing frequency, fcs.<br />

Carotid Baroreceptors Equation:<br />

<br />

P Pn<br />

<br />

fcs,<br />

min fcs,maxexp(<br />

<br />

kcs<br />

kcs<br />

fcs<br />

<br />

P P <br />

1<br />

exp(<br />

n Pn<br />

) <br />

kcs<br />

kcs<br />

<br />

Pn Pn _ sleep<br />

(1 AI ) SI<br />

kcs Kcs _ sleep<br />

(1 AI ) SI<br />

Pn<br />

<br />

) <br />

<br />

Reference: Ursino, M, Interaction between carotid baroregulation and the pulsating<br />

heart: a mathematical model. American Journal of Physiology, 275:H1733-H1747, 1998.<br />

Simulink Model: Baroreceptors


21<br />

Input: ABP Arterial Blood Pressure<br />

Output: f cs Carotid Sinus firing frequency<br />

Variables: P n Center pressure for sigmoidal function<br />

k cs Parameter for sigmoidal slope control<br />

f cs,min Lower threshold for sigmoidal function<br />

f cs,max Upper saturation for sigmoidal function<br />

Pn Pressure change in sleep<br />

Slope change in sleep<br />

kcs


22<br />

Chemoreflex<br />

Description<br />

The inputs to the chemoreflexes are Oxygen (O2) and Carbon Dioxide (CO2) levels in<br />

the arterial blood. This reflex affects both the heart rate and the peripheral vasculatures.<br />

Inputs for this block are the oxygen and carbon dioxide partial pressure, PaO2 and<br />

PaCO2. Output is the chemoreceptors firing, fac.<br />

Chemoreflex Equations:<br />

<br />

chemo<br />

PaO<br />

, Pa<br />

2 CO2<br />

where<br />

<br />

<br />

_____ <br />

Pa <br />

O Pa<br />

f f<br />

2 O2<br />

chemo,min<br />

chemo,max<br />

exp<br />

<br />

kchemo<br />

<br />

<br />

PaCO<br />

<br />

K<br />

ln 2<br />

f<br />

_____ <br />

______ <br />

<br />

<br />

<br />

Pa Pa<br />

<br />

O O<br />

PaCO2<br />

<br />

1<br />

exp<br />

2 2 <br />

kchemo<br />

<br />

<br />

<br />

K<br />

<br />

<br />

K K<br />

<br />

<br />

K<br />

H<br />

H<br />

H<br />

PaO<br />

80<br />

<br />

2<br />

1.2<br />

<br />

30 <br />

1.6<br />

if Pa<br />

if 40 Pa<br />

if Pa<br />

O2<br />

O2<br />

80<br />

O2<br />

40<br />

80<br />

df<br />

chemo<br />

dt<br />

1<br />

<br />

<br />

chemo<br />

<br />

<br />

f<br />

chemo<br />

<br />

chemo<br />

<br />

Reference: Ursino, M, A mathematical model of CO2 effect on cardiovascular<br />

regulation. American Journal of Physiology – Heart and Circulatory Physiology,<br />

281:H2036-H2052, 2001.


23<br />

Inputs: PaCO2 Arterial CO2 partial pressure<br />

PaO2 Arterial O2 partial pressure<br />

Output: fchemo Chemoreceptor firing<br />

Variables: fchemo,max Lower saturation for the sigmoidal function<br />

fchemo,min Upper saturation for the sigmoidal function<br />

_____<br />

Pa O2 Center point in the sigmoidal function<br />

kchemo Slope control parameter for the sigmoidal<br />

function<br />

_____<br />

Pa CO2 Normalizing PaCO2 value<br />

KH<br />

Constant value for the static response<br />

f<br />

Constant value for the static response<br />

τchemo Time constant for the chemoreflex<br />

Simulink Model: Chemoreflex


24<br />

Lung Stretch Receptor Reflex<br />

Lung inflation or deflation can produce changes in heart rate through the lung stretch<br />

receptors. The input for this block is the tidal volume, Vt. The output is the lung stretch<br />

receptor activity, fls.<br />

Lung Stretch Receptors Reflex Equations<br />

<br />

lung GlungVT<br />

df<br />

lung<br />

dt<br />

1<br />

<br />

<br />

lung<br />

<br />

<br />

f<br />

lung<br />

<br />

lung<br />

<br />

Reference: Ursino, M, A mathematical model of CO 2 effect on cardiovascular<br />

regulation. American Journal of Physiology – Heart and Circulatory Physiology,<br />

281:H2036-H2052, 2001.<br />

Simulink Model: Lung Stretch Receptors Reflex<br />

Inputs: Vt Tidal volume<br />

Output: fls Lung stretch receptors firing rate<br />

Variables: Gls Constant gain<br />

Τls Time constant


25<br />

Offsets (CNS Response in PNEUMA.mdl)<br />

Offsets for Autonomic Control are the central nervous system response to the partial<br />

blood pressure of carbon dioxide and oxygen in the cerebral circulation. The input for<br />

this block are partial arterial blood pressure PaCO2 and PaO2. The outputs are the<br />

offsets for autonomic control, Offset res,vein,heart , respectively.<br />

Offsets Equations<br />

Offset <br />

d<br />

d<br />

res, vein, heart san, spn, sbn O2 sa, O2 sp, O2sb CO2 sa, CO2 sp, CO2sb<br />

O2 sa, O2 sp, O2sb<br />

dt<br />

CO2 sa, CO2 sp, CO2sb<br />

dt<br />

1<br />

( O 2 sa, O2 sp, O2 sb<br />

Wsa , sp,<br />

sb )<br />

<br />

isc<br />

1<br />

[ CO 2 sa, CO2 sp, CO2 sb<br />

gccsa, sp, sb<br />

( PaCO 2<br />

PaCO 2n<br />

)]<br />

<br />

cc<br />

W X /(1 exp(( P - PO2 n ) / kisc ))<br />

sa, sp, sb sa, sp, sb aO2 sa, sp, sb sa, sp,<br />

sb<br />

Reference: Ursino, M, A mathematical model of CO 2 effect on cardiovascular<br />

regulation. American Journal of Physiology - Heart and Circulatory Physiology,<br />

281:H2036-H2052, 2001.<br />

Inputs: PaCO2 Arterial CO2 partial pressure<br />

PaO2<br />

Arterial O2 partial pressure<br />

Output: Offset res,vein,heart CNS Response as offsets of autonomic<br />

control<br />

Variables:<br />

X sa<br />

Saturation for the offset of α-sympathetic<br />

activity on peripheral resistance<br />

θ san<br />

Nominal level of offset of α-sympathetic<br />

activity on peripheral resistance<br />

PO2n sa Central point for the sigmoidal function<br />

kisc sa<br />

Parameter of α-sympathetic activity on<br />

peripheral resistance<br />

X sb<br />

Saturation for the offset of -sympathetic<br />

activity<br />

θ sbn<br />

Nominal level of offset of -sympathetic<br />

activity<br />

PO2n sb Central point for the sigmoidal function<br />

kisc sb<br />

Parameter of -sympathetic activity<br />

X sp<br />

Saturation for the offset of α-sympathetic<br />

activity on peripheral resistance<br />

Nominal level of offset of α-sympathetic<br />

θ spn


26<br />

PO2n sp<br />

kisc sp<br />

τ isc<br />

τ cc<br />

activity on peripheral resistance<br />

Central point for the sigmoidal function<br />

Parameter of α-sympathetic activity on<br />

unstressed volume of veins<br />

Time constant for oxygen response<br />

Time constant for carbon dioxide response<br />

Simulink Model: Offsets (CNS Response)<br />

-C-<br />

theta _sa_n<br />

1<br />

PaO 2<br />

f(u)<br />

Wsa_Fcn<br />

1/tao _isc<br />

1/tao _isc<br />

1<br />

s<br />

theta_O2_sa<br />

1<br />

Offset _Resistance<br />

2<br />

PaCO 2<br />

-C-<br />

PaCO 2_n<br />

-K-<br />

Gain 2<br />

1/tao _cc<br />

1/tao _cc<br />

1<br />

s<br />

theta_CO2_sa<br />

-C-<br />

theta _sp_n<br />

f(u)<br />

Wsp_Fcn1<br />

1/tao _isc<br />

1/tao _isc1<br />

1<br />

s<br />

theta_O2_sp<br />

2<br />

Offset _veins<br />

-K-<br />

Gain 1<br />

1/tao _cc<br />

1/tao _cc1<br />

1<br />

s<br />

theta_CO2_sp<br />

-C-<br />

theta _sb_n<br />

f(u)<br />

Wsb_Fcn2<br />

1/tao _isc<br />

1/tao _isc2<br />

1<br />

s<br />

theta_O2_sb<br />

3<br />

Offset _heart<br />

gcc_sb<br />

Gain 3<br />

1/tao _cc<br />

1/tao _cc2<br />

1<br />

s<br />

theta_CO2_sb


27<br />

Autonomic Control (submodels refer to Autonomic.mdl)<br />

Description<br />

Influences from the central respiratory control (RSA), baroreflexes, chemoreflexes and<br />

lung stretch receptors reflexes are integrated in this compartment and these inputs<br />

determine the total -sympathetic, -sympathetic and parasympathetic influences on<br />

heart rate and peripheral resistance. The inputs for this compartment are the central<br />

respiratory drive, N t , chemoreflex, f chemo , lung stretch receptors reflex, f ls , carotid<br />

baroreceptors firing, f cs, and CNS response, Offsets. The outputs are the -sympathetic<br />

response, f tas , -sympathetic response, f tbs and parasympathetic response, f tp . The models<br />

shown below is in PNEUMA.mdl, but the submodel is referred to Autonomic.mdl.<br />

Autonomic Control<br />

N t<br />

f chemo<br />

f ls<br />

f cs<br />

Offsets<br />

Autonomic Integration<br />

Central Respiratory Control<br />

Chemoreflex<br />

Lung Stretch Receptors<br />

Reflex<br />

Baroreflex<br />

CNS Response<br />

f tas<br />

f tbs<br />

f tp<br />

Autonomic Integration Equations:<br />

(a) Alpha-Sympathetic Activity<br />

f f ( f f ) <br />

tas _ res, vein s, s,0<br />

s,<br />

<br />

<br />

exp k G f G f G f G N Offset<br />

<br />

s baro, as cs chemo, as chemo lung,<br />

as lung RSA,<br />

as t res,<br />

vein<br />

(b) Beta-Sympathetic Activity<br />

f f ( f f ) <br />

tbs<br />

s, s,0<br />

s,<br />

<br />

<br />

exp k G f G f G f G N Offset<br />

<br />

s baro, bs cs chemo, bs chemo lung, bs lung RSA,<br />

bs t<br />

heart


28<br />

(c) Parasympathetic Activity<br />

<br />

fcs<br />

fcs,0<br />

f<br />

f exp<br />

para ,0 para , <br />

k<br />

<br />

p <br />

f <br />

<br />

<br />

G f G f G N Offset<br />

f f <br />

1 exp k<br />

<br />

p <br />

tp chemo, p chemo lung, p lung RSA, p t para _ n<br />

cs cs,0<br />

Reference: Ursino, M, A mathematical model of CO2 effect on cardiovascular<br />

regulation. American Journal of Physiology – Heart and Circulatory Physiology,<br />

281:H2036-H2052, 2001.<br />

Simulink Model: Autonomic Control<br />

Band-Limited<br />

White Noise<br />

4<br />

Gain2<br />

0<br />

Gain3<br />

noise<br />

1<br />

ftas_blocker<br />

1<br />

Total Alpha-Symp<br />

(ftas_res)<br />

4<br />

Nt Central Respiratory<br />

Neural Drive<br />

0.4<br />

G_CRSA<br />

0.34<br />

1<br />

lung feedback<br />

G_lung_asymp<br />

5<br />

Offset_Alpha-symp1<br />

G_offset_asymp1<br />

6<br />

Offset_Alpha-symp2<br />

G_offset_asymp2<br />

0.24<br />

1<br />

1<br />

4<br />

G_chemo_asymp<br />

fas<br />

Alpha-Symp<br />

Integration<br />

f(u)<br />

Alpha-Sympathetic<br />

Response<br />

f(u)<br />

Alpha-Sympathetic<br />

Response1<br />

fs<br />

(u60)*u<br />

f(u)<br />

1<br />

2<br />

Total Alpha-Symp<br />

ftas_blocker1<br />

(ftas_vein)<br />

2<br />

Chemoreflex<br />

1<br />

G_chemo<br />

2.8<br />

G_chemo_bsymp<br />

7<br />

Offset_Beta-symp<br />

G_lung_bsymp<br />

1<br />

G_offset_bsymp<br />

fbs<br />

Beta-Symp<br />

Integration<br />

f(u)<br />

Beta-Sympathetic<br />

Response<br />

fs<br />

(u60)*u<br />

1<br />

3<br />

Total Beta-Symp<br />

ftbs_blocker<br />

(ftbs)<br />

0.24<br />

3<br />

fcs<br />

Carotid Sinus<br />

1<br />

G_lung_para<br />

f(u)<br />

fp<br />

G_fcs<br />

-Ctheta_para_n<br />

Parasympathetic<br />

BaroResponse<br />

0.03<br />

G_chemo_para<br />

1<br />

G_offset_para<br />

Parasymp<br />

Integration<br />

(u>=0)*u<br />

1<br />

ftp_blocker<br />

4<br />

Total Parasymp<br />

(ftp)


29<br />

Simulink Model: Alpha-Sympathetic Response<br />

Simulink Model: Beta-Sympathetic Response<br />

Simulink Model: Parasympathetic Baroresponse


30<br />

Inputs: N t Respiratory Neural firings<br />

e f chemo Chemoreceptor firings<br />

f lung<br />

Lung stretch receptors firings<br />

f cs<br />

Baroreceptor firings<br />

CNS response<br />

Offset res,vein,heart<br />

Outputs: f tp Total parasympathetic response<br />

f tbs<br />

Total β-Sympathetic response<br />

Total α-Sympathetic response<br />

f tas_res,vein<br />

Variables: f para,0 Lower threshold of the parasympathetic baroreflex<br />

sigmoidal function<br />

f para,<br />

Upper saturation of the parasympathetic baroreflex<br />

sigmoidal function<br />

f cs,0<br />

Center point for the sigmoidal function<br />

k p<br />

Slope control parameter for the sigmoidal function<br />

G RSA,p<br />

Central RSA gain for parasympathetic response<br />

G chemo,p Chemoreflex gain for parasympathetic response<br />

G lung,p<br />

Lung stretch receptor reflex gain for<br />

parasympathetic response<br />

f s,0<br />

Lower limit of the sympathetic exponential decay<br />

function<br />

f s,<br />

Upper saturation of the sympathetic exponential<br />

decay function<br />

k s<br />

Constant for the exponential function<br />

G RSA,bs<br />

Central RSA gain for -sympathetic response<br />

G chemo,bs Chemoreflex gain for -sympathetic response<br />

G lung,bs<br />

Lung stretch receptor reflex gain for -sympathetic<br />

G baro,bs<br />

Baroreflex gain for -sympathetic<br />

G RSA,as<br />

Central RSA gain for -sympathetic response<br />

G chemo,as Chemoreflex gain for -sympathetic response<br />

G lung,as<br />

Lung stretch receptor reflex gain for -sympathetic<br />

Baroreflex gain for -sympathetic<br />

G baro,as


31<br />

SA Node (SA_Node_Ursino.mdl)<br />

Description<br />

This module translates changes in -sympathetic and parasympathetic efferent activity<br />

into changes in heart rate. In sleep, the model assumes that the parasympathetic response<br />

increases while there is small decrease in the sympathetic activity. The inputs for this<br />

subsystem are the total -sympathetic firing frequency, ftbs, and parasympathetic firing<br />

frequency, ftp, and the output is the heart period, HP (= reciprocal of instantaneous heart<br />

rate).<br />

SA Node<br />

f tbs<br />

SI<br />

-sympathetic<br />

Response<br />

HP bs<br />

f tp<br />

SI<br />

parasympathetic<br />

Response<br />

HP p<br />

HP<br />

Basal Heart<br />

Period HP basal<br />

SA Node Equation:<br />

HP<br />

<br />

HP<br />

bs<br />

HP<br />

p<br />

HP<br />

basal<br />

Reference: Ursino, M, Interaction between carotid baroregulation and the pulsating<br />

heart: a mathematical model. American Journal of Physiology, 275:H1733-H1747, 1998.


32<br />

Simulink Model: SA Node<br />

3<br />

Gbs(SI)<br />

1<br />

ftbs<br />

Transport<br />

Delay<br />

Saturation<br />

ln<br />

Math<br />

Function<br />

-0.13<br />

Gain _HPbs<br />

1<br />

toux (7).s+1<br />

Transfer Fcn<br />

ftbs_min<br />

Constant<br />

HP_basal<br />

Constant 1<br />

1<br />

HP<br />

2<br />

ftp<br />

Transport<br />

Delay<br />

4<br />

1<br />

Gps(SI)<br />

0.09<br />

Gain _HPpara<br />

1<br />

toux (8).s+1<br />

Transfer Fcn 1<br />

Inputs: f tbs Total beta-sympathetic firing frequency<br />

f tp<br />

Total parasympathetic firing frequency<br />

Output: HP Heart Period (equivalent to RR-interval)<br />

Variable: HP basal Basal value for HP for denervated heart<br />

HP bs Change in HP modulated by -sympathetic<br />

response<br />

HP p Change in HP modulated by parasympathetic<br />

response


33<br />

-Sympathetic Control<br />

Description<br />

This response is modeled assuming first-order dynamics. The time-constant and delay<br />

associated with the -sympathetic effect on the heart period is longer than that of the<br />

parasympathetic response. There is slight decrease in -sympathetic response in sleep.<br />

The input for this compartment is the -sympathetic firing frequency, ftbs and the output<br />

is the corresponding component of heart period change, HPbs.<br />

-Sympathetic Control Equations:<br />

G G ( SI ) ln[ f ( t D ) f 1],<br />

f f<br />

<br />

bs()<br />

t <br />

0,<br />

ftbs<br />

f<br />

G ( SI ) 1 SI (1 AI ) G<br />

bs bs tbs bs tbs min tbs tbs min<br />

bs bs _ sleep<br />

tbs min<br />

d<br />

dt<br />

HPbs<br />

<br />

<br />

1<br />

bs<br />

<br />

HPbs(<br />

t)<br />

<br />

bs<br />

( t)<br />

<br />

Reference: Ursino, M, Interaction between carotid baroregulation and the pulsating<br />

heart: a mathematical model. American Journal of Physiology, 275:H1733-H1747, 1998.<br />

Input: ftbs Total beta-sympathetic firing frequency<br />

SI<br />

Sleep Index for sleep wake state<br />

AI<br />

Arousal Index<br />

Output: ΔHPbs Heart Period change modulated by -symp.<br />

Variables: Dbs -sympathetic time delay<br />

ftbsIC -sympathetic initial output after time delay<br />

ftbs_min Lower limit for the natural log function<br />

Gbs<br />

-sympathetic Gain varied with sleep drive<br />

τbs<br />

-sympathetic time constant<br />

delta_HPbsIC Initial input to the -symp first order dynamic<br />

system<br />

Gbs_sleep -sympathetic Gain of sleep factor


34<br />

Parasympathetic Response<br />

Description<br />

The vagal effect on heart rate is modeled assuming first-order dynamics. During sleep,<br />

parasympathetic activity increases, and this is partially responsible for the decrease in the<br />

heart rate. The input for this compartment is the parasympathetic firing frequency, ftp<br />

and the output is the corresponding component of heart period change, HPp.<br />

Parasympathetic Response Equations:<br />

Gps<br />

ps( t) ftp( t Dps)<br />

G ( SI )<br />

<br />

d<br />

dt<br />

HP<br />

<br />

ps<br />

1<br />

p<br />

τ para<br />

G ( SI ) 1 SI (1 AI ) G<br />

<br />

ΔHPp(t)<br />

σp(t)<br />

ps para _ sleep<br />

<br />

Reference: Ursino, M, Interaction between carotid baroregulation and the pulsating<br />

heart: a mathematical model. American Journal of Physiology, 275:H1733-H1747, 1998.<br />

Input: ftp Total parasympathetic firing frequency<br />

SI<br />

Sleep Index for sleep wake state<br />

AI<br />

Arousal Index<br />

Outputs: ΔHPp Heart Period change modulated by<br />

parasympathetic<br />

Variables: Dpara Parasympathetic time delay<br />

ftpIC Parasympathetic initial output after time delay<br />

Gpara Parasympathetic Gain varied with sleep drive<br />

τpara Parasympathetic time constant<br />

delta_HPpIC Initial input to the parasympathetic first order<br />

dynamic system<br />

Gpara_sleep Parasympathetic Gain of sleep factor


35<br />

-Sympathetic Control of Peripheral Resistance<br />

(TPR_Ursino.mdl)<br />

Description<br />

This block models -sympathetic control of peripheral vascular resistance, using a firstorder<br />

dynamic system as in the case of the -sympathetic component. During sleep in<br />

normals, the accompanying decrease in -sympathetic activity contributes substantially<br />

to a decrease in blood pressure. The inputs are the total -sympathetic firing frequency,<br />

ftas and the state/sleep drive, Dstate. The output is the proportional change in the<br />

peripheral resistance, TPR.<br />

Total Peripheral Resistance<br />

ftas<br />

SI<br />

Vascular Resistance<br />

Changes (baro, lung<br />

stretch, central, chemo)<br />

TPR<br />

Equations for Total Peripheral Resistance Change:<br />

G G ( SI ) ln[ f ( t D ) f 1],<br />

f f<br />

Z<br />

j<br />

<br />

0,<br />

f f<br />

dTPR<br />

j 1<br />

( TPR<br />

j<br />

Z<br />

j )<br />

dt <br />

j as tas _ i j tas min tas _ i tas min<br />

TPR () t TPR TPR<br />

j<br />

j j j0<br />

G ( SI ) 1 SI (1 AI ) G<br />

as as _ sleep<br />

tas _ i tas min<br />

Reference: Ursino, M, Interaction between carotid baroregulation and the pulsating<br />

heart: a mathematical model. American Journal of Physiology, 275:H1733-H1747, 1998.


36<br />

Simulink Model: Alpha-Sympathetic Modulation on Peripheral Resistance<br />

3<br />

1-u<br />

AI (arousal Index)<br />

4<br />

SI (Sleep Index)<br />

Gas_sleep<br />

Gas_sleep<br />

2<br />

Alpha Symp<br />

(ftas_vein)<br />

1<br />

Alpha Symp<br />

(ftas)<br />

1<br />

Gas(SI)<br />

{Rsp}<br />

fes<br />

Rsp<br />

Gas(SI)<br />

Rsp<br />

Peri Circ Rsp<br />

fes<br />

Rep<br />

Rep<br />

Gas(SI)<br />

Peri Circ Rep<br />

fes<br />

Rmp_n<br />

Gas(SI)<br />

Rmp_n<br />

{Rep }<br />

{Rmpn }<br />

Peri Circ Rmp<br />

fes<br />

Vusv<br />

Gas(SI)<br />

Vusv<br />

{Vusv}<br />

Venous Circ Vusv<br />

fes<br />

Vuev<br />

Gas(SI)<br />

Vuev<br />

{Vuev }<br />

Venous Circ Vuev<br />

1<br />

u<br />

{Gbp }<br />

Gbp<br />

{Rmp }<br />

Rmp<br />

1<br />

u<br />

1<br />

u<br />

1<br />

{Rhp }<br />

Rhp u<br />

1<br />

u<br />

TPR _change<br />

Goto<br />

fes<br />

Vumv<br />

Gas(SI)<br />

Venous Circ Vumv<br />

{Vumv }<br />

Vumv<br />

Inputs: ftas Total alpha-sympathetic firing frequency<br />

SI<br />

Sleep Index for sleep wake state<br />

AI Arousal Index<br />

Outputs: TPR_change TPR change factor<br />

Variables: fasIC -sympathetic initial output after time delay<br />

fas_min Lower limit for the natural log function<br />

Gas_sleep -sympathetic Gain varied with sleep<br />

Gas_sp -sympathetic Gain for splanchnic peripheral resistance<br />

τas_sp -sympathetic time constant<br />

Das_sp Delay -sympathetic time constant<br />

Gas_ep -sympathetic Gain for extra-splanchnic peripheral resistance<br />

τas_ep -sympathetic time constant<br />

Das_ep Delay -sympathetic time constant<br />

Gas_mp -sympathetic Gain for skeletal muscle peripheral resistance<br />

τas_mp -sympathetic time constant<br />

Das_mp Delay -sympathetic time constant<br />

Vusv0 Basal level of unstressed volume of splanchnic venous<br />

circulation<br />

Gas_usv -sympathetic Gain for unstressed volume of splanchnic venous<br />

circulation<br />

τ as_usv -sympathetic time constant<br />

D as_usv Delay -sympathetic time constant


37<br />

Variable Breathing Period (PNEUMA.mdl)<br />

Description<br />

The variable breathing period is controlled from the central neural control system by the<br />

total chemoreflex drive [52]. The inspiratory and expiratory periods of a single breath are<br />

set to be of equal duration. The ventilatory drive is controlled by central and peripheral<br />

chemoreflexes. The combination of ventilatory drive and breathing period determines the<br />

neuromuscular drive.<br />

Reference: Duffin J., R.M. Mohan, P. Vasiliou, R. Stephenson, S. Mahamed, “A model<br />

of the chemoreflex control of breathing in humans: model parameter measurement,”<br />

Respiration Physiology, vol. 120, pp. 13-26, 2000.


38<br />

Simulink Model: Variable respiratory rhythm generator<br />

Breathing_Enable_Signal<br />

Ventilatory Drive (L/sec)<br />

1<br />

D_VENTILATORY<br />

Breathing_Enable_Signal<br />

2<br />

F_breathing<br />

Breathing Frequency<br />

(breaths/minute)<br />

Breathing_Frequency<br />

D_Vent<br />

Breathing Period (sec/breath)<br />

T_breathing<br />

Variable Breathing Period (sec)<br />

ENABLE SIGNAL<br />

Breathing Period<br />

Enable_Breathing_Period<br />

VENTILATORY<br />

DRIVE (chemical)1<br />

Breathing Period<br />

Enable Breathing Signal<br />

Enable Breathing Signal<br />

Breathing Period Basal<br />

Breathing_Period_Basal<br />

3.5<br />

Breathing Period Update<br />

Variable Breathing Period<br />

Variable Breathing Period Reset<br />

Variable Breathing Period (sec)<br />

VBP Variable Breathing Period<br />

Respiratory Rhythm<br />

RESPIRATORY RHYTHM<br />

1<br />

Respiratory Rhythm_Generator


39<br />

Simulink Model: Ventilatory drive breathing frequency/period<br />

1<br />

D_Vent<br />

7500<br />

-C-<br />

u<br />

para<br />

BF<br />

fcn<br />

count<br />

Control_Constant2<br />

Embedded<br />

MATLAB Function<br />

Breathing Frequency (breaths/minute)<br />

1<br />

u<br />

Math<br />

Function<br />

60<br />

Breathing Period (sec)<br />

2<br />

Breathing Period (sec)<br />

T_breathing<br />

Breathing Frequency (breaths/minute)<br />

1<br />

F_breathing<br />

BF_BP Scope1


40<br />

Variable Heart Period (PNEUMA.mdl)<br />

Description<br />

The variable heart period module is modulated by the major reflexes and<br />

cardiorespiratory interactions in a closed loop mode. The sinoatrial node is modeled as a<br />

simple pacemaker, regulated by the parasympathetic and the beta-sympathetic inputs. The<br />

variable heart period is generated from continuous SA output using an<br />

integration/saturation mechanism. The beta-sympathetic branch affects the heart rate<br />

contractility, thus modulating the systolic period. Greater beta-sympathetic tone increases<br />

myocardial elastance and shortens ventricular systole. Each active atria-ventricular<br />

compartment is characterized by a time-varying nonlinear elastance function, describing<br />

the changes in ventricular elastance due to the beta-sympathetic tone input. The diastolic<br />

filling time is the difference between the heart period and systolic period and is thus<br />

controlled indirectly. The activation of the right and left hearts is fully synchronized and<br />

occurs simultaneously.<br />

Reference: Dempsey, J.A., Smith, C.A., Eastwood, P.R., Wilson, C.R., Khoo, M.C.K.<br />

Sleep induced respiratory instabilities. In: Pack, A.I. (Ed.), Sleep Apnea Pathogenesis,<br />

Diagnosis and Treatment. Dekker M., New York. 2002.


41<br />

Simulink Model: Variable Heart Period<br />

1<br />

1<br />

HP_SAnode<br />

1<br />

u<br />

1<br />

s<br />

Threshold Integrated HP<br />

HPin<br />

u1 if(u1


42<br />

Cardiovascular System (PNEUMA.mdl)<br />

Description<br />

The cardiovascular subsystem is capable of simulating the pulsatile nature of the heart<br />

and blood flow through the pulmonary and systemic circulations. Included in the model<br />

are descriptions of atria-ventricular mechanics, hemodynamics of the systemic and<br />

pulmonary circulations, SA node, change of total peripheral resistance and baroreflex.<br />

The inputs for this combined subsystem are the α-sympathetic firing rates, ftas_res,vein,<br />

β-sympathetic firing rates, ftbs, parasympathetic firing rate, ftp, arterial PaCO2, CaO2,<br />

arousal index, AI, sleep-wake state index, SI, and the pleural pressure, Ppl. To<br />

incorporate the effects of pleural pressure changes on the circulatory system we modulate<br />

basal blood pressure values for systemic and pulmonary components in thoracic cavity<br />

and heart. The output is the arterial blood pressure, ABP, heart period, HP, cardiac<br />

output, CO, and blood flow to lung for gas exchange.<br />

Cardiovascular System<br />

Pulmonary<br />

Circulation<br />

R PA<br />

C PC<br />

R PC<br />

C PV<br />

R PV<br />

L PA<br />

p LA<br />

C LA<br />

R SV<br />

R SP<br />

C SV<br />

C SP<br />

R LA<br />

Q RV<br />

R RV<br />

C PA<br />

R EV<br />

R EP<br />

C EV<br />

C EP<br />

C LV<br />

R LV<br />

p LV<br />

C RV<br />

Q MP<br />

Q LV<br />

pRA<br />

R RA R MV R<br />

C MP<br />

MV<br />

C MP<br />

Q BP<br />

C RA<br />

R BV<br />

R<br />

C BP<br />

BV<br />

C BP<br />

QHP<br />

R VC<br />

C VC<br />

RHV<br />

RHP<br />

CHV<br />

C HP<br />

p SP<br />

C SA<br />

L SA<br />

R SA<br />

Systemic<br />

Circulation


43<br />

Reference:<br />

1. Ursino, M. Interaction between carotid baroregulation and the pulsating heart: a<br />

mathematical model. American Journal of Physiology, 275:H1733-H1747, 1998.<br />

2. Ursino, M., Magosso, E. Acute cardiovascular response to isocapnic hypoxia. I. A<br />

mathematical model. American Journal of Physiology – Heart and Circulatory<br />

Physiology, 279, H149-165, 2000.


44<br />

Simulink Model. Cardiovascular System<br />

2<br />

fcs<br />

2<br />

ftas_vein<br />

1<br />

ftas_res<br />

TPR Change<br />

Alpha Symp (ftas)<br />

Alpha Symp (ftas_vein)<br />

AI (arousal Index )<br />

{Ppa }<br />

{Vpa }<br />

{Pla }<br />

{Pra }<br />

{Vra } {Vla }<br />

{Vrv} {Vlv}<br />

Carotid<br />

Baroreceptor<br />

8<br />

SI Sleep -Wake<br />

State Index<br />

3<br />

ftbs<br />

4<br />

ftp<br />

SI (Sleep Index )<br />

SI Sleep Wake State Index<br />

Beta-Symp (ftbs)<br />

Parasymp (ftp)<br />

HP<br />

HP<br />

HP<br />

{Vpp }<br />

{gPpl }<br />

{Rmpn }<br />

{Gbp }<br />

{Wlv}<br />

{Wrv}<br />

{Vusv}<br />

{Rhp }<br />

{RHeart } {LHeart }<br />

{Vpv} {Vu}<br />

{Vuev } {Vumv }<br />

{Rmp } {Rsp}<br />

Arousal _CardIC<br />

{Rep }<br />

{Vsa}<br />

{Psp}<br />

{Pvc}<br />

SA-node and Autonomic Control<br />

ABP<br />

7<br />

AI<br />

Arousal Index<br />

1<br />

G_pleural<br />

{gPpl }<br />

9<br />

Ppl<br />

Qrv<br />

PULMONARY CIRCULATORY SYSTEM<br />

1<br />

Blood Flow to Lung<br />

for Gas Exchange<br />

Qla<br />

Local Flow Regulation<br />

PaCO2<br />

5<br />

CaO2<br />

6<br />

RIGHT HEART<br />

Qra<br />

Qmp<br />

LEFT HEART<br />

Qlv<br />

Qbp<br />

SYSTEMIC CIRULATORY SYSTEM<br />

Qhp


45<br />

Simulink Model. SA-Node and Autonomic Control<br />

Vusa<br />

Vusp<br />

2<br />

Beta-Symp (ftbs)<br />

f tbs<br />

Gbs(SI)<br />

Emaxlv<br />

{Emaxlv}<br />

{Emaxlv}<br />

{Emaxrv}<br />

Vuep<br />

[Vuev]<br />

[Vusv]<br />

Vupv<br />

Heart Emaxlv<br />

f tbs<br />

Emaxrv<br />

Gbs(SI)<br />

Heart Emaxrv<br />

{Emaxrv}<br />

phi<br />

Right Ventricle<br />

Pmaxrv<br />

Heart Beat<br />

Right Ventricle<br />

{RHeart}<br />

Vupa<br />

Vula<br />

Vupp<br />

{Vu}<br />

3<br />

Parasymp<br />

(ftp)<br />

f tbs<br />

f tp<br />

Gbs(SI)<br />

Gps(SI)<br />

HP<br />

HP phi<br />

phi<br />

phi<br />

Left Ventricle<br />

Pmaxlv<br />

Heart Beat<br />

Left Ventricle<br />

{LHeart}<br />

Vura<br />

SA Node<br />

Vump<br />

Vuhp<br />

Vuhv<br />

Vubp<br />

Vubv<br />

4<br />

Arousal_CardIC<br />

1-u<br />

1<br />

SI Sleep Wake State Index<br />

Gbs_sleep<br />

1<br />

Gpara_sleep<br />

HP_SAnode<br />

RR Interval<br />

Heart_Period<br />

1<br />

HP<br />

[Vumv]<br />

1<br />

Simulink Model. Left Heart<br />

1<br />

Qla<br />

Left Heart<br />

Qla<br />

Vula<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

1/Cla<br />

{Vla}<br />

Pla<br />

[gPpl]<br />

{Pla}<br />

Vula (Left Atrium Unstressed Volume)<br />

Vulv (Left Ventricle Unstressed Volume)<br />

Vlv (Left Ventricle Volume)<br />

Vla (Left Atrium Volume)<br />

Pla (Left Atrium Pressure)<br />

Plv (Left Ventricle Pressure)<br />

Qla (Flow into Left Atrium)<br />

Qilv (Flow into Left Ventricle)<br />

Qolv (Flow out of Left Ventricle)<br />

LHeart (Left Ventricle Function)<br />

Qilv<br />

1/Rla<br />

mitral<br />

valve<br />

Plv<br />

[ABP]<br />

[LHeart]<br />

1<br />

s<br />

SV<br />

Qolv<br />

Vulv<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

[ABP]<br />

{Vlv}<br />

{Wlv}<br />

Pmaxlv<br />

aortic<br />

valve<br />

Pmax<br />

P<br />

Flow Qolv<br />

Pmaxlv--Psa<br />

----------------------<br />

Rlv<br />

[HP]<br />

1<br />

Qlv<br />

-Kml/sec<br />

to l/min<br />

CO


46<br />

Simulink Model. Right Heart<br />

Right Heart<br />

1<br />

Qirv<br />

Qra<br />

Vura<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

1/Cra<br />

{Vra}<br />

Pra<br />

{Pra}<br />

[gPpl]<br />

Vura (Right Atrium Unstressed Volume)<br />

Vurv (Right Ventricle Unstressed Volume)<br />

Vrv (Right Ventricle Volume)<br />

Vra (Right Atrium Volume)<br />

Pra (Right Atrium Pressure)<br />

Prv (Right Ventricle Pressure)<br />

Qra (Flow into Right Atrium)<br />

Qirv (Flow into Right Ventricle)<br />

Qrv (Flow out of Right Ventricle)<br />

LHeart (Left Ventricle Function)<br />

CHF Gain1<br />

Qirv<br />

1/Rra<br />

1<br />

tricuspid<br />

valve<br />

Prv<br />

Switch2<br />

[Ppa]<br />

Pmaxrv<br />

[RHeart]<br />

Qirv<br />

Vurv<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

{Vrv}<br />

Pmaxrv<br />

[Ppa]<br />

{Wrv}<br />

pulmonary<br />

valve<br />

Pmax<br />

P<br />

Flow<br />

Pmaxrv--Ppa<br />

----------------------<br />

Rrv<br />

1<br />

Qrv<br />

Product<br />

Simulink Model. Systemic Circulation<br />

Systemic Circulation<br />

1<br />

Qlv<br />

Qlv<br />

Qsa<br />

Systemic<br />

Arteries<br />

Qsa<br />

Qvc<br />

Qmp<br />

Qbp<br />

Qhp<br />

Systemic<br />

Peripheral &<br />

Venous<br />

Circulation<br />

Qvc<br />

2<br />

Qmp<br />

3<br />

Qbp<br />

4<br />

Qhp<br />

Qra<br />

Vena Cava<br />

{Vvc}<br />

1<br />

Qra


47<br />

Simulink Model. Pulmonary Circulation<br />

Pulmonary Circulation<br />

1<br />

Qrv<br />

Qrv<br />

Qpa<br />

Vupa<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

1/Cpa<br />

{Vpa}<br />

Ppa<br />

Ppp<br />

{Ppa}<br />

Ppa (Pulmonary Arteries Pressure)<br />

Ppp (Pulmonary Peripheral Pressure)<br />

Ppv (Pulmonary Veins Pressure)<br />

Pla (Left Atrium Pressure)<br />

Qor (Flow from Right Heart)<br />

Qpa (Flow to Pulmonary Aorta)<br />

Qla (Flow to Left Atrium)<br />

Vupa (Pulmonary Arteries Unstressed Volume)<br />

Vupp (Pulmonary Peripheral Unstressed Volume)<br />

Vupv (Pulmonary Veins Unstressed Volume)<br />

Qpa<br />

Rpa<br />

[gPpl]<br />

Qpa<br />

1/Lpa<br />

1<br />

s<br />

Qpp<br />

1<br />

Qpa<br />

Vupp<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

Ppp<br />

{Vpp}<br />

1/Cpp<br />

Ppp<br />

-K-<br />

1/Rpp<br />

ml/liter<br />

Qpv<br />

Vupv<br />

1<br />

s<br />

_<br />

Out<br />

+<br />

[gPpl]<br />

1/Cpv<br />

Ppv<br />

{Vpv}<br />

2<br />

Qla<br />

Qpv<br />

Qpv<br />

1/Rpv<br />

Pla<br />

[Pla]<br />

Simulink Model. Local Flow Regulation<br />

4<br />

CaO2<br />

6<br />

Qbp<br />

3<br />

PaCO2<br />

5<br />

Qmp<br />

CaO2<br />

PaCO2<br />

Qbp<br />

Gsleep<br />

CaO2<br />

PaCO2<br />

Qmp<br />

Gsleep<br />

Gbp<br />

Cerebral Circulation<br />

Regulation<br />

Rmp<br />

Muscular Circulation<br />

Regulation<br />

{Gbp}<br />

Brain Peripheral<br />

Resistance<br />

{Rmp}<br />

Muscular Peripheral<br />

Resistance<br />

7<br />

Qhp<br />

1 1-u<br />

AI (arousal Index)<br />

2<br />

SI (Sleep Index)<br />

-K-<br />

Gas_sleep<br />

CaO2<br />

PaCO2<br />

Qhp<br />

Gsleep<br />

1<br />

Rhp<br />

Coronary Circulation<br />

Regulation<br />

Gas(SI)<br />

{Rhp}<br />

Coronary Peripheral<br />

Resistance


48<br />

Neuromuscular Drive (NeuroMuscular.mdl)<br />

Description<br />

Inspiratory muscular activity is produced by neural drive arising from the respiratory<br />

centers. The muscles have to overcome the resistive and elastic forces of the lungs and<br />

chestwall to generate the airflow. The muscular drive is modulated by the<br />

autorhythmicity, chemical and state drives. In the case of the mechanical assisted<br />

ventilation, the internal neural activity will diminish with a period of time. The inputs for<br />

this compartment are the chemical drive, Dchemo, external pressure, Dext and the staterelated<br />

drive, Dstate. The output is the neuromuscular drive, Nt.<br />

Neuromuscular Drive<br />

Chemical Drive, State Drive<br />

Respiratory Autorhythmicity<br />

External Assisted Pressure<br />

Neuromuscular<br />

<br />

Drive Profile<br />

Nt<br />

Neuromuscular Drive Equations:<br />

Respiratory<br />

Autorhythmicity SquareFuncTI ( , TT )<br />

<br />

<br />

TI<br />

N( t)<br />

0<br />

<br />

0<br />

Dtotaldt<br />

0 t TI<br />

TI<br />

t TT


49<br />

Simulink Model: Neuromuscular Drive<br />

Demux<br />

Resp_Rhythm_Generator<br />

on_off_rhythm_test<br />

Mux<br />

1<br />

RespMus Drive<br />

RespMus_blocker<br />

Chemical<br />

Drive<br />

3<br />

1<br />

G_RespMus<br />

20<br />

S_wake<br />

0.3<br />

Nt Save block<br />

Resp Neural Prof ile<br />

State<br />

drive<br />

2<br />

Resp_sig<br />

Mux<br />

2<br />

Total Drive<br />

1<br />

Mechanial<br />

Ventilation<br />

Mux<br />

f(u)<br />

Inputs: Dchemo Chemical Drive<br />

Dext External drive or pressure<br />

Dstate State related Drive<br />

Output: Nt Neural-Muscular Drive<br />

Variables: Gstate State Drive gain<br />

TTmean Breathing Period<br />

TImean Inspiration Period<br />

Inhale Boolean variable for inhalation


50<br />

Respiratory Muscle Activity (Pmus_Flow_Younes.mdl)<br />

Description<br />

During the breathing process, the respiratory muscles have to overcome the resistive and<br />

the elastic forces of the respiratory system. By equating the force generated from the<br />

respiratory muscles with the pressure from the respiratory system, the airflow pattern can<br />

be obtained using a simple mechanics model, and tidal volume can be computed from<br />

the flow. During normal breathing, expiratory muscular activity is minimum. The inputs<br />

are the neural signals, Nt, the upper airway conductance, Cond ua , the expiratory pressure,<br />

Pexp and the external pressure, Pao. The outputs are the airflow, Flow, tidal volume, Vt<br />

and the muscular pressure, Pmus.<br />

Respiratory Muscle Activity<br />

Pexp<br />

Pao<br />

Nt<br />

Cond ua<br />

Inspiratory<br />

Muscular<br />

Pressure<br />

Respiratory<br />

Resistive,<br />

Elastic Force<br />

Vt, Flow, Pmus<br />

Respiratory Mechanics Equations:<br />

P isom = G neuromusc D Total<br />

Y<br />

rs<br />

Yua<br />

<br />

1 ( R R R ) Y<br />

AW LT CW ua<br />

Note: when Yua=0, then Yrs = 0.<br />

.<br />

V<br />

t<br />

<br />

<br />

Vt<br />

/ 0.28VC<br />

isom t 2<br />

t t<br />

P ( t) e V V V / 0.28VC<br />

(0.25 Yrs b Vt ErsYrs Pao Yrs ) 4 b ( Pisom e Yrs VtErsY rs<br />

Pao Yrs)<br />

0.25<br />

Vt<br />

/ 0.28VC<br />

Y b V E Y P Y<br />

2<br />

Pisom<br />

() t e vt<br />

rs t rs rs ao rs<br />

2


51<br />

P<br />

P<br />

P<br />

mus<br />

PL<br />

alv<br />

.<br />

Vt<br />

<br />

<br />

<br />

<br />

P<br />

R<br />

R<br />

isom<br />

CW<br />

LT<br />

e<br />

V<br />

/ 0.28VC<br />

.<br />

t<br />

t<br />

V E<br />

.<br />

V E<br />

t<br />

.<br />

( b<br />

( V b<br />

t<br />

CW<br />

LT<br />

V<br />

V<br />

t<br />

t<br />

V<br />

V<br />

t<br />

t<br />

)<br />

0.25V<br />

)<br />

P<br />

P<br />

mus<br />

PL<br />

.<br />

t<br />

V (0.25 ( ) t / 0.28VC<br />

V<br />

2 V V / 0.28VC<br />

GP t e b GV ) 4 ( ( ) t<br />

tE<br />

GPE<br />

GPAO<br />

b GP t e GVt<br />

E GPE<br />

GPAO)<br />

2<br />

/ 0.28VC<br />

v<br />

0.25GP(<br />

t)<br />

e<br />

Vt b GVt<br />

E GPE<br />

GP<br />

<br />

AO<br />

2<br />

Reference: Younes, M. and Riddle W. A model for the relation between respiratory<br />

neural and mechanical outputs. II. Methods. Journal of Applied Physiology, 51(4): 979-<br />

989, 1981.<br />

Simulink Model: Respiratory Muscle Activity and Flow Generation


52<br />

Inputs: Nt Neural-Muscular Drive<br />

Condua Upper Airway conductance<br />

Pexp Expiratory Pressure<br />

Pao External Pressure<br />

Outputs: Vt Lung Volume<br />

Flow Air flow<br />

Pmus Muscle Pressure<br />

Variables: Flowo Initial air flow<br />

tau_resp Inspiratory muscle response time<br />

delta_t Integration step time<br />

VC Vital Capacity<br />

Vo Initial lung volume<br />

pt_frcIC1 Initial condition for respiratory muscle reaction<br />

pt_frcIC2 Initial condition for respiratory muscle reaction<br />

FlowIC Initial condition for airflow<br />

VtIC Initial condition for lung volume


53<br />

Pleural Pressure(Pleural_Schuessler.mdl)<br />

Description<br />

Pleural pressure influences the arterial blood pressure by increasing the venous return and<br />

decreasing the cardiac output. The combination of the respiratory muscle force and the<br />

static chest wall pressure yields pleural pressure. The inputs are airflow, Flow, muscular<br />

pressure, Pmus and external pressure, Pao. The output is the pleural pressure, Ppl.<br />

Pleural Pressure<br />

Flow<br />

Pmus<br />

Pao<br />

Pleural<br />

Pressure<br />

Mechanisms<br />

Ppl<br />

Pleural Pressure Equation:<br />

PPL<br />

<br />

. .<br />

PAO<br />

K AW K AW V <br />

t V<br />

1, 2,<br />

t<br />

<br />

<br />

.<br />

PE<br />

RCW<br />

Vt<br />

ECWVt<br />

P<br />

<br />

Vt<br />

.<br />

V<br />

( b t 0.25Vt<br />

)<br />

.<br />

( V<br />

Vt<br />

t b )<br />

Reference: Schuessler, T.F., Gottfried, S.B. and Bates, J.H.T. A model of the<br />

spontaneously breathing patient: applications to intrinsic PEEP and work of breathing.<br />

Journal of Applied Physiology, 82(5): 1694-1703, 1997.


54<br />

Simulink Model: Pleural Pressure<br />

Simulink Model: Chest Wall Mechanics<br />

Simulink Model: Airway Pressure<br />

Inputs: Flow Air flow<br />

Pmus Inspiratory muscle pressure<br />

Pao External Pressure<br />

Output: Ppl Pleural Pressure<br />

Variables: Rcw Chest Wall resistance<br />

Ecw Chest Wall elastance<br />

k1,aw Constant for upper airway pressure<br />

k2,aw Constant for upper airway pressure


55<br />

Gas Exchange and Transport (Gas_Exchange.mdl)<br />

Description<br />

This subsystem models gas transport through the dead space, CO 2 and O 2 exchange in the<br />

alveoli, the CO 2 and O 2 dissociation curves, and the transport of CO 2 and O 2 in the blood<br />

to the chemoreceptors along with vascular mixing. Also included in this module are CO2<br />

exchange in the brain compartment, gas exchange in the body tissues, conversion of<br />

blood gases into respiratory drive by the chemoreflexes, and chemoreflex effects on<br />

peripheral vascular resistance. The inputs are airflow, Flow, tidal volume, V t and cardiac<br />

output, CO (in this case, it is synonymous with blood flow, Q. The output is the<br />

chemoreflex-related ventilatory drive, D chem and chemoreflex modulation of total<br />

peripheral resistance, TPR chemo.<br />

Gas Exchange and Transport<br />

Flow<br />

V t<br />

Q<br />

Dead<br />

Space<br />

Brain Region<br />

P bCO2<br />

Central Chemoreceptors<br />

D c<br />

D chemo<br />

P dCO2<br />

P dO2<br />

P aCO2<br />

D p<br />

Gas Exchange at<br />

the Lungs<br />

P ACO2<br />

P AO2<br />

Cardiovascular<br />

Mixing,<br />

Convection and<br />

Dissociation<br />

P aCO2<br />

S aO2<br />

P aCO2<br />

P aO2<br />

Peripheral Chemoreceptors<br />

Flow<br />

Regulation<br />

TPR chemo<br />

C vCO2 C vO2<br />

C aCO2<br />

C aO2<br />

Body Tissues<br />

Part


56<br />

Simulink Model. Gas Exchange<br />

PACO2<br />

Pd5CO2<br />

PbCO2<br />

f(u)<br />

Qb<br />

3<br />

Air Flow<br />

PAO2<br />

Pd5O2<br />

Flow<br />

DEAD SPACE<br />

-C-<br />

Lung -Chemo Volume<br />

Lung-Chemoreceptor Delay Volume<br />

PACO2<br />

PaCO2<br />

1 VARIATION OF CEREBRAL<br />

BLOOD FLOW W / PaCO 2<br />

PaCO 2<br />

Fcn<br />

PaCO 2<br />

Qb<br />

PaCO2<br />

PbCO2<br />

4<br />

PbCO 2<br />

PAO2<br />

Q<br />

Cardiovascular<br />

Mixing and Convection<br />

PaO2<br />

2<br />

PaO 2<br />

SI Sleep Wake State Index<br />

BRAIN COMPARTMENT<br />

CaCO2<br />

2<br />

SI Sleep Wake State Index<br />

CVCO 2<br />

Pd5CO2<br />

PACO2<br />

PACO2<br />

Pd5O2<br />

1<br />

Vt - Tidal Volume<br />

Flow<br />

Vt - Tidal Volume<br />

Q<br />

CVO2<br />

CaO2<br />

PAO2<br />

GAS EXCHANGE<br />

IN THE LUNGS<br />

PAO2<br />

PACO2<br />

PAO2<br />

Dissociation<br />

CaCO2<br />

SAO 2<br />

CaO2<br />

SAO2<br />

3<br />

SAO2<br />

5<br />

CaO 2<br />

0.85<br />

SI Sleep Wake State Index<br />

CaCO2<br />

CaO2<br />

Qt<br />

BODY TISSUES<br />

COMPARTMENT<br />

Blood Flow to Tissues<br />

CvCO 2<br />

CvO 2<br />

4<br />

Blood Flow


57<br />

Dead Space (Dead_Space_Khoo.mdl)<br />

Description<br />

We assume that no gas exchange with blood occurs in the dead space. The inputs are<br />

airflow, Flow, tidal volume, V t and blood flow, Q. The outputs are the CO 2 , P dCO2 and<br />

the O 2 , P dO2 partial pressure for the dead space.<br />

Dead Space<br />

Flow<br />

V t<br />

CO<br />

Dead Space<br />

For CO 2 and O 2<br />

P dCO2<br />

P dO2<br />

Dead Space Equations:<br />

CO 2<br />

Inspiration<br />

.<br />

.<br />

Vd( 1) Pd(1)<br />

CO V[<br />

P<br />

(1) ]<br />

2 I CO<br />

P<br />

2<br />

d CO2<br />

.<br />

.<br />

Vd<br />

( i)<br />

Pd(<br />

i)<br />

CO V[<br />

P ( 1) ( ) ]<br />

2 5<br />

2 d i P<br />

i<br />

CO2<br />

d i CO2<br />

Expiration<br />

.<br />

.<br />

Vd<br />

( i)<br />

Pd(<br />

i)<br />

CO V[<br />

P ( 1) ( ) ] 1 4<br />

2 d i P<br />

i<br />

CO2<br />

d i CO2<br />

.<br />

.<br />

Vd( 5) Pd(5)<br />

CO V[<br />

P<br />

(5) ]<br />

2 A CO<br />

P<br />

2<br />

d CO2<br />

O 2<br />

Inspiration<br />

V<br />

V<br />

. .<br />

d( 1) Pd(1)<br />

O<br />

V[<br />

P<br />

]<br />

2 I P<br />

O d(1)<br />

2 O2<br />

. .<br />

d ( i)<br />

P d ( i)<br />

O<br />

V[<br />

P<br />

]<br />

2<br />

2 d(<br />

i1)<br />

P ( )<br />

i <br />

O d i<br />

2 O2<br />

Expiration<br />

. .<br />

Vd<br />

( i)<br />

P d(<br />

i)<br />

V[<br />

Pd<br />

( i1)<br />

Pd<br />

( i ]<br />

1<br />

i 4<br />

V<br />

O2 O )<br />

2 O2<br />

.<br />

.<br />

d( 5) P d(5)<br />

O<br />

V[<br />

P<br />

]<br />

2 A P<br />

O d(5)<br />

2 O2<br />

5<br />

Reference: Khoo, M.C.K., A model-based evaluation of the single-breath CO 2<br />

ventilatory response test. Journal of Applied Physiology, 68(1):393-399, 1990.


58<br />

Simulink Model: Entire Dead Space<br />

subsystem<br />

Dead Space Compartments for CO 2<br />

Individual Dead Space Compartment for CO 2<br />

Note: Dead Space Compartments for CO 2 and O 2 designs are the same. Only Part of<br />

CO 2 implementations are shown as examples.


59<br />

Inputs: Flow Air flow<br />

V t Lung Volume<br />

CO Cardiac Output<br />

Outputs: P dCO2 Dead Space CO 2 partial pressure<br />

P dO2 Dead Space O 2 partial pressure<br />

Variables:<br />

Dead (i),co2I<br />

C<br />

Dead (i),o2I<br />

C<br />

V d(i)<br />

P I,CO2<br />

P I,O2<br />

Initial condition for i th CO 2 dead space<br />

Initial condition for i th O 2 dead space<br />

i th dead space volume<br />

Inspiratory CO 2 partial pressure<br />

Inspiratory O 2 partial pressure


60<br />

Alveolar Gas Exchange (Lungs_Khoo.mdl)<br />

CO 2 and the O 2 exchange in the lungs are both modeled assuming first-order dynamics.<br />

The rate of exchange is affected by the gas concentration in the blood, the gas partial<br />

pressure and the blood flow rate. The CO 2 storage space is larger than that for O 2 to<br />

account for the larger capacity of lung tissue and lung water for CO 2 . The inputs are the<br />

CO 2 , P dCO2 and O 2 , P dO2 partial pressure for dead space, arterial CO 2 , C aCO2 and O 2 , C aO2<br />

concentration, venous CO 2 , C vCO2 and O 2 , C vO2 concentration, tidal volume, V t , airflow,<br />

Flow and blood flow, Q. The outputs are alveolar CO 2 , P ACO2 and O 2 , P AO2 partial<br />

pressure.<br />

Gas Exchange in the Lungs<br />

P dCO2 , C aCO2<br />

CO 2 exchange in the<br />

Lungs<br />

P ACO2<br />

V t , Flow<br />

C vCO2<br />

Q<br />

P dO2 , C aO2<br />

C vO2<br />

O 2 exchange in<br />

the Lungs<br />

P AO2<br />

Gas Exchange in the Lungs Equations:<br />

Inspiration<br />

V<br />

V<br />

.<br />

.<br />

co P Aco2<br />

[863 Q(<br />

C<br />

2 vco C<br />

2 aco2<br />

)<br />

o<br />

.<br />

Ao<br />

P<br />

[863 Q(<br />

C<br />

.<br />

C<br />

) V<br />

.<br />

) VA(<br />

Pd<br />

(5 co<br />

( P<br />

2 2<br />

vo2<br />

ao2<br />

A d(5)<br />

Expiration<br />

V<br />

V<br />

co2<br />

o<br />

2<br />

.<br />

Aco2<br />

P<br />

.<br />

Ao<br />

P<br />

2<br />

.<br />

[863 Q(<br />

Cvco<br />

[863 Q(<br />

C<br />

.<br />

vo<br />

2<br />

2<br />

C<br />

C<br />

ao<br />

2<br />

aco2<br />

)]<br />

.<br />

)]<br />

o<br />

2<br />

2<br />

P<br />

P<br />

Ao<br />

2<br />

Aco2<br />

)]<br />

)]<br />

Reference: Khoo, M.C.K., A model-based evaluation of the single-breath CO 2<br />

ventilatory response test. Journal of Applied Physiology, 68(1):393-399, 1990.


61<br />

Simulink Model: Gas<br />

Exchange in the Lungs<br />

Simulink Model: Gas Exchange in the Lungs for CO 2<br />

Note: O 2 compartment is the same implementation as CO 2 and it is not shown here.<br />

Inputs: P dCO2 Dead Space CO 2 partial pressure<br />

P dO2 Dead Space O 2 partial pressure<br />

C aCO2 Arterial CO 2 concentration<br />

C aO2 Arterial O 2 concentration<br />

C vCO2 Venous CO 2 concentration<br />

C vO2 Venous O 2 concentration<br />

V t Tidal volume<br />

Flow Airflow<br />

CO Cardiac output<br />

Outputs: P ACO2 Alveolar CO 2 partial pressure<br />

P AO2 Alveolar O 2 partial pressure<br />

Variables: V co2 Lungs storage volume for CO 2<br />

V o2 Lungs storage volume for O 2<br />

P Aco2IC Initial condition for Partial CO 2 pressure<br />

P Ao2IC Initial condition for Partial O 2 pressure<br />

s Pulmonary shunt<br />

lambda Concentration / Pressure conversion


62<br />

Cardiovascular Mixing, Convection and Dissociation<br />

(Cardio_Mix_Lange.mdl, Dissociation_Spencer.mdl)<br />

Description<br />

This module includes effects for pulmonary shunt, convection and mixing in the heart<br />

and vasculature, as well as the delay taken for arterial blood to travel from the gas<br />

exchange site to the chemoreceptors. The mixing and convection processes are affected<br />

by the blood flow rate and are modeled assuming a second order dynamic system. Partial<br />

pressures are converted to gas concentration in the blood, using the blood-gas<br />

dissociation equations. The inputs for this compartment are the alveolar CO 2 , P ACO2 and<br />

O 2 , P AO2 partial pressure. The outputs are the arterial CO 2 , P aO2 and O 2 , P aO2 partial<br />

pressure.<br />

Cardiovascular Mixing, Convection and Dissociation<br />

P ACO2<br />

Cardiovascular mixing<br />

and convection for<br />

CO 2<br />

Dissociation<br />

P aCO2<br />

C aCO2<br />

P AO2<br />

Cardiovascular mixing<br />

and convection for O 2<br />

P aO2<br />

Dissociation<br />

C aO2<br />

Cardiovascular Mixing Equations:<br />

..<br />

PaCO<br />

..<br />

Pao<br />

2<br />

2<br />

1<br />

[ P<br />

( T1*<br />

T2)<br />

1<br />

[ P<br />

( T1*<br />

T2)<br />

Ao<br />

ACO<br />

2<br />

2<br />

( t T<br />

( t T<br />

a<br />

a<br />

) ( T1<br />

T2)<br />

P<br />

) ( T1<br />

T2)<br />

P<br />

.<br />

ao<br />

.<br />

aCO<br />

Reference: Lange, R.L., Horgan, J.D., Botticelli, J.T., Tsagaris, T, Carlisle, R.P., and<br />

Kuida.H., Pulmonary to arterial circulatory transfer function: importance in respiratory<br />

control. Journal of Applied Physiology, 21(4):1281-1291, 1966.<br />

2<br />

P<br />

2<br />

ao<br />

P<br />

2<br />

]<br />

aCO<br />

2<br />

]


63<br />

Simulink Model: Cardiovascular Mixing<br />

PACO2<br />

2<br />

4<br />

Q<br />

1<br />

Lung -Chemoreceptor Delay Volume<br />

3<br />

PAO2<br />

CO2 Cardiovascular Mixing<br />

and Convection Effects<br />

PACO2<br />

Q<br />

Lung-Chemoreceptor Delay Volume<br />

Q<br />

PAO2<br />

Lung-Chemoreceptor Delay Volume<br />

O2 Cardiovascular<br />

Mixing and Convection<br />

Effects<br />

PaCO2<br />

PaO2<br />

1<br />

PaCO 2<br />

2<br />

PaO 2<br />

Simulink Model: Cardiovascular Mixing for CO 2<br />

PaCO 2secondIC<br />

T 1+T2<br />

1/(T1*T2)<br />

1<br />

s<br />

1<br />

s<br />

1<br />

PaCO 2<br />

PaCO 2firstIC<br />

PACO2<br />

3<br />

Lung -Chemoreceptor Delay Volume<br />

1<br />

2<br />

Q<br />

Product 1<br />

PACO2_delayIC<br />

PACO2 delay<br />

To<br />

Note: O 2 implementation is the same as CO 2 .<br />

Cardiovascular Convection Equation:<br />

K dp<br />

Ta Q<br />

Inputs: P ACO2 Alveolar CO 2 partial pressure<br />

P AO2 Alveolar O 2 partial pressure<br />

Outputs: P aCO2 Arterial CO 2 partial pressure<br />

P aO2 Arterial O 2 partial pressure<br />

Variables: K dp Peripheral Chemoreceptors delay time constant<br />

T 1 Time constant for cardiovascular mixing<br />

T 2 Time constant for cardiovascular mixing<br />

P aO2first IC Initial condition for first order P ao2 system<br />

P aO2second IC Initial condition for second order P ao2 system


64<br />

P aCO2first IC<br />

P aCO2second I<br />

C<br />

P aO2_delay IC<br />

P aco2_delay IC<br />

Initial condition for first order P aco2 system<br />

Initial condition for second order P aco2 system<br />

Initial condition for O 2 convection<br />

Initial condition for CO 2 convection<br />

Dissociation Equations:<br />

C<br />

C<br />

O<br />

F<br />

1/ a<br />

_<br />

1<br />

O2<br />

C<br />

2<br />

O2<br />

1/<br />

a<br />

1<br />

F<br />

1<br />

O2<br />

CO<br />

F<br />

1/ a<br />

_<br />

2<br />

CO2<br />

C<br />

2<br />

CO2<br />

1/<br />

a<br />

1<br />

F<br />

2<br />

CO2<br />

FO<br />

2<br />

<br />

PA<br />

O2<br />

(1 1PA<br />

K1(1<br />

1PA<br />

CO2<br />

CO2<br />

)<br />

)<br />

FCO<br />

2<br />

<br />

PA<br />

CO2<br />

(1 2PA<br />

K2<br />

(1 <br />

2PA<br />

O2<br />

O2<br />

)<br />

)<br />

Reference: Spencer, J.L., Firouztale, E., and Mellins, R.B. “Computational Expressions<br />

For Blood Oxygen and Carbon Dioxide Concentrations”, Annals of <strong>Biomedical</strong><br />

Engineering, Vol 7, pp. 59-66, 1979.<br />

Simulink Model: Dissociation


65<br />

Inputs: P ACO2 Alveolar CO 2 partial pressure<br />

P AO2 Alveolar O 2 partial pressure<br />

Outputs: P aCO2 Arterial CO 2 partial pressure<br />

P aO2 Arterial O 2 partial pressure<br />

Z Molar conversion factor<br />

C1 Maximum concentration of hemoglobin-bound<br />

oxygen<br />

C2 Maximum carbon dioxide concentration<br />

a1 Parameter in O 2 dissociation equation<br />

a2 Parameter in CO 2 dissociation equation<br />

alpha1 Parameter in O 2 dissociation equation<br />

alpha2 Parameter in CO 2 dissociation equation<br />

K1 Parameter in O 2 dissociation equation<br />

K2 Parameter in CO 2 dissociation equation<br />

beta1 Parameter in O 2 dissociation equation<br />

beta2 Parameter in CO 2 dissociation equation<br />

S aco2_delay I<br />

C<br />

Initial Condition for Oxygen Saturation Delay


66<br />

Brain Compartment (Brain_Khoo.mdl)<br />

Description<br />

Cerebral flow is highly sensitive to changes of the CO 2 tension in the brain. The brain<br />

CO 2 tension is controlled by the metabolic rate and the blood flow rate. The inputs for<br />

this compartment are the arterial CO 2 partial pressure, P aCO2 and blood flow in the brain<br />

region, Q b . The output is the brain arterial CO 2 partial pressure, P bCO2 .<br />

Brain Tissues and Cerebral Flow<br />

P aCO2<br />

Brain CO 2 interaction<br />

and cerebral flow<br />

P bCO2<br />

Cerebral Flow Equation:<br />

.<br />

SbCO<br />

PbCO<br />

[ MRbCO<br />

2<br />

2<br />

2<br />

.<br />

Q<br />

b<br />

S<br />

CO<br />

2<br />

( P<br />

aCO<br />

2<br />

P<br />

bCO<br />

2<br />

) h]<br />

Reference: Read, D.J.C. and Leigh, J. Blood-brain tissue Pco 2 relationships and<br />

ventilation during rebreathing. Journal of Applied Physiology, 23(1):53-70, 1967.<br />

Simulink Model: Brain Tissues<br />

Brain Tissues Equation:<br />

.<br />

.<br />

. .<br />

.<br />

2<br />

Q b [1<br />

0.03( Pbco<br />

40)] Q 0.03( ) / 0<br />

2 b0<br />

Qb<br />

MRbco<br />

h Q<br />

2 b0<br />

Sco<br />

<br />

2<br />

Reference: Khoo, M.C.K., A model-based evaluation of the single-breath CO 2<br />

ventilatory response test. Journal of Applied Physiology, 68(1):393-399, 1990.


67<br />

Simulink Model: Variation of Cerebral Blood Flow<br />

Input: P aCO2 arterial CO 2 partial pressure<br />

Output: P bCO2 brain arterial CO 2 partial pressure<br />

Variables: MR bco2 Metabolic production rate for CO 2 in the brain<br />

tissue<br />

S co2 Dissociation slope for CO 2 in the blood<br />

S bco2 Dissociation slope for CO 2 in the brain tissue<br />

P bco2IC Initial condition for partial CO 2 pressure from the<br />

brain


68<br />

Body Tissues Compartment (Body_Khoo.mdl)<br />

Description<br />

Gas exchange that occurs outside of the lungs and the brain is modeled as taking place in<br />

a single compartment. The rates of O 2 consumption and CO 2 production are dependent on<br />

the metabolic rate of the body tissues. The inputs are the arterial O 2 and CO 2<br />

concentrations, C aO2 and C aCO2 . The outputs are the venous O 2 and CO 2 concentrations,<br />

C vO2 and C vCO2 .<br />

Body Tissues<br />

C aCO2<br />

C aO2<br />

Body tissues exchange<br />

for O 2 and CO 2<br />

C vCO2<br />

C vO2<br />

Body Tissues Equations:<br />

Vt<br />

Vt<br />

CO<br />

O<br />

2<br />

2<br />

.<br />

VCO<br />

C<br />

.<br />

VO<br />

C<br />

2<br />

2<br />

[ MR<br />

[ MR<br />

O<br />

CO<br />

2<br />

2<br />

.<br />

Q(<br />

C<br />

.<br />

Q(<br />

C<br />

aO<br />

aCO<br />

2<br />

2<br />

C<br />

C<br />

VO<br />

VCO<br />

2<br />

)]<br />

2<br />

)]<br />

Reference: Khoo, M.C.K., A model-based evaluation of the single-breath CO 2<br />

ventilatory response test. Journal of Applied Physiology, 68(1):393-399, 1990.<br />

Simulink Model: Body Tissues Simulink Model: Body Tissues for CO 2


69<br />

Note: O 2 compartment is the same as CO 2 compartment<br />

Inputs: C AO2 Arterial O 2 concentration<br />

C ACO2 Alveolar CO 2 partial pressure<br />

Outputs: C vCO2 Arterial CO 2 partial pressure<br />

Cv O2 Oxygen Saturation<br />

Variables: V tco2 Body tissure storage volume for CO 2<br />

V to2 Body tissure storage volume for O 2<br />

MR co2 Metabolic production rate for CO 2<br />

MR o2 Metabolic consumption rate for O 2<br />

C vco2 IC Initial condition for mixed venous CO 2<br />

concentration<br />

C vo2 IC Initial condition for mixed venous O 2<br />

concentration


70<br />

Ventilatory Response (Vent_Drive_Khoo.mdl)<br />

Description<br />

The chemical driven ventilatory response is determined from the central and the<br />

peripheral chemoresponses during sleep-wake state. The central response is driven<br />

primarily by CO 2 while the peripheral response is modulated both by oxygen and carbon<br />

dioxide. The inputs for this compartment are the brain CO 2 partial pressure, P bCO2 ,<br />

arterial CO 2 partial pressure, P aCO2 and oxygen saturation, SA O2 . The output is the<br />

chemical drive for ventilation, D chem .<br />

Ventilatory Response<br />

P bCO2<br />

P aCO2<br />

SA O2<br />

SI<br />

Chemical drive<br />

for ventilation<br />

D Total<br />

Ventilatory Response Equations:<br />

(a) For normal breathing,<br />

D<br />

Total<br />

Y, TH<br />

L<br />

Y<br />

TH<br />

H<br />

<br />

0, OW<br />

zp0<br />

Y X /2 X /2 [ z e u( t)]<br />

p0<br />

<br />

<br />

Total _ O<br />

<br />

X <br />

0, DTotal<br />

_ O<br />

0<br />

(b) For sleep-disordered breathing,<br />

D<br />

t<br />

5D _<br />

2 /(1 e<br />

Total O<br />

) 1, D 0<br />

D<br />

Total Total _ O<br />

where<br />

DTotal _ O<br />

(1 0.4 SI ) ( Dvent Dstate<br />

)<br />

D SI<br />

S<br />

state<br />

wake<br />

Dvent<br />

Dc<br />

Dp<br />

D<br />

D<br />

C<br />

P<br />

G ( P I ), P I<br />

C bCO2 C bCO2<br />

C<br />

<br />

0,<br />

Otherwise<br />

P aCO2 pCO2 pO2 aCO2 pCO2 pO2<br />

G ( P I ) ( I SAO2), P I & I SAO2<br />

<br />

0,<br />

Otherwise


71<br />

Reference: Khoo, M.C.K., A model-based evaluation of the single-breath CO 2<br />

ventilatory response test. Journal of Applied Physiology, 68(1):393-399, 1990.<br />

Simulink Model: Ventilatory Drive<br />

SI<br />

2<br />

PbCO 2<br />

Ic<br />

0.075<br />

Gc<br />

1<br />

Gc_blocker<br />

(u>0)*u<br />

1<br />

0.3<br />

S_wake<br />

6<br />

PaCO 2<br />

IpCO 2<br />

0.0063<br />

1<br />

(u>0)*u<br />

4<br />

Sleep /Awake 5<br />

AI<br />

Mux<br />

f(u)<br />

Dchemo<br />

1<br />

1 for up<br />

0 for ground<br />

1<br />

D_Total<br />

IpO 2<br />

Gp<br />

Gp _blocker<br />

Switch<br />

3<br />

SAO2<br />

In1 Out1<br />

Dynamic Drive<br />

Inputs: P bCO2 Brain CO 2 partial pressure<br />

P aCO2 Arterial CO 2 partial pressure<br />

SA O2 Oxygen saturation<br />

SI Sleep-wake state index<br />

Output: D Total chemical drive for ventilation<br />

Variables: I c Central apneic threshold<br />

I pCO2 Peripheral apneic threshold for CO 2<br />

I pO2 Peripheral apneic threshold for O 2<br />

Gc Gain for central chemical drive<br />

Gp Gain for peripheral chemical drive<br />

Factor of wakefulness to sleep<br />

S wake


72<br />

Upper Airway / State Change<br />

(State_UA_Khoo_Borbely.mdl)<br />

Description<br />

Upper airway muscle tone decreases from wakefulness to sleep. This introduces the<br />

possibility of upper airway collapse under certain conditions. The simple model of upper<br />

airway mechanics employed here assumes that upper airway conductance (= reciprocal of<br />

resistance) is directly proportional to the "wakefulness" (or state-related ventilatory)<br />

drive.<br />

Upper Airway and State Change Interactions<br />

Awake / Sleep<br />

State Change<br />

Mechanism<br />

SI<br />

S SWA<br />

S aw/sleep<br />

SI<br />

AI<br />

P frc<br />

Insp<br />

P ao<br />

Upper Airway<br />

Mechanism<br />

Y ua


73<br />

Upper Airway<br />

Description<br />

Upper airway model is driven by pleural pressure, P pl , total respiratory flow, Q total in the<br />

airways, lower airway resistance, R la and sleep-wakefulness state drive, SD. During the<br />

obstruction, the upper airway is narrowed, therefore the upper airway resistance to the<br />

airflow increases. Because the upper airway is entirely blocked during full obstruction,<br />

and its resistance becomes infinitely large, for modeling purposes we prefer to use the<br />

upper airway conductance, Y ua which is the inverse of resistance. We model upper<br />

airway conductance as a function of upper airway opening surface area, A. It is a known<br />

fact that in patients with Obstructive Sleep Apnea the upper airway muscle tone is<br />

reduced and more prone to collapse. Therefore, the upper airway opening surface area<br />

depends on the airway pressure and upper airway compliance, C ua that is in turn a<br />

function of upper airway sensitivity, s ua and also depends on the sleep-wakefulness state<br />

drive SD. The upper airway muscle tone is represented by the upper airway sensitivity. In<br />

wakefulness, the sensitivity remains low, but with the sleep onset the sensitivity<br />

increases. The net effect is to impose an additional load on respiratory effort.<br />

All these mechanisms are inter-dependent on each other and connected to lower<br />

respiratory airways as well in a closed loop mode.<br />

Upper Airway Equations:<br />

<br />

P<br />

<br />

ao P <br />

ua Y <br />

ua V V<br />

ua<br />

where Y ua = 1 / R ua<br />

Pcrit<br />

( SI )<br />

<br />

<br />

Pua<br />

V ua dt V ua R<br />

b<br />

<br />

ua<br />

uaw<br />

0,<br />

Pua<br />

Pcrit<br />

<br />

Yua ( SI ) kua Aua , where Aua A0<br />

ua<br />

(1 Pua / Pcrit ( SI )), Pcrit Pua<br />

0<br />

<br />

A0<br />

ua, Pua<br />

0<br />

P<br />

, SI 0 (awake)<br />

crit _ awake<br />

<br />

2<br />

crit<br />

( ) <br />

crit _ awake<br />

/(1 <br />

ua<br />

( ) ) /(1 ),0 1,<br />

P SI P S SI Sleepawake SI<br />

<br />

Pcrit _ awake<br />

/(1 Sua), SI 1 (sleep)<br />

(A.40)<br />

where Sleepawake is 0 during sleep and 1 during wakefulness, Sua<br />

sensitivity and is directly related to P<br />

crit<br />

.<br />

is upper airway


74<br />

Simulink Model: Upper Airway Mechanism<br />

Enable<br />

C_ua Upper Airway Copmliance<br />

C_ua_Upper_Airway_Compliance<br />

P_ua_Upper Airway Pressure<br />

Y_ua_Upper Airway Conductance<br />

P_crit<br />

P_crit<br />

1<br />

Y_ua<br />

Upper Airway Conductance<br />

Upper Airway Conductance3<br />

C_ua Upper Airway Copmliance<br />

C_ua Upper Airway Compliance<br />

C_ua Upper Airway Copmliance<br />

C_ua Upper Airway Compliance<br />

P_ua Pressure in Upper Airways<br />

Upper_Airway_Compliance<br />

Flow in Upper Airway<br />

SI Sleep Wake State Index<br />

Sleep/awake<br />

Q_ua Upper Airway Flow<br />

Q_ua Upper Airway Flow<br />

SI Sleep Wake State Index<br />

1<br />

SI Sleep Wake State Index<br />

SI Sleep Wake State Index<br />

6<br />

7 Total Ventilatory Drive 2<br />

Sleep/awake<br />

Respiratory Rhythm<br />

P_ua<br />

5<br />

Tidal Volume<br />

SI Sleep Wake State Index<br />

Ventilatory Drive<br />

Respiratory Rhythm<br />

P_pl Pleural Pressure<br />

P_ua vs. P_cirt<br />

Tidal Volume<br />

Q_ua Upper Airway Flow<br />

Q_la Lower Airway Flow<br />

C_ua Upper Airway Copmliance<br />

Y_ua Upper Airway Conductance<br />

P_ua<br />

P_pl Pleural Pressure<br />

P_ua<br />

P_ua Upper Airway Pressure<br />

Q_la Lower Airway Flow<br />

P_pl Pleural Pressure<br />

Q_la Lower Airway Flow<br />

4<br />

Pleural Pressure<br />

Upper Airway Scope<br />

Pressure in Upper Airway<br />

Q_ua Upper Airway Flow<br />

Q_total<br />

Total Respiratory Flow Airways<br />

3<br />

Q_total<br />

1<br />

Q_la Lower Airway Flow<br />

Coefficient 1<br />

Q_total


75<br />

Inputs: SI Sleep-wake State Drive<br />

P pl<br />

Pleural Pressure<br />

Q total<br />

Total Respiratory Flow<br />

R la<br />

Lower Airway Resistance<br />

Sleep/Awake Sleep or Awake state<br />

D Total<br />

Total ventilatory drive<br />

Vt<br />

Tidal volume<br />

Resp_Rhm Respiratory rhythm<br />

Outputs: Y ua Upper Airway Conductance<br />

Variable: S ua Upper Airway sensitivity<br />

R uaw<br />

Upper airway wall resistance<br />

Maximum area of opening in upper airway<br />

A 0ua<br />

K ua<br />

P crit_awake<br />

C ua<br />

P ua<br />

V <br />

ua<br />

Proportionality coefficient between A ua and<br />

Yua;<br />

Critical upper airway pressure in wakefulness<br />

Upper airway compliance<br />

Upper airway pressure<br />

Upper airway flow<br />

V Total flow in airways<br />

Sleep Mechanism<br />

In the sleep mechanism model, the awake/sleep state is determined by a combination of<br />

the circadian rhythm and a sleep propensity index that is correlated with slow wave<br />

activity. The upper circadian threshold marks the point at which sleep onset occurs,<br />

while the lower limit triggers awakening. The circadian rhythm is modeled as a skewed<br />

sine function. The NREM and REM stages during sleep are determined by the slow<br />

wave activity with no activity in REM stage and an overall decaying throughout the night<br />

for the NREM stage. The input for this compartment is the total ventilatory drive, D vent .<br />

The outputs are state drive, SI, awake/sleep state change, S aw/sleep , sleep stage, S SWA and<br />

arousal, D arousal .<br />

Sleep Mechanism Equations:


76<br />

Process C:<br />

CH/ L A[0.97sin 0.22sin(2 ) 0.07sin(3 ) 0.03sin(4 ) 0.001sin(5 )]<br />

X<br />

where A 0.12, X X 0.9 for C , X X 0.15 for C .<br />

Process S:<br />

H H L L<br />

Awake State ( S C ): S( t) 1 [1 S( t t)]<br />

e <br />

L<br />

( 0.055 t /3600)<br />

dS<br />

Sleep State ( S CH<br />

): <br />

gc<br />

SWA<br />

dt<br />

dSWA<br />

SWA<br />

rc<br />

SWA(1 ) fc<br />

SWA REMT ( t) SWA<br />

n( t)<br />

dt<br />

S<br />

REMT ( t) REM 0.2 AI<br />

REM<br />

1 REM<br />

<br />

<br />

0 NREM<br />

1, D<br />

Total<br />

Thre , where Thre=I<br />

vent (0.7+0.3 )<br />

<br />

AI S SWA<br />

0, Otherwise<br />

<br />

<br />

1.2<br />

S<br />

SWA<br />

SWA<br />

<br />

S<br />

SSWA, sleep onset transition<br />

<br />

Dstate<br />

SI SSWAcombined<br />

, sleep<br />

0, awake<br />

1, 0<br />

S<br />

SWAcombined<br />

AI <br />

<br />

0, AI 1<br />

Reference: Khoo, M.C.K. A model-based evaluation of the single-breath CO 2 ventilatory<br />

response test. Journal of Applied Physiology, 68(1):393-399, 1990.<br />

Achermann, P., Borbely, A.A. Mathematical models of sleep regulation. Frontiers in<br />

Bioscience, 8, s683-693, 2003.


77<br />

Simulink Model: Sleep Mechanism<br />

0.9<br />

Circadian _High<br />

Sine Wave<br />

Process Circadian H<br />

Process Circadian H<br />

Circadian High Sine Wave<br />

Mux<br />

f(u)<br />

S between H and L ?<br />

XOR<br />

1-u<br />

Fcn8<br />

0<br />

Sleep Enable<br />

f(u)<br />

Process S<br />

0.15<br />

Circadian _Low<br />

Process Circadian L<br />

S<br />

Mux<br />

u1 if(u1 > 0)<br />

f(u)<br />

-0.0005<br />

1<br />

SI Sleep Wake State Index<br />

Sleep Index<br />

Saturation<br />

If<br />

u1<br />

f(u)<br />

Fcn2<br />

Mux<br />

u1<br />

u2<br />

f(u)<br />

Mux<br />

2.1<br />

Step _Size<br />

2<br />

1/200<br />

1<br />

s<br />

f(u)<br />

Mux<br />

x o<br />

Circadian _Process<br />

Mux<br />

Fcn4<br />

Process Circadian H<br />

Process Circadian L<br />

Process S<br />

REM<br />

REM<br />

SWA<br />

4<br />

REM<br />

3<br />

SWA/S<br />

Airway Cond<br />

Saturation 1<br />

Clock<br />

u2<br />

S<br />

if { }<br />

In1 Out1<br />

SWA_scaled<br />

SWA<br />

If Action<br />

Subsystem<br />

t0<br />

u2<br />

t<br />

t0<br />

u2<br />

t<br />

fcn<br />

fcn<br />

So<br />

Sleep/Awake<br />

AI - Arousal Index<br />

y<br />

y<br />

REM<br />

Diet<br />

In1<br />

Triggered<br />

Subsystem<br />

1-u<br />

Fcn1<br />

5<br />

Diet<br />

Sleep Awake<br />

2<br />

1<br />

AI - Arousal Index<br />

Out1<br />

In1<br />

Saving CircadianProcess<br />

Dstate<br />

S/SWA Combined<br />

SWA/Sleep State<br />

REM


78<br />

Simulink Model: SWA/Sleep State<br />

3<br />

SWA<br />

1<br />

s<br />

f(u)<br />

2<br />

SWA_scaled<br />

2<br />

Sleep /Awake<br />

1<br />

So<br />

-gc<br />

1<br />

s<br />

x o<br />

Product 1<br />

1<br />

S<br />

1.2<br />

Gain<br />

u=1<br />

1<br />

rc<br />

fc<br />

Product 8<br />

1-u<br />

u


79<br />

Metabolic Control (PNEUMA.mdl)<br />

Description<br />

The metabolic control include the circadian regulation of epinephrine secretion,<br />

epinephrine regulation on dynamic fluctuations in glucose and free-fatty acid in plasma,<br />

metabolic coupling among tissues and organs provided by insulin and epinephrine, as<br />

well as the effect of insulin on peripheral vascular sympathetic activity. The inputs for<br />

this compartment are the alpha-sympathetic activity, f tas,res , sleep state index, SI, REM<br />

sleep, REM, and diet uptake, DIET. The output is the change in the -sympathetic<br />

response, Δf tas .<br />

Metabolic Control<br />

Metabolic Control Equations:<br />

Glucose Insulin and Free-fatty Acid Dynamics:<br />

dG( t) k u ( t) u ( t)<br />

p G t p G p X t G t p X G p Z t G t p G Z <br />

dt<br />

EG 2int 2ext<br />

1<br />

( )<br />

1 b 4<br />

( ) ( )<br />

4 b b 6<br />

( ) ( )<br />

6 b b<br />

VolG


80<br />

dI()<br />

t<br />

( G( t TDi ) Gh ) t n( I( t) Ib) p5u1( t)<br />

dt<br />

dX () t<br />

p2( X ( t) X<br />

b) p3( I( t) Ib)<br />

dt<br />

dY () t<br />

pF 2( Y ( t) Yb ) pF 3( I( t) Ib)<br />

dt<br />

dF( t) G G kEFu3int ( t) u3ex<br />

t( t)<br />

p7F( t) p7Fb p8Y ( t) F( t) p8Y bFb p9 G( t) F( t)<br />

p9<br />

GbFb<br />

<br />

dt<br />

VolF<br />

dZ()<br />

t<br />

k2( Z( t) Zb) k1( F( t) Fb)<br />

dt<br />

G<br />

0.0055G<br />

where p9 0.00021e <br />

Epinephrine Regulation:<br />

V<br />

<br />

( E( t) E(0))<br />

2<br />

o<br />

E<br />

x, i<br />

Vx, i 1.0 <br />

<br />

x, i<br />

<br />

E<br />

2<br />

xi ,<br />

( E( t) E(0))<br />

<br />

<br />

<br />

<br />

where subscript x = “heart”, “muscle”, “gastrointestinal tract”, “adipose tissue” or “other<br />

tissues”; subscript i = “glucose” (assuming the metabolic pathway: GLC <br />

G6PGLY) or “FFA” (assuming the metabolic pathway: TGL FFA ACoA).<br />

u2int ( t) Vxi<br />

,<br />

( t)<br />

u ( t) V ( t)<br />

3int xi ,<br />

x<br />

x<br />

( t) (0) ( f ) [1.0 exp( t<br />

/ )]<br />

E E E b tas , meta E<br />

Autonomic and Metabolic Interactions (Forward Pathway):<br />

as sleep<br />

( f ) <br />

SIG<br />

tas, meta tas, meta tas, meta 0<br />

REM<br />

_<br />

[ f f 1] (1 b REM ) (1 SI a<br />

)<br />

f f (1 SI G<br />

)<br />

tas, meta tas as _ sleep<br />

f f (1 SI G<br />

)<br />

tas, meta 0 tas,0 as _ sleep<br />

(0) <br />

b<br />

<br />

Ce,0 tas, meta tas, meta 0<br />

E E K ( f f ) (1 SI)<br />

<br />

Autonomic and Metabolic Interactions (Feedback Pathway):<br />

exp[( I Ib) / kisc,<br />

I<br />

] 1<br />

W()<br />

I kas kas ftas, I 0<br />

exp[( I I ) / k ] 1<br />

f W( I) [1 exp( t<br />

/ )]<br />

tas<br />

I<br />

b<br />

isc,<br />

I


81<br />

f f f<br />

tas,<br />

FB tas tas<br />

where f f and f , respectively.<br />

tas tas, res tas,<br />

vein<br />

Reference:<br />

1. Kim, J., Saidel, G. M., and Cabrera, M. E. Multi-scale computational model of<br />

fuel homeostasis during exercise: effect of hormonal control. An Biomed Eng<br />

35(1): 69-90, 2006.<br />

2. Roy, A., and Parker, R. S. Dynamic modeling of free fatty acid, glucose, and<br />

insulin: an extended “Minimal Model”. Diabetes Tech Therapeu 8(6): 617-626,<br />

2006.<br />

Simulink Model: Metabolic Control<br />

Insulin Input<br />

Time Unit : Second<br />

1<br />

Ftas_r<br />

2<br />

SI<br />

3<br />

REM<br />

Ftas_r<br />

SI<br />

REM<br />

Epi_Heart Glucose<br />

Epi_Muscle Glucose<br />

Epi_Heart FFA<br />

Epi _Muscle FFA<br />

Epi_GI FFA<br />

Epinephrine Amount Ce (t)<br />

W_alphaSYMP<br />

Epinephrine Regulation<br />

on Heart and Muscle<br />

Glu _Epi<br />

FFA_Epi<br />

4<br />

DIET<br />

Gain<br />

-K-<br />

-K-<br />

-K-<br />

u1(t) Plasma Glucose Concn , G(t)<br />

u2(t)<br />

Glucose Input<br />

Plasma Insulin Concn , I(t)<br />

u3(t)<br />

Plasma FFA Concn , F(t)<br />

W_alphaSYMP<br />

DeltaFtas<br />

Glucose-Insulin-FFA Minimal Model<br />

1<br />

DeltaFtas<br />

Display<br />

Glu_in(t)<br />

Gclamp _in (t)<br />

G(t)<br />

Gclamp _in(t)<br />

InsPump _in(t)<br />

Glucose Insulin Interventions<br />

Simulink Model: Glucose-Insulin-FFA Dynamics<br />

2<br />

u2(t)<br />

u2(t)<br />

Z(t)<br />

G(t)<br />

X(t)<br />

Glucose Dynamics_LC<br />

1<br />

Plasma<br />

Glucose<br />

Concn ,<br />

G(t)<br />

f(u)<br />

1<br />

s<br />

Integrator 1<br />

1/tao _I<br />

Gain 1<br />

Sum 2<br />

4<br />

DeltaFtas<br />

I(t) X(t)<br />

Remote<br />

Insulin<br />

X(t)<br />

Remote<br />

Compartment<br />

p3 / (s + p2)1<br />

1<br />

u1(t)<br />

G(t)<br />

I(t)<br />

u1(t)<br />

Insulin Dynamics _ B&P<br />

2*Fcn+2<br />

2<br />

Plasma Insulin<br />

Concn , I(t)<br />

4<br />

W_alphaSYMP<br />

In1<br />

Saving deltaFtas_WalphaSYMP<br />

Remote FFA<br />

Z(t)<br />

F(t) Z(t)<br />

Remote<br />

Ins_FFA<br />

pF3 / (s + pF2)<br />

I(t)<br />

Y(t)<br />

G(t)<br />

F(t)<br />

Y (t)<br />

FFA Dynamics_LC<br />

u3(t)<br />

3<br />

u3(t)<br />

3<br />

Plasma FFA<br />

Concn , F(t)


82<br />

Simulink Model: Glucose Dynamics<br />

p1<br />

Gb<br />

1<br />

-K-<br />

u2(t)<br />

1/VolG<br />

p6*Gb *Zb<br />

p4*Xb *Gb<br />

1<br />

s<br />

G(t)<br />

1<br />

G(t)<br />

p 6<br />

2<br />

Z(t)<br />

p4<br />

3<br />

X(t)<br />

Simulink Model: Insulin Dynamics<br />

Gamma<br />

1<br />

G(t)<br />

Thresholding<br />

Operator 1<br />

Gamma<br />

Sum 2<br />

Gb<br />

Random<br />

Number<br />

Ti<br />

Variable<br />

Time Delay<br />

1<br />

s<br />

Int 2<br />

Product<br />

Thresholding<br />

Operator 2<br />

Sum 3<br />

n<br />

1<br />

s<br />

Int 1<br />

Threshold Glucose<br />

Concentration (h)<br />

Ib<br />

1<br />

I(t)<br />

1<br />

Constant<br />

Insulin Destruction<br />

Gain , Nu = 0.36<br />

Sum 1<br />

2<br />

u1(t)<br />

p5


83<br />

Simulink Model: Free-Fatty Acid Dynamics<br />

f(u )<br />

1<br />

G(t)<br />

p9<br />

Gb*Fb<br />

2<br />

Y(t)<br />

p 8<br />

Orinally Design<br />

Yb=0.01 *Xb<br />

p7<br />

-K-<br />

3<br />

u3(t)<br />

1/VolF<br />

p7*Fb<br />

1<br />

s<br />

F(t)<br />

1<br />

F(t)<br />

p8*0.1*Xb *Fb<br />

Simulink Model: Epinephrine Regulations<br />

1<br />

Ftas_r<br />

Ftas _r<br />

Ce(t)<br />

1microMol = 1e6 pMol<br />

2<br />

SI<br />

3<br />

REM<br />

SI<br />

W_alphaSYMP<br />

REM<br />

Epi Dynamics<br />

1e6<br />

7<br />

W_alphaSYMP<br />

6<br />

Epinephrine<br />

Amount Ce (t)<br />

Epi on Heart<br />

Epi on Muscle<br />

Epi on GI<br />

Ce(t)<br />

Epi on adipose<br />

4Fluxes of Epi in Heart<br />

5Fluxes of Epi in Muscle<br />

Epi Modulation<br />

FLux Scope<br />

(micronmol /min )<br />

1<br />

Epi _Heart<br />

Glucose<br />

(micronmol /min )<br />

EPI Modulation<br />

(micronmol /min )<br />

3<br />

Epi _Heart<br />

FFA<br />

2<br />

Epi _Muscle<br />

Glucose<br />

4<br />

Epi _Muscle<br />

FFA<br />

5<br />

Epi _GI<br />

FFA


84<br />

Simulink Model: Epinephrine Dynamics<br />

1<br />

s<br />

Integrator<br />

Gain<br />

1/tao _e<br />

1<br />

Ce (t)<br />

1<br />

Ftas_r<br />

f(u)<br />

Sum 1<br />

9<br />

2<br />

SI<br />

Ftas_REM _Sleeo ABS Fcn<br />

REM factor = 0.4<br />

Ftas,r0_metabolic<br />

Gas factor _M<br />

Terminator<br />

f(u )<br />

Ftas_Ce0*(1-SI*Gas_SleepM )<br />

f(u)<br />

Ftas_Ce0*(1-SI)<br />

f(u)<br />

Ftas_metabolic<br />

f(u)<br />

Ftas_Ce 0<br />

2<br />

W_alphaSYMP<br />

3<br />

REM<br />

f(u)<br />

Ftas_r0_metabolic<br />

f(u)<br />

Ftas_REM _Sleep Fcn<br />

REM factor = 0.4<br />

Ftas,r0_metabolic<br />

Gas factor _M<br />

Neg Power<br />

Saturation<br />

Ce_0<br />

Simulink Model: Epinephrine Regulations on Heart<br />

1<br />

Ce(t)<br />

Heart : GLC_to_G6P<br />

f(u)<br />

Fcn<br />

1<br />

Epi on Heart (Fluxes)<br />

Heart : GLY_to_G6P<br />

-C-<br />

-C-<br />

-C-<br />

-C-<br />

Heart : FFA_to_ACoA<br />

f(u)<br />

Fcn2<br />

Add<br />

2<br />

Epi on Heart (Sum )<br />

Heart : TGL _to_FFA<br />

f(u)<br />

Fcn3


85<br />

Simulink Model: Epinephrine Regulations on Muscle<br />

-C-<br />

1<br />

Ce(t)<br />

-C-<br />

Muscle : GLC_to_G6P<br />

-C-<br />

Muscle : GLY_to_G6P<br />

-C-<br />

Muscle : FFA_to_ACoA<br />

f(u)<br />

Fcn<br />

f(u)<br />

Fcn1<br />

f(u)<br />

Fcn2<br />

1<br />

Epi on Muscle (Fluxes)<br />

2<br />

Epi on Muscle (Sum )<br />

Add<br />

-C-<br />

Muscle : PYR_to_ALA<br />

f(u)<br />

Fcn4<br />

Muscle : TGL _to_FFA<br />

f(u)<br />

Fcn3<br />

Inputs: f tas,res Alpha-sympathetic Response<br />

SI Sleep State Index<br />

REM REM Sleep Signal<br />

DIET Diet Glucose Uptake<br />

Outputs: Δf tas l Change in Alpha-sympathetic Response<br />

Variables: G Plasma Glucose Concentration<br />

I Plasma Insulin Concentration<br />

X Remote Plasma Insulin Concentration<br />

Y Remote Plasma Insulin Concentration that<br />

Promotes FFA Production<br />

F Plasma FFA Concentration<br />

Z Remote Plasma FFA Concentration<br />

E Epinephrine Concentration In Plasma


86<br />

Autonomic and Metabolic Interactions<br />

Description<br />

PNEUMA is extended from previous Version 2.0, an existing integrative model of<br />

respiratory, cardiovascular and sleep-wake state control, to incorporate a sub-model of<br />

glucose-insulin-fatty acid regulation. This computational model is capable of simulating<br />

the complex dynamics of cardiorespiratory control, chemoreflex and state-related control<br />

of breath-to-breath ventilation, state-related and chemoreflex control of upper airway<br />

potency, respiratory and circulatory mechanics, as well as the metabolic control of<br />

glucose insulin dynamics and its interactions with the autonomic control.<br />

The interactions between autonomic and metabolic control include the circadian<br />

regulation of epinephrine secretion, epinephrine regulation on dynamic fluctuations in<br />

glucose and free-fatty acid in plasma, metabolic coupling among tissues and organs<br />

provided by insulin and epinephrine, as well as the effect of insulin on peripheral<br />

vascular sympathetic activity.<br />

These model simulations provide insight into the relative importance of the various<br />

mechanisms that determine the acute and chronic physiological effects of sleepdisordered<br />

breathing. The model can also be used to investigate the effects of a variety of<br />

interventions, such as different glucose clamps, the intravenous glucose tolerance test and<br />

the application of continuous positive airway pressure on obstructive sleep apnea<br />

subjects. incorporates several key cardiorespiratory reflexes and interactions. The<br />

schematic diagram below shows the overall scheme in which these interactions have been<br />

incorporated.


Scheme 1. Interactions of Autonomic Control and Metabolic Control<br />

87


88<br />

Appendix I: Software Package<br />

Here are all the files for either the whole Pneuma or its individual modules. Please check<br />

to make sure that you have downloaded all those files you need.<br />

Overall PNEUMA Package:<br />

Pneuma<strong>Release</strong>3.zip<br />

Individual Modules:<br />

Cardiovascular System:<br />

Cardiovascular<br />

FILES<br />

PNEUMA.mdl<br />

pneuma_acc.dll<br />

PNEUMA_MAIN_CONTROL_PANEL.fig<br />

PNEUMA_MAIN_CONTROL_PANEL.m<br />

pneuma_variables.m<br />

pneuma_gains.m<br />

constant_parameters_6.fig<br />

constant_parameters_6.m<br />

adjustable_inputs_6.fig<br />

adjustable_inputs_6.m<br />

About.fig<br />

About.m<br />

directory_list.fig<br />

directory_list.m<br />

directory_list_load.m<br />

directory_list_load.fig<br />

directory_list_save.fig<br />

directory_list_save.m<br />

acquire_data.m<br />

acquire_data_save.m<br />

interventions.fig<br />

interventions.m<br />

cond_check.m<br />

release_note.pdf<br />

modaldlg.fig<br />

modaldlg.m<br />

CNS.bmp<br />

cpap2.bmp<br />

CV_pic.bmp<br />

IC_pic.bmp<br />

Metabolic2.bmp<br />

Respiratory_System.bmp<br />

PNEUMA<strong>Release</strong>3_MANUAL.pdf<br />

Cardiovascular.mdl<br />

Cardiovascular_IC.m


89<br />

Autonomic Control:<br />

Autonomic<br />

SA Node:<br />

SA_Ursino<br />

Total Peripheral Resistance change:<br />

TPR_Ursino<br />

Autonomic.mdl<br />

Autonomic_IC.m<br />

SA_Node_Ursino.mdl<br />

SA_Node_Ursino_IC.m<br />

TPR_Ursino.mdl<br />

TPR_Ursino_IC.m<br />

Respiratory System:<br />

Respiratory<br />

NeuroMuscular Profile:<br />

NeuroMuscular<br />

Respiratory Mechanics (whole):<br />

Resp_Mech<br />

Respiratory Mechanics (Pmus):<br />

Pmus_Flow_Younes<br />

Respiratory.mdl<br />

Respiratory_IC.m<br />

NeuroMuscular.mdl<br />

NeuroMuscular_IC.m<br />

Resp_Mech.mdl<br />

Resp_Mech_IC.m<br />

Pmus_Flow_Younes.mdl<br />

Pmus_Flow_Younes_IC.m<br />

Respiratory Mechanics (Pleural Pressure):<br />

Pleural_Schuessler<br />

Pleural_Schuessler.mdl<br />

Pleural_Schuessler_IC.m<br />

State/Upper Airway Interaction:<br />

State_UA_Khoo<br />

Gas Exchange (Overall model):<br />

Gas_Exchange<br />

Gas Exchange (Individual):<br />

Dead_Space_Khoo<br />

Lungs_Khoo<br />

Cardio_Mix_Lange<br />

Dissociation_Spencer<br />

State_UA_Khoo.mdl<br />

State_UA_Khoo_IC.m<br />

Gas_Exchange.mdl<br />

Gas_Exchange_IC.m<br />

Dead_Space_Khoo.mdl<br />

Dead_Space_Khoo_IC.m<br />

Lungs_Khoo.mdl<br />

Lungs_Khoo_IC.m<br />

Cardio_Mix_Lange.mdl<br />

Cardio_Mix_Lange_IC.m<br />

Dissociation_Spencer.mdl<br />

Dissociation_Spencer_IC.m


90<br />

Brain_Khoo<br />

Body_Khoo<br />

Vent_Drive_Khoo<br />

Reflex_Ursino<br />

State_UA_Khoo_Borbely<br />

Brain_Khoo.mdl<br />

Brain_Khoo_IC.m<br />

Body_Khoo.mdl<br />

Body_Khoo_IC.m<br />

Vent_Drive_Khoo.mdl<br />

Vent_Drive_Khoo_IC.m<br />

Reflex_Ursino.mdl<br />

Reflex_Ursino.IC<br />

State_UA_Khoo_Borbely.mdl<br />

State_UA_Khoo_Borbely_IC


91<br />

Appendix II: Saved Data Files<br />

Here is the list of saved data files and the corresponding contents inside the files.<br />

Because of the limitations in Matlab ® that no data file bigger than 1 GB can be loaded,<br />

for the purpose of saving longer time simulation results, the saved data files for each<br />

group of data are segmented into 10 small data files naming from ***1.mat to ***10.mat<br />

where *** is the data file’s name. Each file must be smaller than 1 GB which is large<br />

enough for a 10-week simulation (3600*24*70 second run time) with sample period 0.1<br />

sec. However, if the simulation time is longer than 12-weeks (3600*24*84 second run<br />

time), then the sampling interval (step duration) must be longer than 0.1 second to ensure<br />

each data file is smaller than its limitation 1 GB.<br />

Data File Name<br />

Contents<br />

Autonomic#.mat<br />

BreathingPeriod#.mat<br />

CARDIO#.mat<br />

Autonomic Control Output Data:<br />

ftas_r, ftas_v, ftbs and ftp<br />

Variable Breathing Period Input/Output Data<br />

Cardiovascular System Outputs: Heart Period HP,<br />

Stroke Volume SV, Cardiac Output CO, TPR and<br />

ABP<br />

CARDIORESPIRATORY#.mat Overall Main Outputs of Cardiorepiratory<br />

Interactions: State Drive SI, HR, ABP, Ppl, PaCO2,<br />

SaO2, Breathing Frequency BF, Tidal Volume Vt,<br />

Total Ventilatory Drive D Total<br />

CircadianProcess#.mat<br />

deltaFtas#.mat<br />

GIMM_FFA_SEC#.mat<br />

Nt#.mat<br />

PVleft#.mat<br />

Resp_Rhythm#.mat<br />

stpres#.mat<br />

TPR#.mat<br />

varHeartPeriod#.mat<br />

where # represents number 1 to 10 for each data file.<br />

Circadian Process Data in Sleep Mechanism<br />

Insulin Effects on Peripheral Sympathetic Activity<br />

Metabolic Model’s Inputs and Outputs: G(t), I(t),<br />

F(t), E(t), Gin(t), I(t)_in<br />

Central Respiratory Neural Drive Nt<br />

Pressure and Volume of Left Atria<br />

Respiratory Rhythm Resp_Rhythm<br />

Dynamic Drives for Ventilatory Drive: X, Y and Z<br />

All the resistances and unstress volumes controlled<br />

by alpha-sympathetic activities<br />

Variable Heart Period Input/Output Data


92<br />

Appendix III: Saved/Load Data for Advanced <strong>User</strong>s<br />

For the advanced user, a potentially useful option that is available when PNEUMA V.<strong>3.0</strong><br />

is run using Matlab ® versions higher than R2009a is the ability to load initial states presimulation<br />

and to save final states post-simulation. This allows for a simulation to be<br />

continued starting at the time when the previous simulation run was terminated (assuming<br />

the final states have been saved prior to termination). For example, before clicking on<br />

“RUN” in the Control Panel for 1000 sec simulation, the advanced user can set up the<br />

final state as “yinitial1000” as shown below by opening Configuration in PNEUMA.mdl.<br />

Then, click “Run” to save all the “data” in the workspace when the simulation is stopped<br />

at 1000 sec by using “Save Data” in “File” menu. To load these data for the purpose of<br />

resuming the simulation run from t=1000 sec, modify the configuration as below by<br />

checking the box “Initial State” and change its name into “yinitial1000”; to save the final<br />

state, modify the configuration as below by checking the box “Final States” and change<br />

its name into “yFianl2000” shown as below:


To continuously save/load the states, be sure to provide different names for the initial and<br />

final states. Please note that this feature is only available when using PNEUMA V.<strong>3.0</strong> in<br />

Matlab ® versions higher than R2009a.<br />

93


94<br />

Appendix IV: Overall Parameter Set and Initial<br />

Conditions<br />

Here are the parameters and initial conditions for the complete PNEUMA model. During<br />

simulations and before simulations, some of these parameters and conditions can be<br />

modified. They are also the parameters/variables in the work space that will be saved into<br />

a data file when you select “Save data” under “File”. When you choose “Load data”,<br />

those parameters will be loaded into the workspace and some of these<br />

parameters/variables will be used as initial conditions in the subsequent simulation. All<br />

the saved simulation outputs can be extracted in Matlab ® by the user for further plotting<br />

or analysis.<br />

Parameter Definition Values Units<br />

Cardiovascular System<br />

Resistances<br />

R PA Pulmonary arterial flow resistance 0.023 mmHg*s/mL<br />

R PP Pulmonary peripheral flow resistance 0.0894 mmHg*s/mL<br />

R PV Pulmonary venous flow resistance 0.0056 mmHg*s/mL<br />

R SA Systemic arterial flow resistance 0.06 mmHg*s/mL<br />

R SP Splanchnic peripheral flow resistance 3.307 mmHg*s/mL<br />

R EP Extra-splanchnic peripheral resistance 3.52 mmHg*s/mL<br />

R MPN Skeletal muscle peripheral flow resistance 4.48 mmHg*s/mL<br />

R BPN Cerebral peripheral flow resistance 6.57 mmHg*s/mL<br />

R HPN Coronary peripheral flow resistance 19.71 mmHg*s/mL<br />

R SV Splanchnic venous flow resistance 0.038 mmHg*s/mL<br />

R EV Extra-splanchnic venous resistance 0.04 mmHg*s/mL<br />

R MV Skeletal muscle venous flow resistance 0.05 mmHg*s/mL<br />

R BV Cerebral venous flow resistance 0.075 mmHg*s/mL<br />

R HV Coronary venous flow resistance 0.224 mmHg*s/mL<br />

R VC_0 Nominal vena cava flow resistance 0.025 mmHg*s/mL<br />

R LA Left atrial flow resistance 0.0025 mmHg*s/mL<br />

R RA Right atrial flow resistance 0.0025 mmHg*s/mL<br />

Compliances<br />

C PA Pulmonary arterial compliances 0.76 mL/mmHg<br />

C PP Pulmonary peripheral compliances 5.8 mL/mmHg<br />

C PV Pulmonary venous compliances 25.37 mL/mmHg<br />

C SA Systemic arterial compliances 0.28 mL/mmHg<br />

C SP Splanchnic peripheral compliances 2.05 mL/mmHg<br />

C EP Extra-splanchnic peripheral compliances 0.668 mL/mmHg<br />

C MP Skeletal muscle peripheral compliances 0.525 mL/mmHg


95<br />

C BP Cerebral peripheral compliances 0.358 mL/mmHg<br />

C HP Coronary peripheral compliances 0.119 mL/mmHg<br />

C SV Systemic venous compliances 61.11 mL/mmHg<br />

C EV Extra-splanchnic venous compliances 20 mL/mmHg<br />

C MV Skeletal muscle venous compliances 15.71 mL/mmHg<br />

C BV Cerebral venous compliances 10.71 mL/mmHg<br />

C HV Coronary venous compliances 3.57 mL/mmHg<br />

C LA Left atrial compliances 19.23 mL/mmHg<br />

C RA Right atrial compliances 31.25 mL/mmHg<br />

Inertances<br />

L PA Pulmonary arterial inertance 0.00018 mmHg*s 2 /mL<br />

L SA Systemic arterial inertance 0.00022 mmHg*s 2 /mL<br />

Unstressed Volume<br />

V UPA Pulmonary arterial unstressed volume 0 mL<br />

V UPP Pulmonary peripheral unstressed volume 123 mL<br />

V UPV Pulmonary venous unstressed volume 120 mL<br />

V USA Systemic arterial unstressed volume 0 mL<br />

V USP Splanchnic peripheral unstressed volume 274.4 mL<br />

V UEP Extra-splanchnic peripheral unstressed volume 134.64 mL<br />

V UMP Skeletal muscle peripheral unstressed volume 105.8 mL<br />

V UBP Cerebral peripheral unstressed volume 72.13 mL<br />

V UHP Coronary peripheral unstressed volume 24 mL<br />

V USV Splanchnic venous unstressed volume 1121 mL<br />

V UEV Extra-splanchnic venous unstressed volume 550 mL<br />

V UMV Skeletal muscle venous unstressed volume 432.14 mL<br />

V UBV Cerebral venous unstressed volume 294.64 mL<br />

V UHV Coronary venous unstressed volume 98.21 mL<br />

V VC_0 Vena cava unstressed volume 130 mL<br />

V ULA Left atrial unstressed volume 25 mL<br />

V URA Right atrial unstressed volume 25 mL<br />

V ULV Left ventricular unstressed volume 16.77 mL<br />

V URV Right ventricular unstressed volume 40.88 mL<br />

Vena Cava<br />

Kr_vc Gain for vena cava flow resistance 0.001 mmHg*s/mL<br />

Vvc_max Maximum volume of vena cava 350 mL<br />

Vvc_min Minimum volume of vena cava 50 mL<br />

D 1 Parameter for P-V curve of vena cava 0.3855 mmHg<br />

D 2 Parameter for P-V curve of vena cava -5 mmHg<br />

K 1 _vc Parameter for P-V curve of vena cava 0.15 mmHg


96<br />

K 2 _vc Parameter for P-V curve of vena cava 0.4 mmHg<br />

Respiratory System<br />

Pleural Pressure and Alveolar Pressure<br />

Rcw Chest wall resistance 1.03 cmH 2 O*s/L<br />

R LT Lung transmural resistance 1.69 cmH 2 O *s/L<br />

Raw Airway wall resistance 1.016 cmH 2 O *s/L<br />

Ecw Chest wall elastance 5 cmH 2 O /L<br />

E LT Lung transmural elastance 5 cmH 2 O /L<br />

k 1,aw Constant for upper airway pressure 1.85 cmH 2 O *s 2 / L 2<br />

k 2,aw Constant for upper airway pressure 0.43 cmH 2 O *s 2 / L 2<br />

Gas Exchange and Transport<br />

Dead Space<br />

Dead (i),co2IC Initial condition for i th CO 2 dead space 39.562 L<br />

Dead (i),co2IC Initial condition for i th CO 2 dead space 39.674 L<br />

Dead (i),co2IC Initial condition for i th CO 2 dead space 39.813 L<br />

Dead (i),co2IC Initial condition for i th CO 2 dead space 40.006 L<br />

Dead (i),o2IC Initial condition for i th O 2 dead space 104.36 L<br />

Dead (i),o2IC Initial condition for i th O 2 dead space 104.23 L<br />

Dead (i),o2IC Initial condition for i th O 2 dead space 104.05 L<br />

Dead (i),o2IC Initial condition for i th O 2 dead space 103.8 L<br />

V d(i) i th dead space volume (i={1,..4} 0.03 L<br />

P I,CO2 Inspiratory CO 2 partial pressure 0 Torr<br />

P I,O2 Inspiratory O 2 partial pressure 150 Torr<br />

V t ' Respiratory flow variable L/sec<br />

V t Tidal Volume variable L<br />

P dO2 Dead space O 2 partial pressure variable Torr<br />

P dCO2 Dead space CO 2 partial pressure variable Torr<br />

Alveolar Gas Exchange<br />

V co2, V Lco2 Lungs storage volume for CO 2 3 L<br />

V o2, V Lo2 Lungs storage volume for O 2 2.5 L<br />

P Aco2IC Initial condition for Partial CO 2 pressure 40.943 Torr<br />

P Ao2IC Initial condition for Partial O 2 pressure 102.52 Torr<br />

P Ao2IC Initial condition for Partial O 2 pressure 102.52 Torr<br />

P ACO2 Alveolar CO 2 partial pressure variable Torr<br />

P ACO2 Alveolar O 2 partial pressure variable Torr<br />

P alv Alveolar partial gas pressure variable Torr<br />

Q Blood flow variable L/sec<br />

Cardiovascular Transport<br />

tau chemo Peripheral chemoreceptors delay time constant 2 s


97<br />

T 1 Time constant for cardiovascular mixing 1 s<br />

T 2 Time constant for cardiovascular mixing 2 s<br />

T a Lung to chemoreceptor circulation delay variable s<br />

LCTV 0 Lung to chemoreceptor transportation volume<br />

0.588 liter<br />

constant<br />

P aO2first IC Initial condition for first order P ao2 system 0.3557 Torr<br />

P aO2second IC Initial condition for second order P ao2 system 103.14 Torr<br />

P aCO2first IC Initial condition for first order P aco2 system -0.2465 Torr<br />

P aCO2second IC Initial condition for second order P aco2 system 40.393 Torr<br />

P aO2_delay IC Initial condition for O 2 convection 103.12 Torr<br />

P aco2_delay IC Initial condition for CO 2 convection 40.445 Torr<br />

P aCO2 CO 2 partial pressure variable Torr<br />

P aO2 O 2 partial pressure variable Torr<br />

Cardiovascular Dissociation<br />

C1<br />

Maximum concentration of hemoglobin-bound<br />

9 mL/mL<br />

oxygen<br />

C2 Maximum carbon dioxide concentration 87 mL/mL<br />

a1 Parameter in O 2 dissociation equation 0.3836 dimensionless<br />

a2 Parameter in CO 2 dissociation equation 1.819 dimensionless<br />

alpha1 Parameter in O 2 dissociation equation 0.02598 dimensionless<br />

alpha2 Parameter in CO 2 dissociation equation 0.05591 dimensionless<br />

K1 Parameter in O 2 dissociation equation 13 dimensionless<br />

K2 Parameter in CO 2 dissociation equation 194.4 dimensionless<br />

beta1 Parameter in O 2 dissociation equation 0.012275 dimensionless<br />

beta2 Parameter in CO 2 dissociation equation 0.03255 dimensionless<br />

S ao2_delay IC Initial Condition for Oxygen Saturation Delay 98.92 sec<br />

Brain Compartment<br />

MR bco2 Metabolic production rate for CO 2 in the brain 0.0517 1/s STPD<br />

tissue<br />

S co2 Dissociation slope for CO 2 in the blood 0.0043 mL/(mL*Torr)<br />

S bco2 Dissociation slope for CO 2 in the brain tissue 0.36 mL*100g -<br />

/Torr<br />

P bco2IC<br />

Initial condition for partial CO 2 pressure from the 48.538 Torr<br />

brain<br />

Body Tissues Compartment<br />

V tco2 Body tissue storage volume for CO 2 6 L<br />

V to2 Body tissue storage volume for O 2 7.7 L<br />

MR co2 Metabolic production rate for CO 2 0.0033 1/s STPD<br />

MR o2 Metabolic consumption rate for O 2 0.0038 1/s STPD<br />

C vco2 IC Initial condition for mixed venous CO 2<br />

0.5247 mL/mL<br />

concentration<br />

C vo2 IC Initial condition for mixed venous O 2<br />

0.1639 mL/mL<br />

concentration<br />

Upper Airway Model


98<br />

R uaw Upper airway wall resistance 1000000 cmH 2 O*s/L<br />

A 0ua Maximum area of opening in upper airway 1 a.u.<br />

K ua Proportionality coefficient between A ua and Yua; 1 L/(s*cmH 2 O)<br />

P crit_awake Critical upper airway pressure in wakefulness -40 cmH 2 O<br />

S ua Upper airway sensitivity to collapse 0.01 a.u.<br />

C ua Upper airway compliance variable L/cmH 2 O<br />

P ua Upper airway pressure variable cmH 2 O<br />

V Upper airway flow variable cmH 2 O<br />

ua<br />

V Total flow in airways variable cmH 2 O<br />

Respiratory Muscle Activity<br />

FlowIC Initial air flow 0 L/s<br />

VC Vital Capacity 5 L<br />

Pt_frcIC1 Initial condition for respiratory muscle reaction 0 spikes/s<br />

Pt_frcIC2 Initial condition for respiratory muscle reaction 0 spikes/s<br />

FlowIC Initial condition for airflow 0 L/s<br />

VtIC Initial condition for lung volume 0 L<br />

Central Neural Control<br />

Carotid Baroreceptors<br />

Pn Center pressure for sigmoidal function 92 mmHg<br />

Kcs Parameter for sigmoidal slope control 11.758 mmHG<br />

Pn_sleep Parameter for sleep effects 0 mmHg<br />

Kcs_sleep Parameter for sleep effect 0 mmHG<br />

fcs,min Lower threshold for sigmoidal function 2.52 spikes/s<br />

fcs,max Upper saturation for sigmoidal function 47.78 spikes/s<br />

τ Z Time constant for baroreflex 6.37 s<br />

τ P Time constant for baroreflex 2.076 s<br />

Ventilatory Response<br />

I c Central apneic threshold 45 dimensionless<br />

I pCO2 Peripheral apneic threshold for CO 2 38 dimensionless<br />

I pO2 Peripheral apneic threshold for O 2 102.4 dimensionless<br />

Gc Gain for central chemical drive 0.075 dimensionless<br />

Gp Gain for peripheral chemical drive 0.0063 dimensionless<br />

S wake Factor of wakefulness to sleep 0.3 dimensionless<br />

Chemoreflex Control of Variable Respiratory Rhythm<br />

F b Basal breathing frequency 12.5 Breath<br />

/min<br />

V b Basal ventilation 6.7 L/min<br />

T D Chemoreflex drive threshold 1539 mL<br />

T P Chemoreflex drive threshold 2879 mL


99<br />

S1 F Scaling factor 0.00518 dimensionless<br />

S1 V Scaling factor 0.024 dimensionless<br />

S2 F Scaling factor 0.0105 dimensionless<br />

S2 V Scaling factor 0.0367 dimensionless<br />

Chemoreflex<br />

fchemo,max Upper saturation for the sigmoidal function 12.3 spikes/s<br />

fchemo,min Lower saturation for the sigmoidal function 0.835 spikes/s<br />

fchemo_control Basal level for the chemoreflex 1.4 dimensionless<br />

Kchemo Slope control parameter for the sigmoidal function 29.27 mmHg<br />

K H Constant value for the static response 3 dimensionless<br />

τ chemo Time constant for the chemoreflex 2 s<br />

Lung Stretch Receptors Reflex<br />

Gls Constant gain 23.29 spikes/sec/liter<br />

τls Time constant 2 sec<br />

Offsets<br />

X sa<br />

Saturation for the offset of α-sympathetic activity 6 Torr<br />

on peripheral resistance<br />

θ san<br />

Nominal level of offset of α-sympathetic activity 13.2 spikes/sec<br />

on peripheral resistance<br />

PO2n sa Central point for the sigmoidal function 30 Torr<br />

kisc sa<br />

Parameter of α-sympathetic activity on peripheral 2 dimensionless<br />

resistance<br />

X sb Saturation for the offset of -sympathetic activity 21.2 Torr<br />

θ sbn Nominal level of offset of -sympathetic activity 3.6 spikes/sec<br />

PO2n sb Central point for the sigmoidal function 45 Torr<br />

kisc sb Parameter of -sympathetic activity 4 dimensionless<br />

X sp<br />

Saturation for the offset of α-sympathetic activity 6 dimensionless<br />

on peripheral resistance<br />

θ spn<br />

Nominal level of offset of α-sympathetic activity 13.2 spikes/sec<br />

on peripheral resistance<br />

PO2n sp Central point for the sigmoidal function 30 Torr<br />

kisc sp<br />

Parameter of α-sympathetic activity on unstressed 2 dimensionless<br />

volume of veins<br />

τ isc Time constant for oxygen response 30 s<br />

τ cc Time constant for carbon dioxide response 20 s<br />

Autonomic Control<br />

fcs,0<br />

Center point for the sigmoidal function for<br />

25 spikes/s<br />

parasympathetic<br />

fpara,0 Lower saturation of the parasympathetic<br />

3.2 spikes/s<br />

exponential decay function<br />

fpara, Upper limit of the parasympathetic exponential<br />

6.3 spikes/s<br />

decay function<br />

kp Slope control parameter for the sigmoidal function 7.06 dimensionless<br />

G_RSA,p Central RSA gain for parasympathetic response 0.4 dimensionless<br />

Gchemo,p Chemoreflex gain for parasympathetic response 0.03 dimensionless


100<br />

Glung,p Lung stretch receptor reflex gain for<br />

0.24 dimensionless<br />

parasympathetic response<br />

f s,0<br />

Upper limit of the sympathetic exponential decay 16.11 spikes/s<br />

function<br />

f s,<br />

Lower saturation of the sympathetic exponential 2.1 spikes/s<br />

decay function<br />

Ks Constant for the exponential function 0.07 s<br />

G_RSA,bs Central RSA gain for -sympathetic response 0.4 dimensionless<br />

Gchemo,bs Chemoreflex gain for -sympathetic response 2.8 dimensionless<br />

Glung,bs Lung stretch receptor reflex gain for -sympathetic 0.24 dimensionless<br />

G_RSA,as Central RSA gain for -sympathetic response 0.4 dimensionless<br />

Gchemo,as Chemoreflex gain for -sympathetic response 4 dimensionless<br />

Glung,as Lung stretch receptor reflex gain for -sympathetic 0.34 dimensionless<br />

-Sympathetic Response<br />

ftbsIC -sympathetic initial output after time delay 3.8576 spikes/s<br />

ftbs_min Lower limit for the natural log function 2.66 spikes/s<br />

Gbs -sympathetic Gain varied with sleep drive -0.13 dimensionless<br />

Gbs_sleep -sympathetic sleep gain factor 0.2 dimensionless<br />

τbs -sympathetic time constant 2 s<br />

Dbs Delay for -sympathetic time constant 2 s<br />

Parasympathetic Response<br />

ftpIC Para sympathetic initial output after time delay 4.2748 spikes/s<br />

Gpara Parasympathetic Gain varied with sleep drive 0.09 dimensionless<br />

Gpara_sleep Parasympathetic sleep gain factor 0.2 dimensionless<br />

τpara Parasympathetic time constant 1.5 s<br />

Dbs Delay for parasympathetic time constant 0.2 s<br />

Neuromuscular Drive<br />

Inhale Boolean variable for inhalation 1 dimensionless<br />

Sino-Atrial Node<br />

HPbasal Basal value for HP for denervated heart 0.58 s<br />

Maximum End-systolic Elastance<br />

Glv Elastance gain for left ventricle 0.475 mmHg<br />

/ml/v<br />

D lv Delay for elastance of left ventricle 2 s<br />

τ lv Time constant for elastance of left ventricle 8 s<br />

Emax0_lv Basal level of maximum end-systolic elastance of<br />

left ventricle<br />

2.392 mmHg<br />

/ml<br />

Grv Elastance gain for right ventricle 0.282 mmHg<br />

/ml/v<br />

D rv Delay for elastance of right ventricle 2 s<br />

τ rv Time constant for elastance of right ventricle 8 s<br />

Emax0_rv<br />

Basal level of maximum end-systolic elastance of<br />

right ventricle<br />

1.412 mmHg<br />

/ml<br />

-Sympathetic Control of Peripheral Resistance


101<br />

fasIC -sympathetic initial output after time delay 34.793 spikes/s<br />

fas_min Lower limit for the natural log function 2.66 spikes/s<br />

Gas_sleep -sympathetic Gain varied with sleep 0.3 dimensionless<br />

Gas_sp -sympathetic Gain for splanchnic peripheral<br />

0.695 dimensionless<br />

resistance<br />

τas_sp -sympathetic time constant 2 s<br />

Das_sp Delay -sympathetic time constant 2 s<br />

Gas_ep -sympathetic Gain for extra-splanchnic peripheral 1.94 dimensionless<br />

resistance<br />

τas_ep -sympathetic time constant 2 s<br />

Das_ep Delay -sympathetic time constant 2 s<br />

Gas_mp -sympathetic Gain for skeletal muscle peripheral 2.47 dimensionless<br />

resistance<br />

τas_mp -sympathetic time constant 2 s<br />

Das_mp Delay -sympathetic time constant 2 s<br />

Vusv0 Basal level of unstressed volume of splanchnic 1435.4 ml<br />

venous circulation<br />

Gas_usv -sympathetic Gain for unstressed volume of<br />

-265.4 ml/v<br />

splanchnic venous circulation<br />

τ as_usv -sympathetic time constant 20 s<br />

D as_usv Delay -sympathetic time constant 5 s<br />

Local Blood Flow Control of Peripheral Resistance<br />

P aCO2_n Nominal arterial CO 2 partial pressure i 40 Torr<br />

CvO2n_b Nominal venous O 2 concentration in cerebral<br />

0.14 dimensionless<br />

peripheral circulation<br />

CvO2n_m Nominal venous O 2 concentration in skeletal<br />

0.155 dimensionless<br />

muscle peripheral circulation<br />

CvO2n_h Nominal venous O 2 concentration in coronary<br />

0.11 dimensionless<br />

peripheral circulation<br />

Tau_CO 2 Time constant for peripheral CO 2 response 20 s<br />

Tau_O 2 Time constant for peripheral O 2 response 10 s<br />

A Parameter for flow regulation equation 20.9 dimensionless<br />

B Parameter for flow regulation equation 92.8 dimensionless<br />

C Parameter for flow regulation equation 10570 dimensionless<br />

G O2_b<br />

G O2_h<br />

G O2_m<br />

Gain of local O2 response on cerebral vascular<br />

bed<br />

10 dimensionless<br />

Gain of local O2 response on coronary vascular 35 dimensionless<br />

bed<br />

Gain of local O2 response on muscular vascular 30 dimensionless<br />

bed<br />

Sleep Mechanism<br />

A Amplitude of the skewed sine function 20.9 dimensionless<br />

X H Bias of the skewed sine function for process CH 0.9 dimensionless<br />

X L Bias of the skewed sine function for process CL 0.15 dimensionless<br />

gc Constant for sleep decaying 0.2/60 dimensionless<br />

rc Rising rate of slow wave activity 0.4/60 dimensionless<br />

fc Falling rate of slow wave activity 0.008/60 dimensionless


102<br />

SWAo Initial value of sleep wake activity 0.007 dimensionless<br />

Interlink between Metabolic Model and Autonomic Control<br />

K Ce,0 Gain for basal level of epinephrine in plasma 9 dimension-less<br />

b REM<br />

Gain for REM sleep effect from autonomic control 0.4 dimension-less<br />

on epinephrine regulations<br />

a w<br />

Parameter from autonomic control on epinephrine 0.6 dimension-less<br />

regulations<br />

f tas,0 basal firing rate of sympathetic activity 2.1 1/s<br />

K as<br />

f tas.I0<br />

K isc,I<br />

τ I<br />

Gain of metabolic feedback to change of<br />

sympathetic activities<br />

Parameter of metabolic feedback to change of<br />

sympathetic activities<br />

Parameter of metabolic feedback to change of<br />

sympathetic activities<br />

Time constant of metabolic feedback to change of<br />

sympathetic activities<br />

Plasma Glucose Dynamics<br />

2 dimension-less<br />

1 dimension-less<br />

20 dimension-less<br />

30 min<br />

P 1 Utilization rate for plasma glucose concentration 0.068 1/min<br />

P 4<br />

Utilization rate for plasma glucose concentration<br />

under the influence of remote insulin<br />

1.3 mL/min<br />

/µU<br />

P 6<br />

Production rate for remote plasma glucose<br />

concentration that promotes FFA<br />

0.00006 L/min<br />

/µmol<br />

G b Basal level of plasma glucose concentration 124.8 mg/dL<br />

Vol G Glucose distribution space 117 dL<br />

K EG Gain from epinephrine to glucose uptake 0.04 dimension-less<br />

Plasma Insulin Dynamics<br />

n Utilization rate for plasma insulin concentration 0.142 1/min<br />

P 5 Factor for insulin inputs 0.000568 1/mL<br />

I b Basal level of plasma insulin concentration 16.6 µU/mL<br />

P 3 Production rate for remote insulin concentration 0.000012 1/min<br />

Insulin sensitivity factor 0.038 µU/mL/min 2 per<br />

mg/dL<br />

T Di Variable time delay 5±3 sec<br />

G h Threshold of plasma glucose concentration 125 mg/dL<br />

P 2 Utilization rate for remote insulin concentration 0.037 1/min<br />

P F2<br />

Utilization rate for remote insulin concentration 0.17 1/min<br />

that promotes FFA<br />

P F3<br />

Production rate for remote insulin concentration 0.00001 1/min<br />

that promotes FFA<br />

X b Basal level of remote plasma insulin concentration 0.08125 µU/mL<br />

Y b<br />

Basal level of remote plasma insulin concentration<br />

that promotes FFA production<br />

Plasma Free Fatty Acid Dynamics<br />

0.008125 µU/mL<br />

P 7 Utilization rate for plasma FFA concentration 0.03 1/min<br />

P 8<br />

Utilization rate for remote plasma insulin involved 4.5 mL/<br />

FFA concentration<br />

min/ µU<br />

F b Basal level of plasma FFA concentration 380 µmol/L<br />

Z b Basal level of remote plasma FFA concentration 190 µmol/L


103<br />

k 2 Utilization rate for remote FFA concentration 0.03 1/min<br />

k 1 Production rate for remote FFA concentration 0.02 1/min<br />

Vol F FFA distribution space 11.7 L<br />

K EF Gain from epinephrine to FFA uptake 0.01 dimension-less<br />

Epinephrine Regulation<br />

E b Basal level of epinephrine concentration in plasma 198 pM<br />

τ E Time constant for epinephrine regulation 30 min<br />

Δ Epinephrine regulation factor for metabolic fluxes 1e6 dimension-less<br />

V 0_GLC_Heart Maximum rate coefficient in heart 88 µmol/min<br />

λ E_GLC_Heart Epinephrine regulated flux parameter in heart 3 dimension-less<br />

α E_GLC_Heart Epinephrine regulated flux parameter in heart 1000 pM<br />

V 0_GLY_Heart Maximum rate coefficient in heart 320 µmol/min<br />

λ E_GLY_Heart Epinephrine regulated flux parameter in heart 0 dimension-less<br />

α E_GLY_Heart Epinephrine regulated flux parameter in heart 0 pM<br />

V 0_FFA_Heart Maximum rate coefficient in heart 280 µmol/min<br />

λ E_FFA_Heart Epinephrine regulated flux parameter in heart 2 dimension-less<br />

α E_FFA_Heart Epinephrine regulated flux parameter in heart 447.2 pM<br />

V 0_TGL_Heart Maximum rate coefficient in heart 8 µmol/min<br />

λ E_TGL_Heart Epinephrine regulated flux parameter in heart 0.5 dimension-less<br />

α E_TGL_Heart Epinephrine regulated flux parameter in heart 1000 pM<br />

V 0_GLC_Muscle Maximum rate coefficient in muscle 398 µmol/min<br />

λ E_GLC_Muscle Epinephrine regulated flux parameter in muscle 18 dimension-less<br />

α E_GLC_Muscle Epinephrine regulated flux parameter in muscle 1000 pM<br />

V 0_GLY_Muscle Maximum rate coefficient in muscle 1000 µmol/min<br />

λ E_GLY_Muscle Epinephrine regulated flux parameter in muscle 0.3 dimension-less<br />

α E_GLY_Muscle Epinephrine regulated flux parameter in muscle 10 pM<br />

V 0_FFA_Muscle Maximum rate coefficient in muscle 701 µmol/min<br />

λ E_FFA_Muscle Epinephrine regulated flux parameter in muscle 9 dimension-less<br />

α E_FFA_Muscle Epinephrine regulated flux parameter in muscle 447.2 pM<br />

V 0_PYR_Mus cle Maximum rate coefficient in muscle 80 µmol/min<br />

λ E_PYR_Muscle Epinephrine regulated flux parameter in muscle 2 dimension-less<br />

α E_PYR_Muscle Epinephrine regulated flux parameter in muscle 1000 pM<br />

V 0_TGL_Muscle Maximum rate coefficient in muscle 260 µmol/min<br />

λ E_TGL_Muscle Epinephrine regulated flux parameter in muscle 2.5 dimension-less<br />

α E_TGL_Muscle Epinephrine regulated flux parameter in muscle 1000 pM<br />

V 0_TGL_GI Maximum rate coefficient in GI tract 80 µmol/min<br />

λ E_TGL_GI Epinephrine regulated flux parameter in GI tract 2 dimension-less<br />

α E_TGL_GI Epinephrine regulated flux parameter in GI tract 1000 pM<br />

V 0_TGL_adipose Maximum rate coefficient in adipose 190 µmol/min


104<br />

λ E_TGL_ adipose Epinephrine regulated flux parameter in adipose 2 dimension-less<br />

α E_TGL_ adipose Epinephrine regulated flux parameter in adipose 1000 pM

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!