10.04.2014 Views

Chapter 7 Local properties of plane algebraic curves - RISC

Chapter 7 Local properties of plane algebraic curves - RISC

Chapter 7 Local properties of plane algebraic curves - RISC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

mult O (e ∩ y) = (4),(7) mult O (x 4 ∩ y) = (6),(5) 4,<br />

mult O (e ∩ h) = (5) mult O (e) · mult O (h) = 6.<br />

Thus, mult O (E, F) = mult O (e ∩ f) = 14.<br />

Theorem 7.2.4. The line l is tangent to the curve f at the point P if and only if<br />

mult P (f ∩ l) > mult P (f).<br />

Pro<strong>of</strong>: By the property (5), l is tangent to f at P if and only if mult P (f ∩ l) ><br />

mult P (f) · mult P (l) = mult P (f).<br />

Theorem 7.2.5. If the line l is not a component <strong>of</strong> the curve f, then<br />

∑<br />

P ∈A 2 mult P (f ∩ l) ≤ deg(f).<br />

Pro<strong>of</strong>: Only points in f ∩ l can contribute to the sum. Let l be parametrized as<br />

{x = a + tb, y = c + td}. Let<br />

g(t) = f(a + tb, c + td) = α ·<br />

r∏<br />

(t − λ i ) e i<br />

,<br />

for α, e i ∈ K. g ≠ 0, since l is not a component <strong>of</strong> f.<br />

P ∈ f ∩ l if and only if P = P i = (a + λ i b, c + λ i d) for some 1 ≤ i ≤ r.<br />

If all the partial derivatives <strong>of</strong> f <strong>of</strong> order n vanish at P i , then by the chain rule also<br />

∂ n g<br />

∂t n (λ i) =<br />

So mult Pi (f) ≤ e i .<br />

Summarizing we get<br />

i=0<br />

i=1<br />

n∑<br />

( ) n ∂ n f<br />

i ∂x i ∂y n−1(a + λ ib, c + λ i d) · b i · d n−i = 0.<br />

∑<br />

P ∈A 2 mult P (f∩l) =<br />

r∑<br />

mult Pi (f∩l) = (5)<br />

i=1<br />

r∑<br />

i=1<br />

mult Pi (f)·mult Pi (l)<br />

} {{ }<br />

=1<br />

≤<br />

r∑<br />

e i ≤ deg(f).<br />

i=1<br />

103

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!