19.04.2014 Views

Elements of appendicular skeleton: f li b Elements of appendicular ...

Elements of appendicular skeleton: f li b Elements of appendicular ...

Elements of appendicular skeleton: f li b Elements of appendicular ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Elements</strong> <strong>of</strong> <strong>appendicular</strong> <strong>skeleton</strong>:<br />

• Pectoral girdle:<br />

fore<strong>li</strong>mb<br />

• Fore<strong>li</strong>mb:


Mammals<br />

Anterior<br />

Posterior


Limbs and associated muscles are<br />

derived from somatic hypomere:


Hox gene expression in:<br />

Bony fishes<br />

Tetrapods


Pectoral girdle<br />

Modifications <strong>of</strong><br />

the basic fish<br />

pattern in<br />

vertebrates<br />

Anterior<br />

Dermal<br />

elements<br />

Endochondral<br />

elements


Shark


Medial view<br />

Lateral view


Tiktaa<strong>li</strong>k<br />

rosae<br />

• Sarcopterygian.<br />

• Shallow-water fish, but with:<br />

– Robust pectoral <strong>li</strong>mbs, functional wrist<br />

– Well-supported ribs<br />

– Functional neck


Pentadactyl fore<strong>li</strong>mb structure:<br />

Hallux


Number <strong>of</strong> digits in<br />

early amphibians<br />

initially varied<br />

from 4-13<br />

Digits reduced in<br />

<strong>li</strong>ving amphibians<br />

Theropods


Convergent evolution<br />

<strong>of</strong> external forms<br />

using different<br />

combinations <strong>of</strong><br />

skeletal elements


Historical constraints on adaptation<br />

• Ex: Giant panda’s thumb:<br />

– Pandas related to bears and raccoons<br />

(Carnivora).<br />

– Bears /raccoons are the most omnivorous<br />

carnivores.<br />

• Use front paws to manipulate food.<br />

– Giant panda are more dexterous than bears<br />

and raccoons.<br />

• Diet restricted to bamboo.<br />

• Strip leaves between flexible “thumb” and<br />

other digits.<br />

– Problems:<br />

• Primates have opposable thumbs, not<br />

carnivores.<br />

• 5 (not 4) remaining digits.


Constraints on adaptation<br />

• Panda’s thumb:<br />

– Enlarged carpal bone:<br />

• Bears: s<strong>li</strong>ghtly enlarged radial<br />

sesamoid bone.<br />

• Carnivores: two 1 st -digit abductor<br />

muscles.<br />

• In bears, one muscle attaches<br />

instead to radial sesamoid.<br />

• Abductor and adductor muscles are<br />

modified 1 st -digit abductors.<br />

– Panda’s thumb is modification <strong>of</strong><br />

carpal structures.


Limb<br />

configurations<br />

Amphibian and<br />

repti<strong>li</strong>an<br />

condition<br />

(2 effective<br />

<strong>li</strong>mb segments)<br />

Mamma<strong>li</strong>an and<br />

archosaur<br />

condition<br />

(3 effective<br />

<strong>li</strong>mb segments)


“Muscular s<strong>li</strong>ng”<br />

<strong>of</strong> mammals


<strong>Elements</strong> <strong>of</strong> <strong>appendicular</strong> <strong>skeleton</strong>:<br />

hind<strong>li</strong>mb<br />

• Pelvic girdle<br />

• Hind<strong>li</strong>mb


Mammals<br />

Anterior<br />

Posterior


Anterior<br />

Posterior


• Acanthostega :<br />

– One <strong>of</strong> first amphibians with well-defined digits (8)<br />

on fore<strong>li</strong>mbs, hind<strong>li</strong>mbs.<br />

– Limbs extended laterally, not ventrally.<br />

– Joints (elbow, wrist, knee, ankle) present but with<br />

<strong>li</strong>ttle mobi<strong>li</strong>ty.


Sue’s foot<br />

(Tyrannosaurus rex)<br />

Theropod<br />

feet (4 toes)<br />

Utahraptor<br />

Vulture<br />

Hallux


Human pelvis


Human pelvis


Knee<br />

Wrist<br />

Elbow<br />

Ankle


Models <strong>of</strong> <strong>li</strong>mb evolution<br />

• Account for two major transitions<br />

in chordate <strong>li</strong>mbs:<br />

– Aquatic fin folds to fins.<br />

• “Fin-fold theory”.<br />

– Fins to tetrapod <strong>li</strong>mbs.<br />

• “Axial” and “basal” models.


Cephalochordate<br />

condition<br />

Fin-fold<br />

theory<br />

Fish condition


Fin-fold model


Models <strong>of</strong> <strong>li</strong>mb evolution


Hagfishess<br />

Chondrichthyes<br />

Selachii<br />

Lampreys<br />

Sharks, rays<br />

Chimaeras<br />

Sarcopterygii<br />

Crossopterygii<br />

Dipnoi<br />

Lungfishes<br />

Coelacanths<br />

Tetrapods<br />

Bichirs<br />

Sturgeons, paddlefishes<br />

Gars<br />

Bowfin<br />

Bonytongues, knifefishess<br />

Tarpons, eels<br />

Herrings,<br />

anchovies<br />

Minnows,<br />

, characins, catf<br />

fishes<br />

Salmons,<br />

trouts<br />

Dragonfishes<br />

Lizardfishes<br />

Lanternfi<br />

ishes<br />

Spiny-rayed fishes<br />

Silversides, kil<strong>li</strong>fishes<br />

Cods, anglerfishes<br />

Vertebrata<br />

Gnathostomata<br />

Osteichthyes<br />

Teleostei


Basal model<br />

Axial model


Axial model<br />

• Lungfish condition is plesiomorphic.<br />

• Axial bones homologous with<br />

posterior long bones + carpals +<br />

metacarpals + phalanges.<br />

• Evidence: embryonic and gene<br />

expression patterns <strong>of</strong> vertebrate<br />

<strong>li</strong>mb development.


inductive sequence


Basal model<br />

• Coelacanth (crossopterygian)<br />

condition is plesiomorphic.<br />

• Long bones are homologous with basal<br />

fin elements (heterochronic change).<br />

• Radials are homologous with carpals +<br />

metacarpals + phalanges.<br />

• Supported by phylogenetic evidence<br />

for monophyly y <strong>of</strong> the sarcopterygians.


Context <strong>of</strong> evolution <strong>of</strong> tetrapod <strong>li</strong>mb<br />

• Late Silurian – Devonian (410-400 mybp):<br />

– Diversification <strong>of</strong> plants into semi-aquatic and terrestrial<br />

habitats.<br />

– Formation <strong>of</strong> wetlands and rivers with abundant plant<br />

<strong>li</strong>fe.<br />

– Appearance <strong>of</strong> terrestrial insects.<br />

• Transition from fin to <strong>li</strong>mb preceded that from aquatic<br />

to terrestrial habitats.<br />

– Early <strong>li</strong>mbs sufficient for shallow, muddy waters.<br />

– Multiple, clearly defined digits.<br />

– Weak girdles and <strong>li</strong>mbs, weak wrists.<br />

• Tetrapods: reduction <strong>of</strong> dermal bone, elaboration <strong>of</strong><br />

endochondral elements.


Structure <strong>of</strong> the vertebrate <strong>skeleton</strong><br />

• Two major sections:<br />

– Axial <strong>skeleton</strong><br />

– Appendicular <strong>skeleton</strong><br />

• Heterotopic elements<br />

• Articulations


Some heterotopic elements<br />

Penis bacula


Structure <strong>of</strong> the vertebrate <strong>skeleton</strong><br />

• Two major sections:<br />

– Axial <strong>skeleton</strong><br />

– Appendicular <strong>skeleton</strong><br />

• Heterotopic elements<br />

• Articulations (arthroses):


Synarthroses


Amphiarthroses


(forming<br />

meniscus<br />

layers)<br />

Diarthroses


Femoral ball-<br />

and-socket<br />

joint


Trends in the skeletal system<br />

• Interna<strong>li</strong>zation: from external dermal <strong>skeleton</strong> to<br />

internal endochondral <strong>skeleton</strong>.<br />

• Differentiation <strong>of</strong> regions <strong>of</strong> the skull and axial<br />

<strong>skeleton</strong>.<br />

• Cepha<strong>li</strong>zation: i independence d <strong>of</strong> head from<br />

postcranial <strong>skeleton</strong>.<br />

• Development and specia<strong>li</strong>zation <strong>of</strong> pentadactyl<br />

<strong>li</strong>mbs.<br />

• Relocation <strong>of</strong> <strong>li</strong>mbs from lateral to ventral.<br />

• Interlocking <strong>of</strong> vertebrae via zygapophyses.<br />

• Reduction (loss and fusion) <strong>of</strong> skeletal elements.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!