21.04.2014 Views

IR2101(S)-IR2102(S) & PbF revO.p65

IR2101(S)-IR2102(S) & PbF revO.p65

IR2101(S)-IR2102(S) & PbF revO.p65

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Data Sheet No. PD60043 Rev.O<br />

Features<br />

• Floating channel designed for bootstrap operation<br />

Fully operational to +600V<br />

Tolerant to negative transient voltage<br />

dV/dt immune<br />

• Gate drive supply range from 10 to 20V<br />

• Undervoltage lockout<br />

• 3.3V, 5V, and 15V logic input compatible<br />

• Matched propagation delay for both channels<br />

• Outputs in phase with inputs (<strong>IR2101</strong>) or out of<br />

phase with inputs (<strong>IR2102</strong>)<br />

• Also available LEAD-FREE<br />

Description<br />

The <strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) are high voltage, high speed<br />

power MOSFET and IGBT drivers with independent<br />

high and low side referenced output channels. Proprietary<br />

HVIC and latch immune CMOS technologies<br />

enable ruggedized monolithic construction. The logic<br />

input is compatible with standard CMOS or LSTTL<br />

Typical Connection<br />

<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

HIGH AND LOW SIDE DRIVER<br />

Product Summary<br />

V OFFSET<br />

I O +/-<br />

V OUT<br />

t on/off (typ.)<br />

Delay Matching<br />

600V max.<br />

130 mA / 270 mA<br />

10 - 20V<br />

160 & 150 ns<br />

50 ns<br />

output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum<br />

driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in<br />

the high side configuration which operates up to 600 volts.<br />

up to 600V<br />

Packages<br />

8-Lead SOIC<br />

<strong>IR2101</strong>S/<strong>IR2102</strong>S<br />

8-Lead PDIP<br />

<strong>IR2101</strong>/<strong>IR2102</strong><br />

V CC<br />

V CC<br />

V B<br />

HIN<br />

HIN<br />

HO<br />

LIN<br />

LIN<br />

COM<br />

V S<br />

LO<br />

TO<br />

LOAD<br />

<strong>IR2101</strong><br />

up to 600V<br />

V CC<br />

V CC<br />

V B<br />

HIN<br />

HIN<br />

HO<br />

(Refer to Lead Assignments for correct pin<br />

configuration). This/These diagram(s) show<br />

electrical connections only. Please refer to<br />

our Application Notes and DesignTips for<br />

proper circuit board layout.<br />

LIN<br />

LIN<br />

<strong>IR2102</strong><br />

V S<br />

COM LO<br />

TO<br />

LOAD<br />

www.irf.com 1


<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

Absolute Maximum Ratings<br />

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters<br />

are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured<br />

under board mounted and still air conditions.<br />

Symbol Definition Min. Max. Units<br />

V B High side floating supply voltage -0.3 625<br />

V S High side floating supply offset voltage V B - 25 V B + 0.3<br />

V HO High side floating output voltage V S - 0.3 V B + 0.3<br />

V CC Low side and logic fixed supply voltage -0.3 25<br />

V LO Low side output voltage -0.3 V CC + 0.3<br />

V IN Logic input voltage (HIN & LIN) -0.3 V CC + 0.3<br />

dV S /dt Allowable offset supply voltage transient — 50 V/ns<br />

P D Package power dissipation @ T A ≤ +25°C (8 lead PDIP) — 1.0<br />

W<br />

(8 lead SOIC) — 0.625<br />

Rth JA Thermal resistance, junction to ambient (8 lead PDIP) — 125<br />

°C/W<br />

(8 lead SOIC) — 200<br />

T J Junction temperature — 150<br />

T S Storage temperature -55 150<br />

T L Lead temperature (soldering, 10 seconds) — 300<br />

V<br />

°C<br />

Recommended Operating Conditions<br />

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the<br />

recommended conditions. The V S offset rating is tested with all supplies biased at 15V differential.<br />

Symbol Definition Min. Max. Units<br />

V B High side floating supply absolute voltage V S + 10 V S + 20<br />

V S High side floating supply offset voltage Note 1 600<br />

V HO High side floating output voltage V S V B<br />

V CC Low side and logic fixed supply voltage 10 20<br />

V<br />

V LO Low side output voltage 0 V CC<br />

V IN Logic input voltage (HIN & LIN) (<strong>IR2101</strong>) & (HIN & LIN) (<strong>IR2102</strong>) 0 V CC<br />

T A Ambient temperature -40 125<br />

°C<br />

Note 1: Logic operational for V S of -5 to +600V. Logic state held for V S of -5V to -V BS . (Please refer to the Design Tip<br />

DT97-3 for more details).<br />

2 www.irf.com


<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

Dynamic Electrical Characteristics<br />

V BIAS (V CC , V BS ) = 15V, C L = 1000 pF and T A = 25°C unless otherwise specified.<br />

Symbol Definition Min. Typ. Max. Units Test Conditions<br />

ton Turn-on propagation delay — 160 220 V S = 0V<br />

toff Turn-off propagation delay — 150 220 V S = 600V<br />

ns<br />

tr Turn-on rise time — 100 170<br />

tf Turn-off fall time — 50 90<br />

MT Delay matching, HS & LS turn-on/off — — 50<br />

Static Electrical Characteristics<br />

V BIAS (V CC , V BS ) = 15V and T A = 25°C unless otherwise specified. The V IN , V TH and I IN parameters are referenced to<br />

COM. The V O and I O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.<br />

Symbol Definition Min. Typ. Max. Units Test Conditions<br />

V IH Logic “1” input voltage (<strong>IR2101</strong>)<br />

3 — — V CC = 10V to 20V<br />

Logic “0” input voltage (<strong>IR2102</strong>)<br />

V<br />

V IL Logic “0” input voltage (<strong>IR2101</strong>)<br />

— — 0.8 V CC = 10V to 20V<br />

Logic “1”input voltage (<strong>IR2102</strong>)<br />

V OH High level output voltage, V BIAS - V O — — 100 I O = 0A<br />

mV<br />

V OL Low level output voltage, V O — — 100 I O = 0A<br />

I LK Offset supply leakage current — — 50 V B = V S = 600V<br />

I QBS Quiescent V BS supply current — 30 55 V IN = 0V or 5V<br />

I QCC Quiescent V CC supply current — 150 270 V IN = 0V or 5V<br />

I IN+ Logic “1” input bias current<br />

— 3 10<br />

µA V IN = 5V (<strong>IR2101</strong>)<br />

V IN = 0V (<strong>IR2102</strong>)<br />

I IN- Logic “0” input bias current<br />

V IN = 0V (<strong>IR2101</strong>)<br />

— — 1<br />

V IN = 5V (<strong>IR2102</strong>)<br />

V CCUV+ V CC supply undervoltage positive going 8 8.9 9.8<br />

threshold<br />

V CCUV- V CC supply undervoltage negative going 7.4 8.2 9<br />

V<br />

threshold<br />

I O+ Output high short circuit pulsed current 130 210 — V O = 0V<br />

mA V IN = Logic “1”<br />

PW ≤ 10 µs<br />

I O- Output low short circuit pulsed current 270 360 — V O = 15V<br />

V IN = Logic “0”<br />

PW ≤ 10 µs<br />

www.irf.com 3


<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

Functional Block Diagram<br />

V B<br />

HV<br />

LEVEL<br />

SHIFT<br />

PULSE<br />

FILTER<br />

R<br />

S<br />

Q<br />

HO<br />

HIN<br />

PULSE<br />

GEN<br />

V S<br />

UV<br />

DETECT<br />

V CC<br />

LIN<br />

LO<br />

COM<br />

<strong>IR2101</strong><br />

V B<br />

Vcc<br />

HV<br />

LEVEL<br />

SHIFT<br />

PULSE<br />

FILTER<br />

R<br />

S<br />

Q<br />

HO<br />

HIN<br />

PULSE<br />

GEN<br />

V S<br />

Vcc<br />

UV<br />

DETECT<br />

V CC<br />

LIN<br />

LO<br />

COM<br />

<strong>IR2102</strong><br />

4 www.irf.com


<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

Lead Definitions<br />

Symbol Description<br />

HIN<br />

HIN<br />

LIN<br />

LIN<br />

V B<br />

HO<br />

V S<br />

V CC<br />

LO<br />

COM<br />

Logic input for high side gate driver output (HO), in phase (<strong>IR2101</strong>)<br />

Logic input for high side gate driver output (HO), out of phase (<strong>IR2102</strong>)<br />

Logic input for low side gate driver output (LO), in phase (<strong>IR2101</strong>)<br />

Logic input for low side gate driver output (LO), out of phase (<strong>IR2102</strong>)<br />

High side floating supply<br />

High side gate drive output<br />

High side floating supply return<br />

Low side and logic fixed supply<br />

Low side gate drive output<br />

Low side return<br />

Lead Assignments<br />

8 Lead PDIP 8 Lead SOIC<br />

<strong>IR2101</strong><br />

<strong>IR2101</strong>S<br />

8 Lead PDIP 8 Lead SOIC<br />

<strong>IR2102</strong><br />

<strong>IR2102</strong>S<br />

www.irf.com 5


<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

HIN<br />

LIN<br />

HIN<br />

LIN<br />

50% 50%<br />

HIN<br />

LIN<br />

HIN<br />

LIN<br />

50% 50%<br />

ton<br />

t r<br />

toff<br />

tf<br />

HO<br />

LO<br />

HO<br />

LO<br />

90% 90%<br />

10% 10%<br />

Figure 1. Input/Output Timing Diagram<br />

Figure 2. Switching Time Waveform Definitions<br />

HIN<br />

LIN<br />

50% 50%<br />

HIN<br />

LIN<br />

50% 50%<br />

LO<br />

HO<br />

10%<br />

MT<br />

MT<br />

90%<br />

LO<br />

HO<br />

Figure 3. Delay Matching Waveform Definitions<br />

6 www.irf.com


<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

500<br />

500<br />

Turn-On Delay Time (ns)<br />

400<br />

300<br />

200<br />

100<br />

Max.<br />

Typ.<br />

Turn-On Delay Time (ns)<br />

400<br />

300<br />

200<br />

100<br />

Max.<br />

Typ.<br />

0<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

10 12 14 16 18 20<br />

Temperature (°C)<br />

VBIAS Supply Voltage (V)<br />

Figure 6A. Turn-On Time vs Temperature<br />

Figure 6B. Turn-On Time vs Supply Voltage<br />

500<br />

500<br />

Turn-On Delay Time (ns<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Turn-Off Delay Time (ns)<br />

400<br />

300<br />

200 Max.<br />

100<br />

Typ.<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Input Voltage (V)<br />

Temperature (°C)<br />

Figure 6C. Turn-On Time vs Input Voltage<br />

Figure 7A. Turn-Off Time vs Temperature<br />

500<br />

500<br />

Turn-Off Delay Time (ns)<br />

400<br />

300<br />

200<br />

100<br />

Max.<br />

Typ.<br />

Turn-Off Delay Time (ns<br />

400<br />

300<br />

200<br />

100<br />

Max.<br />

Typ.<br />

0<br />

10 12 14 16 18 20<br />

VBIAS Supply Voltage (V)<br />

Figure 7B. Turn-Off Time vs Supply Voltage<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Input Voltage (V)<br />

Figure 7C. Turn-Off Time vs Input Voltage<br />

www.irf.com 7


<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

500<br />

500<br />

Turn-On Rise Time (ns)<br />

400<br />

300<br />

200 Max.<br />

100<br />

Typ.<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Turn-On Rise Time (ns)<br />

400<br />

300<br />

Max.<br />

200<br />

100<br />

Typ.<br />

0<br />

10 12 14 16 18 20<br />

Temperature (°C)<br />

VBIAS Supply Voltage (V)<br />

Figure 9A. Turn-On Rise Time vs Temperature<br />

Figure 9B. Turn-On Rise Time vs Voltage<br />

200<br />

200<br />

Turn-Off Fall Time (ns)<br />

150<br />

100<br />

Max.<br />

50<br />

Typ.<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Turn-Off Fall Time (ns)<br />

150<br />

Max.<br />

100<br />

50<br />

Typ.<br />

0<br />

10 12 14 16 18 20<br />

Temperature (°C)<br />

VBIAS Supply Voltage (V)<br />

Figure 10A. Turn-Off Fall Time vs Temperature<br />

Figure 10B. Turn-Off Fall Time vs Voltage<br />

Input V oltage (V )<br />

8<br />

7<br />

6<br />

5<br />

4 Min.<br />

3<br />

2<br />

1<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Temperature (°C)<br />

Input V oltage (V )<br />

8<br />

7<br />

6<br />

5<br />

4 Min.<br />

3<br />

2<br />

1<br />

0<br />

10 12 14 16 18 20<br />

Vcc Supply Voltage (V)<br />

Figure 12A. Logic "1" Input Voltage (<strong>IR2101</strong>)<br />

Logic "0" Input Voltage (<strong>IR2102</strong>)<br />

vs Temperature<br />

Figure 12B. Logic "1" Input Voltage (<strong>IR2101</strong>)<br />

Logic "0" Input Voltage (<strong>IR2102</strong>)<br />

vs Voltage<br />

8 www.irf.com


<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

4<br />

4<br />

3.2<br />

3.2<br />

Input V olta g e (V )<br />

2.4<br />

1.6<br />

0.8<br />

Max.<br />

Input V olta g e (V )<br />

2.4<br />

1.6<br />

0.8<br />

Max.<br />

High Level Output Voltage (V)<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Temperature (°C)<br />

Figure 13A. Logic "0" Input Voltage (<strong>IR2101</strong>)<br />

Logic "1" Input Voltage (<strong>IR2102</strong>)<br />

vs Temperature<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Max.<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Temperature (°C)<br />

Figure 14A. High Level Output<br />

vs Temperature<br />

High Level Output Voltage (V)<br />

0<br />

10 12 14 16 18 20<br />

Vcc Supply Voltage (V)<br />

Figure 13B. Logic "0" Input Voltage (<strong>IR2101</strong>)<br />

Logic "1" Input Voltage (<strong>IR2102</strong>)<br />

vs Voltage<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

M ax.<br />

0<br />

10 12 14 16 18 20<br />

Vcc Supply Voltage (V)<br />

Figure 14B. High Level Output vs Voltage<br />

1<br />

1<br />

Low Level Output Voltage (V)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Max.<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Low Level Output Voltage (V)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

M ax.<br />

0<br />

10 12 14 16 18 20<br />

Temperature (°C)<br />

Vcc Supply Voltage (V)<br />

Figure 15A. Low Level Output<br />

vs Temperature<br />

Figure 15B. Low level Output vs Voltage<br />

www.irf.com 9


<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

Offset Supply Leakage Current (µA)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Max.<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Temperature (°C)<br />

Offset Supply Leakage Current (µA)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Max.<br />

0<br />

0 100 200 300 400 500 600<br />

VB Boost Voltage (V)<br />

Figure 16A. Offset Supply Current<br />

vs Temperature<br />

Figure 16B. Offset Supply Current<br />

vs Voltage<br />

150<br />

150<br />

VBS Supply Current (µA)<br />

120<br />

90<br />

60<br />

30<br />

Max.<br />

Typ.<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Temperature (°C)<br />

VBS Supply Current (µA)<br />

120<br />

90<br />

60<br />

30<br />

Max.<br />

Typ.<br />

0<br />

10 12 14 16 18 20<br />

VBS Floating Supply Voltage (V)<br />

Figure 17A. VBS Supply Current<br />

vs Temperature<br />

Figure 17B. VBS Supply Current<br />

vs Voltage<br />

700<br />

700<br />

Vcc Supply Current (µA)<br />

600<br />

500<br />

400<br />

300 Max.<br />

200<br />

100 Typ.<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Temperature (°C)<br />

Vcc Supply Current (µA)<br />

600<br />

500<br />

400<br />

300<br />

Max.<br />

200<br />

100<br />

Typ.<br />

0<br />

10 12 14 16 18 20<br />

Vcc Supply Voltage (V)<br />

Figure 18A. Vcc Supply Current<br />

vs Temperature<br />

Figure 18B. Vcc Supply Current<br />

vs Voltage<br />

10 www.irf.com


<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

30<br />

30<br />

Logic 1” Input Current (µA)<br />

25<br />

20<br />

15<br />

10<br />

Max.<br />

5<br />

Typ.<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Temperature (°C)<br />

Logic 1” Input Current (µA)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Max.<br />

Typ.<br />

0<br />

10 12 14 16 18 20<br />

Vcc Supply Voltage (V)<br />

Figure 19A. Logic"1" Input Current<br />

vs Temperature<br />

Figure 19B. Logic"1" Input Current<br />

vs Voltage<br />

5<br />

5<br />

Logic “0” Input Current (µA)<br />

4<br />

3<br />

2<br />

Max.<br />

1<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Temperature (°C)<br />

Logic "0" Input Current (uA)<br />

4<br />

3<br />

2<br />

Max.<br />

1<br />

0<br />

10 12 14 16 18 20<br />

VCC Supply Voltage (V)<br />

Figure 20A. Logic "0" Input Current<br />

vs Temperature<br />

Figure 20B. Logic "0" Input Current<br />

vs Voltage<br />

VCC UVLO Threshold +(V)<br />

11<br />

Max.<br />

10<br />

Typ.<br />

9<br />

Min.<br />

8<br />

7<br />

6<br />

-50 -25 0 25 50 75 100 125<br />

Temperature (°C)<br />

VCC UVLO Threshold - (V)<br />

11<br />

10<br />

Max.<br />

9<br />

Typ.<br />

8<br />

7 Min.<br />

6<br />

-50 -25 0 25 50 75 100 125<br />

Temperature (°C)<br />

Figure 21A. Vcc Undervoltage Threshold(+)<br />

vs Temperature<br />

Figure 21B. Vcc Undervoltage Threshold(-)<br />

vs Temperature<br />

www.irf.com 11


Output Source Current (mA)<br />

Output Source Current (mA)<br />

<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

500<br />

500<br />

400<br />

300<br />

Typ.<br />

400<br />

300<br />

200<br />

100<br />

Min.<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Temperature (°C)<br />

Figure 22A. Output Source Current<br />

vs Temperature<br />

200<br />

Typ.<br />

100<br />

Min.<br />

0<br />

10 12 14 16 18 20<br />

VBIAS Supply Voltage (V)<br />

Figure 22B. Output Source Current<br />

vs Voltage<br />

Output Sink Current (mA)<br />

700<br />

600<br />

500 Typ.<br />

400<br />

300<br />

Min.<br />

200<br />

100<br />

0<br />

-50 -25 0 25 50 75 100 125<br />

Temperature (°C)<br />

Output Sink Current (mA)<br />

700<br />

600<br />

500<br />

400<br />

Typ.<br />

300<br />

200<br />

Min.<br />

100<br />

0<br />

10 12 14 16 18 20<br />

VBIAS Supply Voltage (V)<br />

Figure 23A. Output Sink Current<br />

vs Temperature<br />

Figure 23B. Output Sink Current<br />

vs Voltage<br />

12 www.irf.com


<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

Case outlines<br />

8 Lead PDIP<br />

01-6014<br />

01-3003 01 (MS-001AB)<br />

A<br />

E<br />

6<br />

6X<br />

D<br />

5<br />

8 7 6 5<br />

1 2 3 4<br />

e<br />

B<br />

H<br />

0.25 [.010] A<br />

6.46 [.255]<br />

3X 1.27 [.050]<br />

FOOTPRINT<br />

8X 0.72 [.028]<br />

8X 1.78 [.070]<br />

DIM<br />

INC HES MILLIMETERS<br />

MIN MAX MIN MAX<br />

A<br />

A1<br />

b<br />

c<br />

.0532<br />

.0040<br />

.013<br />

.0075<br />

.0688<br />

.0098<br />

.020<br />

.0098<br />

1.35<br />

0.10<br />

0.33<br />

0.19<br />

1.75<br />

0.25<br />

0.51<br />

0.25<br />

D<br />

E<br />

.189<br />

.1497<br />

.1968<br />

.1574<br />

4.80<br />

3.80<br />

5.00<br />

4.00<br />

e .050 BASIC 1.27 BASIC<br />

e1 .025 BASIC 0.635 BASIC<br />

H<br />

K<br />

L<br />

y<br />

.2284<br />

.0099<br />

.016<br />

0°<br />

.2440<br />

.0196<br />

.050<br />

8°<br />

5.80<br />

0.25<br />

0.40<br />

0°<br />

6.20<br />

0.50<br />

1.27<br />

8°<br />

e1<br />

A<br />

C<br />

y<br />

K x 45°<br />

8X b<br />

A1<br />

0.25 [.010] C A B<br />

0.10 [.004]<br />

8X L<br />

7<br />

8X c<br />

NOTES:<br />

1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.<br />

2. CONTROLLING DIMENSION: MILLIMETER<br />

3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].<br />

4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.<br />

8 Lead SOIC<br />

5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.<br />

MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].<br />

6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.<br />

MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].<br />

7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO<br />

A SUBSTRATE.<br />

01-6027<br />

01-0021 11 (MS-012AA)<br />

www.irf.com 13


<strong>IR2101</strong>(S)/<strong>IR2102</strong>(S) & (<strong>PbF</strong>)<br />

LEADFREE PART MARKING INFORMATION<br />

Part number<br />

IRxxxxxx<br />

Date code<br />

YWW?<br />

IR logo<br />

Pin 1<br />

Identifier<br />

? MARKING CODE<br />

P Lead Free Released<br />

Non-Lead Free<br />

Released<br />

?XXXX<br />

Lot Code<br />

(Prod mode - 4 digit SPN code)<br />

Assembly site code<br />

Per SCOP 200-002<br />

ORDER INFORMATION<br />

Basic Part (Non-Lead Free)<br />

8-Lead PDIP <strong>IR2101</strong> order <strong>IR2101</strong><br />

8-Lead SOIC <strong>IR2101</strong>S order <strong>IR2101</strong>S<br />

8-Lead PDIP <strong>IR2102</strong> order <strong>IR2102</strong><br />

8-Lead SOIC <strong>IR2102</strong>S order <strong>IR2102</strong>S<br />

Leadfree Part<br />

8-Lead PDIP <strong>IR2101</strong> order <strong>IR2101</strong><strong>PbF</strong><br />

8-Lead SOIC <strong>IR2101</strong>S order <strong>IR2101</strong>S<strong>PbF</strong><br />

8-Lead PDIP <strong>IR2102</strong> order <strong>IR2102</strong><strong>PbF</strong><br />

8-Lead SOIC <strong>IR2102</strong>S order <strong>IR2102</strong>S<strong>PbF</strong><br />

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105<br />

This product has been qualified per industrial level<br />

Data and specifications subject to change without notice. 4/2/2004<br />

14 www.irf.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!