16.04.2014 Views

Laboratory Monitoring of Direct Thrombin Inhibitors - Pathology

Laboratory Monitoring of Direct Thrombin Inhibitors - Pathology

Laboratory Monitoring of Direct Thrombin Inhibitors - Pathology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Laboratory</strong> <strong>Monitoring</strong> <strong>of</strong><br />

<strong>Direct</strong> <strong>Thrombin</strong> <strong>Inhibitors</strong><br />

David Williams, M.D., Ph.D.<br />

Roger S. Riley, M.D., Ph.D.<br />

Ann Tidwell, M.T. (ASCP) SH


<strong>Direct</strong> <strong>Thrombin</strong> <strong>Inhibitors</strong><br />

! <strong>Direct</strong> thrombin inhibitors (DTIs) are<br />

anticoagulants with a targeted specicity for<br />

thrombin. DTIs have a predictable anticoagulant<br />

effect with little interindividual variability,<br />

since they do not interact with platelets<br />

or plasma proteins and do not require<br />

antithrombin as a c<strong>of</strong>actor. Hirudin is a natural<br />

65 amino acid DTI produced by the salivary<br />

glands <strong>of</strong> the medicinal leech. Recombinant<br />

hirudin (i.e., lepirudin) and smaller<br />

synthetic analogs <strong>of</strong> hirudin (i.e., hirulog,<br />

bivalirudin) constituent the divalent DTIs<br />

that interact with both the catalytic and substrate<br />

recognition site <strong>of</strong> thrombin. Monovalent<br />

DTIs include several small molecules<br />

(i.e., agratoban, melagatran, ximelagatran)<br />

that interact only with thrombin’s catalytic<br />

site. The requirement for laboratory monitoring<br />

<strong>of</strong> DTIs varies with the individual<br />

agent. Although relatively new, the many<br />

medical advantages <strong>of</strong> the DTIs portend<br />

their widespread use in the near future for<br />

thrombophylaxis, stroke prevention, and the<br />

treatment <strong>of</strong> venous thromboembolic disease<br />

and heparin-induced thrombocytopenia.<br />

There are two general classes <strong>of</strong> direct<br />

thrombin inhibitors: divalent inhibitors that<br />

bind both the substrate recognition site (exosite<br />

1) and the catalytic site <strong>of</strong> thrombin and<br />

monovalent inhibitors that bind only the catalytic<br />

site. Members <strong>of</strong> the bivalent class currently<br />

available include lepirudin and desirudin<br />

(recombinant forms <strong>of</strong> the leech extract<br />

hirudin) and bivalirudin. Members <strong>of</strong> the<br />

monovalent class include the currently available<br />

argatroban and the recently developed<br />

ximelgatran, which is not yet approved by the<br />

FDA.<br />

Class 1<br />

Desirudin, Lepirudin, and Bivalirudin<br />

Recombinant desirudin and lepirudin,<br />

are 65 amino acids, roughly 7 kDa, polypeptides<br />

that differ from hirudin by sulphation <strong>of</strong><br />

a C-terminal tyrosine and from one another<br />

by an isoleucine to a leucine change. The<br />

amino terminal portion <strong>of</strong> the polypeptide<br />

forms a globular domain that binds to the<br />

catalytic site <strong>of</strong> thrombin, while the carboxy<br />

terminal twelve residues form an extended<br />

strand that interacts with the fibrinogen binding<br />

exosite 1. These peptides bind irreversibly<br />

to thrombin and inhibit cleavage <strong>of</strong> fibrinogen<br />

to fibrin. Binding to substrate requires<br />

access to exosite 1, hence these peptides do<br />

not inhibit thrombin that is already bound to<br />

fibrinogen.<br />

Bivalirudin is a 20 amino acid derivative<br />

<strong>of</strong> hirudin. The amino terminus consists<br />

<strong>of</strong> the active site inhibitory sequence, D-Phe-<br />

Pro-Arg, which is connected by a flexible<br />

Fig. 1. Hirudin bound to thrombin. The crystal structure<br />

<strong>of</strong> thrombin bound to recombinant hirudin (pdb<br />

code: 4HTC) is shown. <strong>Thrombin</strong> is depicted as a surface<br />

model colored salmon with the active site triad<br />

colored green. The inhibitor hirudin is shown as a ribbon<br />

model. Residues that also form the C-terminal<br />

portion <strong>of</strong> bivalirudin are colored cyan and the remaining<br />

residues are colored blue.<br />

Structure & Metabolism 2


<strong>Direct</strong> <strong>Thrombin</strong> <strong>Inhibitors</strong><br />

Fig. 2. Argatroban bound to thrombin. The crystal<br />

structure <strong>of</strong> thrombin bound to argatroban (pdb<br />

code: 1DWC) is shown. <strong>Thrombin</strong> is depicted as a surface<br />

model colored salmon with the active site triad<br />

colored green. The inhibitor argatroban is shown in a<br />

stick model colored by atom type. The peptide fragment<br />

from hirudin present in the crystal structure is<br />

omitted from this figure for clarity.<br />

tetra-glycine linker to twelve amino acids<br />

from the carboxy terminus <strong>of</strong> hirudin that<br />

bind to exosite 1. The Pro-Arg peptide bond<br />

can be slowly cleaved by the catalytic site <strong>of</strong><br />

thrombin, hence bivalirudin functions as a<br />

reversible inhibitor with a short half-life (20<br />

to 30 minutes).<br />

Class 2<br />

Argatroban, Ximelagatran, and Melagatran<br />

The monovalent inhibitor argatroban<br />

binds with high affinity and reversibly to<br />

thrombin. It is a small synthetic molecule that<br />

was rationally derived by modification <strong>of</strong> N-<br />

tosyl-L-arginine methyl ester. A crystal structure<br />

<strong>of</strong> the complex between thrombin and<br />

argatroban shows that the inhibitor binds in a<br />

hydrophobic pocket in the catalytic site <strong>of</strong><br />

thrombin. The pro-drug ximelagatran and its<br />

active metabolite melagatran are small synthetic<br />

peptidomimetics that were designed to<br />

mimic the D-Phe-Pro-Arg tripeptide sequence<br />

<strong>of</strong> bivaluridin. Like argatroban, melagatran<br />

binds reversibly to the catalytic cleft <strong>of</strong><br />

thrombin and inhibits catalysis.<br />

Hirudin and its recombinant forms<br />

must be administered either intravenously or<br />

by subcutaneous injection. The plasma halflife<br />

is either 60 minutes or 120 minutes, intravenous<br />

or subcutaneous administration respectively,<br />

and predominantly cleared by renal<br />

excretion. Therefore, these drugs should<br />

be used with caution in patients with renal<br />

insufficiency. The usual dosage is a 0.4 mg/kg<br />

bolus followed by 0.15 mg/kg/hr continuous<br />

infusion. This dosing must be adjusted appropriately<br />

in patients with renal insufficiency,<br />

in whom the plasma half-life may be<br />

extended to over 300 hours.<br />

Bivalirudin is administered by intravenous<br />

infusion with a plasma half-life <strong>of</strong> ~30<br />

minutes. It is largely cleared by plasma peptidases<br />

with only 20% cleared by the kidneys.<br />

Hence, bivalirudin may be a safer alternative<br />

in renal insufficiency.<br />

Argatroban is also administered by<br />

intravenous infusion and has a plasma halflife<br />

<strong>of</strong> ~45 minutes. It is largely metabolized<br />

by the liver so that clearance is reduced in<br />

liver disease but not affected by renal insufficiency.<br />

Ximelgatran is a pro-drug that is absorbed<br />

orally and metabolized by the liver to<br />

the active form melgatran. It has a longer<br />

half-life than the parental direct thrombin inhibitors<br />

and has a predictable doseanticoagulant<br />

response. Clearance is not affected<br />

by liver or mild to moderate renal disease.<br />

Therefore monitoring is generally not<br />

necessary except for in severe renal disease,<br />

making ximelgatran an attractive alternative<br />

for oral anticoagulation therapy.<br />

Pharmacokinetics 3


!"#$%&'()#*+,"-'.-)","&*#/<br />

!"#i%n#' .n/%01oin1 3%04.#"n%6<br />

o.' #0"n'?.Ain"? 4o0on"05 "n6<br />

1io3?"'#5 8!-9;: o0 3%04.#"n%6<br />

o.' 4o0on"05 in#%0v%n#ion 8!9,: 6<br />

>iv"?i0./in<br />

!0o3*5?"@i' o0 #0%"#A%n# oB<br />

#*0oA


!irect <strong>Thrombin</strong> <strong>Inhibitors</strong><br />

(a,5$ .<br />

4roC$rti$3 <strong>of</strong> t)$ !ir$%t ()ro+,in .n)i,itor3<br />

!ir$%t ()ro+,in<br />

.n)i,itor/.n0i%ation<br />

20+ini3tration<br />

45a3+a<br />

6a5f89if$<br />

:5$aran%$ !o3ag$ <strong>Monitoring</strong><br />

2rgatro,an .ntra=$no>3 ?@8AB +in 6$Cati% 6.( 8 D !g/Eg/+in<br />

4:. in 6.( 8 .nitiat$ inf>3ion at DA<br />

+%g/Eg/+in an0 a ,o5>3 <strong>of</strong> ?AF<br />

+%g/Eg o=$r ? to A +in>t$3G<br />

6$Cati% i+Cair+$nt 8 initiat$ 0o3$<br />

at FGA+%g/Eg/+in<br />

H,tain ,a3$5in$ a4((I +onitor<br />

a4(( $=$rJ tKo )o>r3 >nti5 t)$ra8<br />

C$>ti% rang$ <strong>of</strong> BGA8? ti+$3 ,a3$8<br />

5in$ a4(( a%)i$=$0G<br />

Li=a5ir>0in M2ngio+aNO .ntra=$no>3 DF8?F +in PFQ +$ta,o5iR$0 in<br />

t)$ C5a3+aI DFQ r$8<br />

na5<br />

!$3ir>0in W>,%>tan$o>3 BDF +in X$na5G YF8AFQ $N8<br />

%r$t$0 >n%)ang$0 ,J<br />

Ei0n$J3<br />

9$Cir>0in MX$!>0anO .ntra=$no>3 [F +in X$na5G 20+ini3tra8<br />

tion %ontrain0i%at$0<br />

in r$na5 0ia5J3i3 Ca8<br />

ti$nt3 or r$na5 fai5>r$<br />

Cati$nt3 Kit) :r:5 ]<br />

BA +9/+in or 3$r>+<br />

:r U[GF +g/09<br />

.S ,o5>3 MFGTA +g/EgO ,o5>3I fo58<br />

5oK$0 ,J %ontin>o>3 inf>3ion MBGTA<br />

+g/Eg/)o>rO 0>ring 4(:2 or 4:.G<br />

!o3ag$ +>3t ,$ r$0>%$0 in Ca8<br />

ti$nt3 Kit) r$na5 i+Cair+$ntG<br />

20>5t3 8 BA +g $=$rJ BD )rI 3tart AZ<br />

BA +in Crior to 3>rg$rJG<br />

X$na5 .+Cari+$nt 8 ::r ?BZ[F +5/<br />

+in 8 A +g $=$rJ BD )rI f>rt)$r<br />

0o3$3 0$t$r+in$0 ,J 0ai5J a4((\<br />

::r ]?B +5/+in 8 BGT +g $=$rJ BD<br />

)rI f>rt)$r 0o3$3 0$t$r+in$0 ,J<br />

0ai5J a4((G<br />

.S ,o5>3 MFGY +g/EgO fo55oK$0 ,J<br />

%ontin>o>3 inf>3ion MFGBA +g/Eg/<br />

)o>rOG 4ati$nt3 !BBF Eg r$%$i=$ BBF<br />

Eg 0o3$G !o3$ +>3t ,$ a0^>3t$0 in<br />

Cati$nt3 Kit) r$na5 fai5>r$ MW$$<br />

)ttC_//KKKGr$!>0anG%o+OG<br />

4ati$nt3 Kit) r$na5 i+Cair+$nt<br />

3)o>50 ,$ +onitor$0 Kit) t)$ a%8<br />

ti=at$0 %5otting ti+$ M2:(OG 2:(<br />

=a5>$3 U?FF 3$%on03 in0i%at$<br />

a0$V>at$ anti%oag>5ationG<br />

<strong>Monitoring</strong> ,J 0ai5J a4(( r$V>ir$0<br />

in Cati$nt3 Kit) r$na5 i+Cair+$ntG<br />

H,tain ,a3$5in$ a4((I +aintain<br />

a4(( ]D ti+$3 ,a3$5in$ a4((G<br />

H,tain ,a3$5in$ a4((G :ontraini8<br />

%at$0 if a4(( ,a3$5in$ !DGAG (arg$t<br />

rang$ for a4(( ratio i3 BGA8DGAG<br />

!$t$r+in$ a4(( ratio fo>r )o>r3<br />

aft$r .S ,o5>3 an0 0ai5J t)$r$aft$rG<br />

`i+$5agatran MaNantraO<br />

M$5agatran<br />

Hra5 M`i+$5aga8<br />

tranO<br />

W>,%>tan$o>3<br />

MM$5agatranO<br />

!$C$n0$nt<br />

on ag$ an0<br />

r$na5 f>n%8<br />

tion BGA 8 Y<br />

)o>r3<br />

X$na5 M20+ini3tra8<br />

tion %ontrain0i%at$0<br />

if :r:5 ] ?F +9/+inG<br />

`i+$5agatran 8 DY +g ora55JI tKi%$<br />

0ai5J<br />

M$5agatran 8 ? +g 3>,%>tan$o>35JI<br />

tKi%$ 0ai5J<br />

<strong>Monitoring</strong> not >3>a55J in0i%at$0G


!irect (hrombin .nhibitors<br />

!"##$in'( *o ,-., i, /.nno, !# 0*#$ ,o 1oni,o2<br />

,-#2.345 6in/# ,-# .788 2.3i$"4 2#,02n* ,o<br />

!.*#"in#( . no21." .788 in$i/.,#* ,-., ,-#<br />

32#vio0* $o*# :.* 1i**#$5<br />

8-# $i2#/, ,-2o1!in in-i!i,o2* $o no,<br />

/.224 . 2i*; o< -#3.2in in$0/#$ ,-2o1!o/4=<br />

,o3#ni. >?@8A( .n$ .* *0/- ,-#4 *#2v# .* ."=<br />

,#2n.,iv# ,-#2.34 in 3.,i#n,* ,-., n##$ .n,i=<br />

/o.'0".,ion !0, -.v# !##n $i.'no*#$ :i,-<br />

?@85 B#/.0*# !o,- "#302i$in .n$ $#*02i$in .2#<br />

2#".,iv#"4 ".2'# 3o"43#3,i$#* ,-#4 .2# 3o,#n=<br />

,i.""4 i110no'#ni/5 C-#n 32o$0/#$( .n,i!o$=<br />

i#* ,o "#302i$in .n$ $#*02i$in /.n 2#$0/# 2#=<br />

n." /"#.2.n/# .n$ n#/#**i,.,# . 2#$0/#$ in

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!